
Chapter 1

Multi-Path Marginal Space
Learning for Object
Detection

1.1 Abstract

This chapter introduces a novel method for fast detection of objects with a large
number of parameters. The method is based on Marginal Space Learning (MSL),
which is a learning-based optimization technique that approaches the search for
objects in images as a particle filter in a chain of subspaces of increasing dimen-
sions, using trained detectors to prune the particles in the subspaces. MSL has
been used extensively in Medical Imaging for detecting organs and landmarks
in 2D and 3D data and for detecting and tracking curve-like structures such as
guidewires and catethers. This chapter brings three contributions. Firstly, it
introduces multiple computational paths for MSL, which can improve the de-
tection performance compared to a single MSL path. Second, it presents an
application of multi-path MSL to four parameter face detection from grayscale
images. Thirdly, it observes experimentally that multiple-path MSL obtains a
compact classifier with good generalization abilities. Consequently, the number
of training examples can be reduced to half compared to other methods with
similar performance.

1.2 Glossary

- classifier. A function that takes one or more variables called features as input
and returns a discrete class label (e.g. object/non object) or a probability over
the possible class labels.
- detection rate. The percentage of true positives (e.g. faces) that were
correctly detected by an object detection algorithm.
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- false positive rate. The percentage of detections of an algorithm that are
not close to true positives (e.g. faces).
- Haar feature. A function that takes an input image and returns a linear
combination of sums of intensities inside different rectangles. The computation
of sums inside a rectangle can be done in constant time using the integral image.
- integral image. An image as large as the original image, containing at
location (x, y) the sum of all pixel intensities in the rectangle from (0, 0) to
(x, y).
- Receiver Operating Characteristic (ROC) Curve. A curve displaying
the detection rate vs. the false positive rate of an algorithm when a detection
parameter (usually a detection threshold) is varied.
- strong classifier. A classifier that is constructed from a number of weak
classifiers or weak regressors and is much better than any of them.
- weak classifier. A classifier that has a non-zero correlation with the class
label, hence it is better than random guessing.
- weak regressor. A function that takes one or more variables as input and
returns a continuous value that has a non-zero correlation with the value of
interest (e.g. age or GPA score).

1.3 Introduction

One of the main computational challenges in object detection is dealing with the
size and position variability of the objects in real-world images. There are even
more challenges, however, since the objects also exhibit different rotations, and
other parameters (out of plane rotation, illumination, internal parameters such
as limb locations for pedestrians, etc). Previous works deal with this curse of
dimensionality in different ways, which can be grouped in two main approaches.

The first main approach is to use features that are invariant to the object
parameters (Forsyth, Mundy, Zisserman, Coelho, Heller & Rothwell 1991, Wood
1996, Zisserman, Forsyth, Mundy, Rothwell, Liu & Pillow 1995), such as rota-
tion/scale invariant features (Fergus, Perona & Zisserman 2003) or illumination
invariant features (Chen, Belhumeur & Jacobs n.d., Slater & Healey 1996). With
this approach, some of the object parameters are ignored and a computational
gain is obtained. The main challenge with this approach is to find features
that are invariant yet discriminative. In some cases (Fergus et al. 2003), these
features are more computationally expensive than the simple and non-invariant
ones, such as the Haar features (Viola & Jones 2004), that are used in the second
main approach.

The second main approach is to exhaustively search the object parameters
using fast classifiers based on simple features (Fleuret & Geman 2001, Heisele,
Serre, Prentice & Poggio 2003, Li, Zhu, Zhang, Blake, Zhang & Shum 2002,
Roth, Yang & Ahuja 2001, Sung & Poggio 1998). Different approaches are used
for speeding up the detection (Viola & Jones 2004) and for obtaining more dis-
criminative features (Schneiderman & Kanade 2000, Wu, Rehg & Mullin 2003).
For computational efficiency, most exhaustive search approaches are based on
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a cascade of increasingly complex classifiers, and still make a compromise by
ignoring some of the object parameters, e.g. rotation.

Recently, a new computational approach named Marginal Space Learning
(MSL) permits the use of an arbitrarily large number of parameters in the object
of interest. The method was applied to many medical imaging problems (Barbu,
Athitsos, Georgescu, Boehm, Durlak & Comaniciu 2007, Barbu, Suehling, Xu,
Liu, Zhou & Comaniciu 2011, Feng, Zhou, Good & Comaniciu 2009, Feulner,
Zhou, Huber, Hornegger, Comaniciu & Cavallaro 2010, Ling, Zhou, Zheng,
Georgescu, Suehling & Comaniciu 2008, Seifert, Barbu, Zhou, Liu, Feulner, Hu-
ber, Suehling, Cavallaro & Comaniciu 2009, Zheng, Barbu, Georgescu, Scheuer-
ing & Comaniciu 2007) where the objects to be detected had between 9 and 165
parameters. The method involves training classifiers for a sequence of increas-
ingly larger subspaces, such that the relative dimension between two consecu-
tive spaces is small. These subspaces are Marginal Spaces, since some of the
parameters of the final classifier have been ignored (marginalized). In (Zheng
et al. 2007), all 9 parameters were needed to align a PCA shape model of a
heart chamber for object segmentation.

