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Abstract Stochastic Clustering Auctions (SCAs) constitute a class of cooperative

auction methods that enable improvement of the global cost of the task allocations

obtained with fast greedy algorithms. Prior research had developed Contracts Sequenc-

ing Algorithms (CSAs) that are deterministic and enable transfers, swaps, and other

types of contracts between team members. In contrast to CSAs, SCAs use stochastic

transfers or swaps between the task clusters assigned to each team member and have

algorithm parameters that can enable tradeoffs between optimality and computational

and communication requirements. The first SCA was based on a “Gibbs Sampler” and

constrained the stochastic cluster reallocations to simple single transfers or swaps; it is

applicable to heterogeneous teams. Subsequently, a more efficient SCA was developed,

based on the generalized Swendsen-Wang method; it achieves the increased efficiency

by connecting tasks that appear to be synergistic and then stochastically reassigning

these connected tasks, hence enabling more complex and efficient movements between

clusters than the first SCA. However, its application was limited to homogeneous teams.

The contribution of this work is to present an efficient SCA for heterogeneous teams; it

is based on a modified Swendsen-Wang method. For centralized auctioning and homo-

geneous teams, extensive numerical experiments were used to provide a comparison in

terms of costs and computational and communication requirements of the three SCAs

and a baseline CSA. It was seen that the new SCA maintains the efficiency of the second

SCA and can yield similar performance to the baseline CSA in far fewer iterations. The

K. Zhang · E. Collins
Center for Intelligent Systems, Control and Robotics (CISCOR)
Department of Mechanical Engineering
FAMU-FSU College of Engineering
Florida A&M University-Florida State University
Tallahassee, FL 32310, USA
Tel.: +1 (850)410-6373
Fax: +1 (850)410-6337
E-mail: {zhangka, ecollins}@eng.fsu.edu

Adrian Barbu
Department of Statistics
Florida State University
Tallahassee, FL 32306, USA
E-mail: abarbu@stat.fsu.edu



2

same metrics were used to evaluate the performance of the new SCA for heterogeneous

teams. A distributed version of the new SCA was also evaluated in numerical experi-

ments. The results show that, as expected, the distributed SCA continually improves

the global performance with each iteration, but converges to a higher cost solution

than the centralized SCA. The final discussion outlines a systematic procedure to use

SCA in various aspects of the application of multi-robot cooperative systems.

Keywords Auctions and market-based systems · Optimal task allocation · Distributed

robot systems · Networked robots · Markov Chain Monte Carlo · Simulated annealing

1 Introduction

Algorithms for effective coordination of heterogeneous robotic systems have numerous

applications. For example, they can be used for efficient task allocation for teams of

robots in many application domains [1,2] such as collaborative manipulation, trans-

portation, assembly and maintenance of large structures, collective surface exploration

and mapping, disaster response, and planetary survey and habitat construction. A

critical issue is how to assign tasks to heterogeneous robots in order to optimally or

near-optimally complete a given mission. It is well known that this task allocation

must not always rely on complete communication between the allocator and each of

the robots. Hence, a practically meaningful solution must allow distributed task allo-

cation.

1.1 Stochastic Clustering Auctions

Auction methods are effective approaches for resource allocation. Stochastic Clustering

Auctions (SCAs) [3–5] constitute a class of cooperative auction methods that enable

improvement of the global cost of the task allocations obtained with fast greedy algo-

rithms. An SCA is in the class of Markov Chain Monte Carlo methods [6] and optimizes

using simulated annealing [7]. The first SCA [3,4] is called here the Gibbs Sampler SCA

(GSSCA) since the underlying optimization algorithm is a Gibbs Sampler, which has

been successfully used for shape clustering and segmentation in computer vision [8];

GSSCA is applicable to heterogeneous robots. The second SCA is called the gener-

alized Swendsen Wang SCA (SW1SCA) [5] and is based on the Swendsen Wang Cut

method that has been successfully applied to image segmentation and stereo in com-

puter vision [9]1. It is applicable only to homogeneous robots; however, for this class

of robots it is far more efficient than GSSCA. The contribution of this work is to

introduce a third SCA, called the modified Swendsen Wang SCA (SW2SCA), that is

applicable to heterogeneous robots and maintains the efficiency of SW1SCA. Each SCA

algorithm rearranges the clusters using transfer moves (with 50% probability) or swap

moves (with 50% probability) and allows not only downhill movements, but also uphill

movements, which provides it with some ability to avoid local minima. By tuning the

annealing suite and turning the uphill movements on and off, the team performance

obtained after algorithm convergence can slide in the region between the global optimal

performance and the performance of a random allocation.

1 In contrast to the work of [9] and the earlier Gibbs sampler work of [8], the development of
SCAs, as the name implies, is an auction framework. Hence, although the SCAs are very similar
algorithms, the auction framework makes them more useful for task allocation in robotics.
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The new contribution in this paper, SW2SCA, as compared with reference [5], is

a modification of the simulated annealing algorithm of SW1SCA to apply to heteroge-

neous robot teams. The idea is to let the individual robots form clusters of tasks, clus-

ters that from the individual robot’s point of view are related or synergistic. Different

types of robots might form different clusters because they have different capabilities.