The contributions of this chapter are the following:

1. It makes a connection through Marginal Space Learning between the ob-
ject detection approach based on invariant features and the approach
based on simple and non-invariant features with exhaustive search.

2. It introduces multiple computational paths in Marginal Space Learning,
in which detections obtained through different MSL paths are aggregated
into the final detection result. This new method offers improved perfor-
mance over using a single MSL path.

3. It presents an application of the proposed multi-path MSL approach to
four parameter face detection from grayscale images.

4. It observes experimentally that MSL and multi-path MSL have more com-
pact classifiers than regular object detectors of comparable accuracy. Con-
sequently, MSL and multi-path MSL need fewer manually annotated ex-
amples than other object detection algorithms (e.g. 1494 instead of 4916
in (Viola & Jones 2004)) to obtain similar or even better generalization
performance.

This work does not aim to go beyond the state of the art in face detection.
Instead, it shows a new approach to object detection using Marginal Space
Learning that can handle a large number of parameters, obtains a more compact
model and needs fewer training examples. These advantages make the approach
applicable to many object detection tasks.

1.4 Related Work

The fast detection in a Marginal Space can be considered one form of selective
attention (Amit & Geman 1999). Furthermore, the three levels of computation
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presented in (Amit & Geman 1999) - edge fragments, local and global groupings
- represent particles in different marginal spaces, when the object of interest is
modeled using edges and their spatial relationships. Similarly, in our previous
work on Hierarchical Learning of Curves (Barbu et al. 2007), Marginal Space
Learning was used to detect flexible curves in X-ray images using ridge frag-
ments, short curves and long curves as marginal spaces.

Marginal Space Learning is related to the Highest Confidence First (HCF)
algorithm (Chou & Brown 1990) in that it propagates the most promising partial
solutions. However, HCF is greedy while MSL propagates a number of partial
solutions, so it can avoid many local optima. Moreover, learning the marginal
space models ensures that there will usually in the end be solutions close to the
true optimum.

Learning in marginal spaces has been used for learning-based edge detection
(Dollar, Tu & Belongie 2006), by learning the probability of a pixel to be on
an edge while ignoring the edge direction. However, that was the final goal in
(Dollar et al. 2006) and the process was not continued by increasing number of
parameters to obtain a more accurate edge model.

Skin detection (Jones & Rehg 2002, Wang & Chang 1997) is used as a
first step in Color Face Detection (Hsu, Abdel-Mottaleb & Jain 2002). Skin
detection can be seen as a detection step in a marginal space where all other
face parameters are ignored except for the skin position, obtained purely based
on skin color.

More generally, Marginal Space Learning is related to part based object
detection (Agarwal & Roth n.d.) and Pictorial Structures (Felzenszwalb &
Huttenlocher 2005, Andriluka, Roth & Schiele 2009), since object parts are
detected in smaller dimensional Marginal Spaces of the full object parameter
space. There are many differences though. In these works, the full object model
is constructed from the part models purely based on the geometric configuration
of the parts whereas in MSL the full object model is learned using both spatial
and appearance features. Moreover, in MSL many intermediate subspaces could
be used between the part models and the full-object model, which could further
speed-up the algorithm. One advantage of the Pictorial Structures is that they
are robust to the occlusion of any of the parts, as long as sufficiently many other
parts are present, while MSL relies too heavily on one of the parts. This issue
is addressed by the Multi-Path MSL introduced in this work in Section 1.7.

The And-Or graph representation of the object by parts (Wu & Zhu 2011)
has α and β inference processes that detect the objects directly (α process) or
predict the object from a detected part (β process). These inference processes
can be considered different MSL computational paths. While the And-Or graph
is focused on a part-based representation, MSL can use other computational
paths that are not based on parts. For example in our heart segmentation work
(Zheng, Barbu, Georgescu, Scheuering & Comaniciu 2008) one of the marginal
spaces for detecting the Left Ventricle (LV) was the position of the LV center,
which is not a part, but a simpler representation of the object in which the
orientation and scale are ignored.

Many face detection papers (Bourdev & Brandt 2005, Roth et al. 2001,
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Schneiderman 2004, Viola & Jones 2004) ignore some of the face parameters,
training a classifier that is invariant to the ignored parameters. The same holds
true for many object detection papers (Fei-Fei, Fergus & Perona 2006, Schnei-
derman & Kanade 2000, Torralba, Murphy & Freeman 2004). Because of the
high computational burden associated with inferring shape, 3D position, defor-
mation, and illumination, most authors disregard the large parameter spaces
that would offer a more accurate characterization of the detected object. How-
ever, the benefits in terms of accuracy of the object model are multiple. For
example, in Blanz & Vetter (1999) an accurate face model with more than 200
parameters is obtained in about 50 minutes using variational techniques.

Other authors describe a face detection method in which a number of more
and more specialized detectors are learned in a tree structure (Huang, Ai, Li
& Lao 2005). Specifically, a generic face detector is trained at the root of the
tree in the marginal space of all face rotations. In subsequent layers of the tree,
more and more accurate detectors are employed to prune the search space. This
work can be viewed as an early MSL precursor, however the authors did not
present their approach as a general learning-based optimization methodology.

Marginal Space Learning is different from a detector cascade (Schneiderman
2004, Viola & Jones 2004). In the detector cascade, all detectors work in the
same parameter space, whereas in Marginal Space Learning the models (de-
tectors) work on spaces of increasingly larger dimensionality. Marginal Space
Learning draws its power from this increasing dimensionality, since rejecting one
location in a marginal space virtually eliminates thousands or even millions of
locations from searching in the full parameter space.

The Soft Cascade (Bourdev & Brandt 2005) could be used to train each
marginal classifier instead of the regular cascade or the Probabilistic Boosting
Tree (Tu 2005), methods currently used in our work. This way, each marginal
classifier can be further tuned to balance speed and accuracy.

Recent work on Recursive Compositional Models (RCM) (Zhu, Chen, Ye
& Yuille 2008, Zhu, Chen & Yuille 2007, Zhu, Chen & Yuille 2009, Zhu, Lin,
Huang, Chen & Yuille 2008) is related to Marginal Space Learning, since partial
object models are obtained in a sequence of subspaces of increasing dimension,
and these models are used to efficiently propagate a set of particles. However,
Marginal Space Learning is a general training and optimization methodology
that can be used in many applications (object detection, segmentation, infer-
ence) and is not tied to a particular model.

Marginal Space Learning is similar to a degenerate decision tree (Kuncheva
2004), where each node is a boosted classifier trained in a marginal space. The
major difference is that MSL obtains a fractional number of feature evaluations
per location, (e.g. on the order of 10−5 for Left Ventricle detection in CT),
whereas in the decision tree, the number of feature evaluations per location is
at least 1 (the first node of the tree). Moreover, the MSL classifiers are tuned
based on the ROC curve to certain detection rates that obtain a desired trade-
off between the overall detection speed and accuracy. Because of the simplicity
of the MSL chain, this tuning can be performed jointly on all the classifiers,
which is impractical in a generic decision tree.
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As already mentioned, the MSL optimization can be performed stochas-
tically using sequential Monte Carlo on the marginal spaces (Doucet 2007).
However, in Doucet (2007) the authors use a generic approach without learning
the marginal probabilities, which is not practical for most computer vision or
medical imaging applications.

1.5 Marginal Space Learning Overview

Given a trained classifier p(x|I), x ∈ Ω, the object detection problem is to find
the object parameters x in the image I

x̂ = argmax
x∈Ω

p(x|I)

If the parameter space Ω is high dimensional (e.g. 9D in the case of finding
the Left Ventricle from a CT image), it is computationally expensive or even
prohibitive to search the entire space Ω, even using a coarse-to-fine approach.

Marginal Space Learning addresses this optimization problem through learn-
ing. It is a simple and intuitive idea that can be regarded as a particle filter in a
sequence Ω1 ⊂ Ω2 ⊂ ... ⊂ Ωn = Ω of increasingly larger subspaces, with the last
space Ω being the parameter space of the object that needs to be detected. In
each subspace Ωi ⊂ Ω some of the object parameters are ignored (marginalized)
and a trained classifier is used to prune the particles. The particles are then
propagated to the next space of the sequence by adding more parameters with
all the possible values on a grid, and again pruning them with the associated
classifier, as illustrated in Figure 1.1.

Figure 1.1: Marginal Space Learning propagates a set of particles in a sequence
of increasingly larger subspaces of object parameters. In each subspace Ωk+1,
the particles from Ωk are extended by adding more parameters and a trained
classifier is used to prune these extended particles.

The procedure is repeated until the set of particles reaches the full space Ω
of object parameters. The particles can be pruned in a deterministic fashion
by always keeping the most promising particles, or stochastically by sampling
them according to their probabilities given by the classifier.
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The first or first few marginal spaces can be considered as following the
invariant-feature based approach, since they ignore many of the object’s param-
eters. Example of first marginal spaces could be the space of decisions whether
the object is present or not in the scene, as in (Fei-Fei et al. 2006), or the space
of the object’s position only (Fleuret & Geman 2001).

The next marginal classifiers add more and more parameters to the object,
and use features that are less invariant and usually faster and more discrimina-
tive. Directly using a classifier in large dimensional space can computationally
expensive or even prohibitive. However, by using the marginal classifiers to
focus the object detectors to a small number of locations, a large number of
parameters can be easily handled without a computational burden.

The last classifier is based on all the parameters that are relevant to the
problem at hand (scale, rotation, illumination, etc) and gives the final detection
result. This last level could have complex and accurate models (e.g. generative
models such as Liu (2003) and Tu (2007)) in the last classifier as a final vali-
dation step to further improve the accuracy, with minimal computational loss.
For example, this last verification step for 3D lymph node detection (Barbu,
Suehling, Xu, Liu, Zhou & Comaniciu 2010, Barbu et al. 2011) is performed in
the 165 dimensional space of lymph node segmentations.

Marginal space learning presents some advantages and disadvantages:

• If the marginal classifiers can be trained well, speed-up by many orders of
magnitude (six order of magnitude speedup in (Zheng et al. 2007)) can be
obtained with virtually no loss in accuracy.

• It is easy to control the speed/accuracy trade-off through the number of
particles that are propagated. A larger number of particles means an
increased detection rate for a larger computational expense.

• The total size of the classifiers is smaller than in a cascaded approach,
because each classifier is trained on a more representative sample set.
Consequently, the MSL approach usually needs fewer training examples
for the same generalization power.

• Training the marginal classifiers, especially the first one, require invariant
features that are discriminative. This is the same challenge faced by the
invariant-feature based approaches (Chen et al. n.d., Fergus et al. 2003,
Forsyth et al. 1991, Slater & Healey 1996, Wood 1996, Zisserman et al.
1995).

1.6 Face Detection with Marginal Space Learn-
ing

Face detection is one application well suited for Marginal Space Learning. There
are many different marginal subspaces that could be chosen as part of the MSL
chain. Some of them correspond to different face parts such as left or right eye
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or ear, nose, or mouth. Other marginal spaces could be simpler representations
of the whole face, such as a low resolution face patch. In this application, we will
use a 2-space chain Ω1 ⊂ Ω, where Ω1 is the marginal space of possible right eye
positions with a coarse scale (xe, ye, se). The space Ω is a four-dimensional space
(x, y, s, θ) ∈ Ω parameterizing face position (x, y), fine scale s and orientation
θ. The right eye was chosen because the eye is a very salient part of the face.
By training different face part detectors (eyes, nose, mouth, ears), we observed
that the eye detector has a more compact classifier than the others, so it is more
suited to be an intermediate subspace in the MSL chain. The diagram of the
face detection application is shown in Figure 1.2.

Figure 1.2: Example of MSL for face detection. The first marginal classifier
detects the person’s right eye (xe, ye, se), ignoring the rotation and with a rough
scale. The detected eyes are transformed into face candidates (x, y, s, θ) by
adding rotations and scales on a grid. These candidates are pruned by the face
detector to obtain the final result.

The eye marginal space consists of the right eye locations (xe, ye) for faces
in a certain range of scales. Because of that, the eye locations are detected on
a Gaussian pyramid (Burt & Adelson 1983) hence they also have a coarse scale
se that is a power of 2.

The final detector detects faces with four parameters (x, y, s, θ). It does so
by using the candidate eye locations (xe, ye, se) returned by the the marginal
classifier and adding a many possible rotation and fine scale parameters relative
to the right eye. The classifier trained in this space will output a number of
detected faces, which will be the result of our algorithm after non-maximal
suppression.
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1.6.1 Scale and Rotation Invariant Eye Detection

This first marginal space Ω1 in our framework is the right eye location and a
classifier is trained to detect the right eye, independent of the face orientation,
for faces in a certain range of sizes (between 15 and 50 pixels wide). To make
sure that the faces are in this range, the detector is run for images reduced by a
power of 2. Thus, the detector works in the marginal space of right eye locations
(xe, ye, se), where the eye is detected at position (xe, ye) in an image that was
reduced 2s

e

times.

Face features have also been used for face detection before (Leung, Burl
& Perona 1995), but the features were obtained as filter responses, and not
by a trained classifier. Moreover, the features were combined purely based on
geometry, without any use of the appearance after the feature detection step.
This is not the case in this work.

The eye detector is trained as a cascade of LogitBoost (Friedman, Hastie &
Tibshirani 2000) classifiers, based on Haar features (Viola & Jones 2004) and the
integral image, with more details given in Section 1.8.2. Other eye detection
techniques (Feng & Yuen 2001, Wang, Green, Ji & Wayman 2005, Zhou &
Geng 2004, Zhu & Ji 2005) could be more appropriate than the Haar-based
approach that we used.

The output of this marginal classifier is a number of detected right eyes, that
are used to constrain the search in the next space.

Figure 1.3: Right eye locations detected by the marginal classifier.The classifier
takes advantage of the eye context (nose, glasses, etc) and detects the eye even
when it is occluded, as shown in the middle image.

Examples outputs of this marginal classifier are shown in Figure 1.3. As one
could see, the classifier takes advantage of the area surrounding the eye (nose,
glasses, etc) and makes a correct detection even when the eye is completely
occluded, as shown in the middle image in Figure 1.3.

This level eliminates more than 99% of the total number of windows that
would have to be evaluated in the four dimensional space, at the cost of eliminat-
ing some of the true eye locations. If better features (e.g. rotation/illumination
invariant) were used to obtain a better eye detection, the whole system’s per-
formance in both speed and accuracy could be further improved.
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Algorithm 1 Face Detection By MSL

Input: Input Image I.
Output: Set D of detected faces.

1: Construct a Gaussian pyramid Ir, r = 1, n by reducing the image I by powers
of 2 as long as the size is at least lmin.

2: for r=1 to n do
3: Detect eye candidates (xei , y

e
i , s

e
i ), i = 1, ..., dr in Ir.

4: Generate face candidates using Eq. (1.1)

cijk = (xijk, yijk, sij , θk), i = 1, ..., dk, j = 0, ..., ns, k = 0, ..., nθ

where sij = sei (1 + jδs), θk = −θmax + kδθ.
5: Compute p(cijk|Ir) and discard cijk if p(cijk|Ir) < τ
6: end for
7: Perform Non-Maximal Suppression (Algorithm 2) on the remaining candi-

dates cijk.

1.6.2 Four Parameter Face Detection

The obtained particles (candidates) (xe, ye, se) from the eye marginal space Ω1

are extended to 4-parameter face candidates (x, y, s, θ) , where (x, y) is the face
center position, s is the isotropic scale and θ is the face orientation. This is
done by adding to each eye candidate a set of 135 possible orientation-scale
combinations, with 15 discrete orientations between −35 and 35 degrees and 9
discrete relative scales s = se(1 + jδs), j = 0, ..., 8 where δs = 1/7.

Anthropometric face measures (DeCarlo, Metaxas & Stone 1998, Horprasert,
Yacoob & Davis 1996, Popovici, Thiran, Rodriguez & Marcel 2004) are used to
predict the face center (x, y) given the eye location (xe, ye), scale s and angle θ
as

(x, y) = (xe, ye) + 0.5 · 7sd + 0.4 · 7sd⊥, (1.1)

where d = (cos θ, sin θ) and d⊥ = (− sin θ, cos θ). An example of face candidates
obtained this way at two different scales is shown in Figure 1.4.

Figure 1.4: Four parameter face candidates (xi, yi, si, θi) at two scales generated
from the detected eyes.
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The face candidates close to true faces were used as positive examples while
the ones that were far from faces were used as negatives. The face detector
was trained using these positives and negatives, Haar features and a cascade of
Logitboost classifiers, with more details given in Section 1.8.2.

The whole face detection algorithm using MSL is summarized in Algorithm
1. There are usually many overlapping detections on the same face with slightly
different centers, scales and orientations, as illustrated in Figure 1.5.

Figure 1.5: Detections rescaled to the original image size. There are usually
multiple detections on the same face, which will be handled by the non-maximal
suppression Algorithm 2.

To deal with this overlapping detection issue, a non-maximal suppression
step is used, as described in Algorithm 2. The algorithm starts with a set of
detected candidates ci = (xi, yi, si, θi) with probabilities pi above a predefined
threshold τ . It keeps the highest probability candidate and removes all candi-
dates that are close to it (i.e. have centers inside the box determined by its
parameters (x, y, s, θ)). Then it keeps the best of the remaining candidates and
again removes all candidates that are close to it, and so on, until no candidates
are left.

Algorithm 2 Non-maximal Suppression

Input: Candidates ci = (xi, yi, si, θi) with scores pi > τ and bounding boxes
bi.
Output: Set D of detected faces.

1: Find the candidate ci with highest score pi.
2: if ci exists then initialize D = {i} else D = ∅, stop.
3: while true do
4: Remove candidates cj with centers inside any box bi, i ∈ D.
5: Find remaining candidate cj of highest score pj .
6: if cj exists then add j to detected set: D ← D ∪ {j} else stop.
7: end while

The threshold τ can be used to control the detection and false positive rate.
By varying the threshold τ , a ROC (Receiver Operating Characteristic) curve
can be obtained, such as the red curve from Figure 1.10.
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Figure 1.6: Detected faces after non-maximal suppression.

Examples of detections obtained using the face detection algorithm are
shown in Figure 1.6.

1.7 Multiple Computational Paths in Marginal
Space Learning

When the dimensionality of the parameter space Ω is large or when the marginal
spaces correspond to parts that are occluded, it is possible that the propagated
particles will not reach the final space Ω for detecting the object of interest. The
Recursive Compositional Models (RCM) (Zhu, Chen, Ye & Yuille 2008, Zhu
et al. 2007, Zhu et al. 2009, Zhu, Lin, Huang, Chen & Yuille 2008), which are
similar in spirit to MSL, have a built-in degree of robustness to missing data
that translates into a certain degree of robustness of the optimization. When
failures occur in the RCMs, the obtained model parameters x ∈ Ω have some
missing parameters that are filled in with their most probable values, without
taking the image into consideration. This could result in an inaccuracy of the
final result, and has been addressed in the RCMs by a post-processing step of
data driven segmentation using Grab-Cut (Rother, Kolmogorov & Blake 2004),
using the RCM result for initialization.

To avoid the disadvantages of using a preselected MSL path, multiple MSL
paths cand be used, based on different sequences of marginal spaces. However, a
direct application of this idea does not show much improvement in performance
because while the number of detections increases due to the multiple paths, the
number of false positives also increases.

However, by aggregating the results from the different MSL paths instead of
just merging them, significant performance improvements can be obtained. By
using a simple aggregation scheme described below, significant improvements
have been observed for the face detection with MSL application described in
Section 1.6. This is because two different MSL paths could serve as independent
confirmations of a detection result. This idea is similar to the approach taken
by the newspapers to publish information only if it is confirmed through two
different sources. Furthermore, this idea is also related to co-training (Blum
& Mitchell 1998, Nigam & Ghani 2000), a method for semi-supervised learning
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Figure 1.7: Face detection using Two Marginal Space Learning Paths, using the
left and respectively right eye locations as marginal subspaces of the 4D face
model. Even if one eye is occluded, the face can still be detected successfully
through the other MSL path.

that uses two independent sets of features for confirmation of detection results
on unseen data. In view of the co-training paradigm, semi-supervised learning
based on Multi-path MSL might be feasible.

We performed an experiment using two MSL paths for face detection, using
left and respectively right eye detectors as intermediate marginal spaces. The
diagram of these two MSL paths is illustrated in Figure 1.7. In Figure 1.8 are
shown the detected left and right eyes in cyan and yellow respectively.

Figure 1.8: Detected right (yellow) and left (cyan) eye locations.

Two different face detectors were trained because the 4D faces are aligned
differently if coming through the left or right eye path. Examples of detected
faces through the left and right eye MSL paths are shown in cyan respectively
yellow in Figure 1.9. As one could see, most of the time the face is detected
by both MSL paths, but there are some isolated cases when only one of the
detectors finds the face.

We propose the following way to aggregate the results obtained through the
multiple MSL paths:

• An object detected with strong confidence from any of the paths is con-
sidered detected.
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Figure 1.9: Detected face location locations through the left (cyan) and right
(yello) MSL paths respectively.

• An object detected from one MSL path is considered detected if it is
confirmed from another MSL path, i.e. when a sufficiently close object
detected from another MSL path exists.

Hence a face is detected if either it has strong confidence through one MSL
path or it is confirmed from both paths.

Using this aggregation scheme we obtained the ROC curve shown in Fig-
ure 1.10 as a black solid line. It shows that using Multiple MSL paths leads
to significant improvements in accuracy, obtaining results comparable to some
recent results in face detection (Brubaker, Mullin & Rehg 2006, Garcia &
Delakis 2004, Xiao, Zhu, Sun & Tang 2007).

This Multi-Path MSL idea is motivated by our work in guide-wire localiza-
tion (Barbu et al. 2007), where an MSL approach was used to detect and seg-
ment a thin and flexible wire in fluoroscopy (real-time X-ray). In the guide-wire
work, different parts of the wire were modeled using the same discriminative
classifier, even though they correspond to different possible subspaces Ω1. It
just so happened that for the guidewire, all these subspaces can use the same
model, but this would not extend to other objects, e.g. a snake that have a
different appearance for the head than for the body. In practice we observed
that different sequences of subspaces were used in different images, depending
on what parts of the wire were more visible. Moreover, the chain of subspaces
could be longer or shorter depending on the length of the wire in the image. For
these reasons, the guide-wire localization work (Barbu et al. 2007) served as a
first proof of feasibility of the Multiple Path MSL idea.
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1.8 Experimental validation

Two MSL face detectors as described in Section 1.6 were trained, one using the
right eye as the marginal space and another one using the left eye. The Multi-
path MSL was constructed from these two detectors as described in Section 1.7
above.

1.8.1 The training dataset

The eye and face classifiers were trained on a database of 160 images obtained
from the Internet, containing 2600 faces that were manually annotated. To
obtain a larger set of negative examples (Sung & Poggio 1998), 215 images that
don’t contain any faces were added from the Berkeley dataset (Martin, Fowlkes,
Tal & Malik 2001).

The faces were manually annotated by placing the two eye locations. Given
the two eyes, the square window surrounding the face is aligned with the line
connecting the eyes, has width twice the distance d between the eyes and height
2.6d. The face window center is at equal distance from the eyes and at distance
0.8d from the line connecting the eyes. These dimensions are similar to the
anthropometric measures from (Popovici et al. 2004).

1.8.2 Implementation details

The eye and the face detectors were trained as cascades of three LogitBoost
classifiers (Friedman et al. 2000), with parameters given in Table 1.1.

Table 1.1: Training details for the two classifiers including the number of weak
classifiers, detection rate and false positive rate.

Classifier # Features Clf 1 Clf 2 Clf 3 TPR Train FPR Train
Eye 66,024 20 60 180 99.2% 0.1%
Face 124,917 50 125 312 95.6% 0.5%

Eye Detectors. The left and right eye detectors were trained as cascade of
Logitboost classifiers with 20, 60 and 180 locally constant weak regressors, each
weak regressor being based on only one feature. The features are based on Haar
features (Papageorgiou, Oren & Poggio 1998, Viola & Jones 2004), restricted
in a window of size 19 × 19 pixels centered at the location (x, y). To obtain
a more robust training, the number of positive examples was increased with
rotated versions by ±5 degrees. This way, 6500 positive examples were used for
training.

On the training data, this level detects about 99.% of the eyes with a false
alarm rate of about 0.1%.

We also performed an evaluation of this classifier on unseen data, namely the
MIT + CMU frontal face test set (Rowley, Baluja & Kanade 1996), containing
130 images and 507 faces. Here, the right eye detector detects 92.7% of the right
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eyes with an error of at most 1 pixel, and has a false alarm of 0.15%. This shows
that there were not enough training examples to capture all the variability in
the test data.

Face Detectors. From the eye detector, a number of eye position candi-
dates (xei , y

e
i , s

e
i ) are obtained. A total of 135 face candidates with four param-

eters (x, y, s, θ) are obtained from each eye candidate, as described in Section
1.6.2.

The face detector is also a three-level cascade of Logitboost classifiers with
50, 125 and 312 locally constant weak regressors respectively. Each Logitboost
classifier is trained using 124,917 Haar features restricted in an image of size
21 × 23, working on integral images of rotated and rescaled versions of the
original image. For each face candidate (x, y, s, θ), the feature parameters were
scaled by s and extracted from the integral image of the image rotated by −θ.

As one could see, the total number of features used in this multi-path MSL
approach is 1494, smaller than the other face detection systems (4916 in Viola
& Jones (2004) and 2546 in Li et al. (2002)). One of the reasons is that an eye
has less variability in appearance than an entire face, at the resolution where
the whole face has about 25x25 pixels. Thus an eye detector can be trained
using a more compact classifier than a face detector, with good generalization
power.

1.8.3 Evaluation

The three MSL versions (two one path and one multi-path) were evaluated on
the MIT+CMU dataset (Rowley et al. 1996), containing 130 images and 507
faces that were not used for training.

As already mentioned in Hjelmas & Low (2001), very few papers disclose
the criterion on which they report a face as detected or not. Quite similar to
Osadchy, Le Cun & Miller (2007), we declare a face correctly detected if the
following two criteria are satisfied:

• The distance from the detected window center to the true face window
center is less than 0.3 times the true face height

• The ratio between the heights of detected window and the true face is in
the interval [0.5, 1.5].

Based on these evaluation criteria, the ROC curves obtained on the MIT+CMU
dataset are shown in Figure 1.10. The ROC curves obtained by Viola-Jones
(Viola & Jones 2004), FloatBoost(Li et al. 2002) and Convolutional Face Finder
(Garcia & Delakis 2004) are also shown for comparison.

We also present in Table 1.2 a comparison with other face detection methods,
including the neural-network based face detection (Rowley et al. 1996), Viola &
Jones (2004), Schneiderman (2004), and the Convolutional Face Finder (Garcia
& Delakis 2004). For Schneiderman (2004), we show in parantheses the actual
number of false positives, since they didn’t report the detection rates for the
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Figure 1.10: Face detection on unseen data (the MIT-CMU dataset) for Two-
path MSL, MSL left eye, MSL right eye, Convolutional Face Finder , FloatBoost
and Viola-Jones.

same false positives as the other papers, but at the same time, they reported
detection rates out of 506 faces, not 507 as in the other papers.

From the experiments, one could see that the multi-path MSL approach
outperforms the single path MSL versions. It also outperforms some face de-
tection algorithms such as the FloatBoost (Li et al. 2002) and Viola & Jones
(2004) while being trained on fewer faces. Furthermore, the Multi-path MSL
obtains results comparable (at 10 false positives) to the CART based classi-
fier from (Brubaker et al. 2006), to the Convolutional Face Finder (Garcia
& Delakis 2004) trained on 3,700 faces, and to the Dynamic Cascade (Xiao
et al. 2007) trained with 40,000 faces.

In the future, we plan to enlarge the number of training faces by adding
images from the FERET dataset (http://face.nist.gov/colorferet/ n.d.) and
using some of the smoothing and contrast reduction techniques from Garcia &
Delakis (2004). Our algorithm uses only 2,600 faces for training, as opposed
to the state of the art algorithms for face detection such as Bourdev & Brandt
(2005) and Xiao et al. (2007) that use between 10,000 to 40,000 faces.

The detection time depends on the image complexity. For simple images,
the marginal classifiers will remove most of the false positives, resulting in a fast
detection. As a result, for a 384x288 image the detection time varies between
0.06 seconds and 0.30 seconds on a 2.4GHz dual core PC.

Examples of face detections on some test images are given in Figures 1.11
and 1.12.

These results can be improved in accuracy by using better features such as
illumination-invariant features (Schneiderman 2004), or CART features (Brubaker
et al. 2006), or by joint training of all cascade levels (Dundar & Bi 2007), learn-
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Table 1.2: Face detection rates for different numbers of false positives obtained
by different methods on the MIT+CMU frontal face dataset containing 130
images and 507 faces.

False Detections

Detector Train faces 0 10 31

MSL Righte eye 2,600 74.8%(1) 88.5% 89.2%
MSL Left eye 2,600 64.8% 87.1% 89.9%
Multi-Path MSL 2,600 80.7%(1) 90.1% 92.3%
Rowley et al. (1996) 1,046 - 83.2% 86.0%
FloatBoost (Li et al. 2002) 6,000 - 83.6% 90.2%
Viola & Jones (2004) 4,916 - 76.1% 88.4%
Viola-Jones (voting) 4,916 - 81.1% 89.7%
Schneiderman (2004) - - 89.7 (6) 94.4%(29)
Convolutional face finder 3,702 88.8% 90.3% 91.5%
CART (Brubaker et al. 2006) - - 90.5% 93.1%
Dynamic Cascade 40,857 86.9%(1) 89.8% 92.2%

ing the features (Wang & Ji 2005) and of course by training with more faces.

1.9 Applications

The Marginal Space Learning and the Multi-Path Marginal Space Learning can
be applied to most object detection problems. Furthermore, it can be applied to
object segmentation, since an object segmentation is a more accurate description
of an object, with more parameters than in object detection.

1.10 Open Issues and Problems

One open issue is to give a mathematical characterization of the quality of
different MSL paths to help deciding which paths are the best.

Another issue that remains open for Multi-path Marginal Space Learning is
how to coordinate the different MSL paths for an efficient use of computation.
According to the way the results from different MSL paths are aggregated, if
a detection through one path is strong enough, any detections through other
paths that are close to this strong detection are not necessary. Thus redundant
computation could be saved by avoiding to pursue any detections close to strong
detections from one path.

1.11 Data Sets

The following publicly available datasets have been mentioned in this chapter:
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Figure 1.11: Face detection results obtained by our method.

1. The CMU+MIT Face dataset (Rowley et al. 1996). A dataset of 130
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Figure 1.12: More face detection results obtained by our method.
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grayscale images containing 507 manually annotated faces.

2. The FERET Dataset (http://face.nist.gov/colorferet/ n.d.). A dataset
containing thousands of images of faces from different angles (frontal, half-
profile, profile, etc), with different facial expressions and illuminations.

1.12 Conclusions and Future Trends

In this chapter we presented a fast and robust method for object detection
that combines different computational paths of Marginal Space Learning for
improved robustness against occlusion and detector failures. In this approach,
invariant detectors are used to select a set of good object candidates in different
marginal spaces while detectors based on non-invariant features are used to
increase the number of object parameters and obtain the final solution.

We showed that this multi-path MSL method can achieve good detection
rates and low false positive rates, comparable with some state of the art ap-
proaches, while at the same time using less training data than these approaches.
With better features (e.g. rotation/illumination invariant), more training data
and better models for the final classifier, further performance improvements are
possible.

The Multi-Path MSL method can be used in the future for detecting hard-
to-find objects such as boats, that pose challenges to other state of the art
techniques.

1.13 Cross-References

Training Logitboost classifiers should be described in the Machine Learning
section 3 of the book.
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