In SW1SCA, the auctioneer forms the clusters. Clusters become the components to

possibly be transferred from one robot to another. Table 1 summarizes the comparison

between SW1SCA and SW2SCA, and highlights the contribution of SW2SCA.

Table 1 Comparison between between SW1SCA and SW2SCA

Algorithms Decomposition strategy for connected components Robot team heterogeneity
SW1SCA Auctioneer forms the clusters Homogeneous
SW2SCA Individual robots form the clusters Heterogeneous

1.2 Deterministic Contract Algorithms

OCSM (Original, Cluster, Swaps, and Multiagent) contracts [10,11] were developed to

provide a general framework for combinatorial auctioning. This work designs determin-

istic algorithms, called here Contracts Sequencing Algorithms (CSAs), that are closely

related to SCAs. In particular OCSM involves four types of contracts:

1. The original (O) contract enables one task to move from one robot to another

robot. In SCA terminology this contract is called a transfer and is allowed by all

SCAs.

2. The cluster (C ) contract enables two or more tasks to move from one robot to

another. C contracts were sequenced by trying all combinations of two tasks fol-

lowed by all combinations of three tasks, and so on. SW1SCA and SW2SCA allow

transfer of an arbitrary number of “connected” tasks (see Section 2.2) and is hence

a cluster contract.

3. The swap (S) contract enables two robots to exchange tasks such that each robot

receives one task from the other. All SCAs allow this movement and it is called a

swap.

4. The multiagent (M ) contracts enable exactly three tasks to be transferred between

exactly three robots. Current SCAs do not allow this type of movement.

A CSA has the structure shown in Algorithm 1.

Algorithm 1 Principal Mechanisms for a Contracts Sequencing Algorithm (CSA)

1: repeat
2: Propose a reclustering based on the contract types in a deterministic sequence.
3: Decide whether to accept the proposed cluster.
4: if the solution is better then
5: Accept.
6: end if
7: until the deterministic sequence is finished
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SW1SCA and SW2SCA enable the swap of multiple tasks, which is not allowed

in the current OCSM framework. However, here using contractual language [10,11],

it will be called a swap+ (S+) contract. From the above discussion it follows that

GSSCA is a stochastic algorithm built on OS contracts, while SW1SCA and SW2SCA

are stochastic algorithms built on OCSS+ contracts.

It should be noted that it has been proved [10] that using OCSM contracts an

algorithm can be devised that leads to the optimum allocation in a finite number of

steps, a powerful result that has not been proved for an SCA. This algorithm requires

that a very large number of possible contracts be considered for each algorithm itera-

tion. These contracts are combinations of O, C, S, and M contracts and are the largest

number possible. If O, C, S, and M contracts are used at each iteration, then local

optima can be encountered [10]. Unfortunately, the problem with the huge contract

neighborhood of the provably convergent algorithm is the exponentially large cost of

a single iteration. As a result, for larger problems reaching the global optimum can

take an impractically long time. Hence, to develop auction algorithms that have more

reasonable computational times, negotiations that consider only certain types of con-

tracts were explored in [10]. The best of these is based on O and C contracts and will

be called here OCCSA. It is used as a baseline in this paper.

An earlier version of this paper was presented in conference form [12]. This paper

adds important elements not found in this reference. In particular, it contains com-

plexity analysis for SW2SCA in Proposition 1, details the theory associated with Steps

8(a) and 8(b), the connected component steps, of SW2SCA in Theorems 1 and 2 with

the proof to Theorem 2 given in the Appendix, and in Section 5 presents a practical

multi-robot system design approach based on SW2SCA.

1.3 Paper Organization

The remainder of this paper is organized as follows. Section 2 formulates the basic op-

timization problem for task allocation and provides a description of SW2SCA. Section

3 first considers centralized auctioning for homogeneous teams and presents simulation

results from random scenarios with an initial focus on comparing OCCSA, GSSCA,

SW1SCA, and SW2SCA. Then, it considers heterogeneous teams with an emphasis

on evaluating the performance of SW2SCA. Section 4 considers distributed auction-

ing and presents simulation results from random scenarios using communication links

motivated by a generic topology called a “scale free network”; the focus is on demon-

strating the performance achieved by SW2SCA. Finally, Section 5 summarizes the

results, proposes a multi-robot design framework built upon SW2SCA, and discusses

future work.

Table 2 summarizes the acronyms used in this paper.

2 Stochastic Clustering Auctions

This section first presents the basic problem statement. Then it presents the algorithm

for SW2SCA.
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Table 2 Acronyms

CSA Contracts Sequencing Algorithm
OCSM Original, Cluster, Swaps, and Multiagent
OCCSA Original and Cluster based CSA

SCA Stochastic Clustering Auction
GSSCA Gibbs Sampler SCA
SW1SCA Generalized Swendsen-Wang SCA
SW2SCA Modified Swendsen-Wang SCA
S+ Swap contracts based on connected components

PA Parallel Auction
LBPA Look-Back Parallel Auction

SA Sequential Auction
LBSA Look-Back Sequential Auction

AC Auction Cycle
MCI Mean Cost Improvement
RTV Robot Type Vector
TPI Tournament Participation Index
SFN Scale Free Network

2.1 Task Allocation Problem Statement

Let H denote a set of k heterogeneous robots, and T denote a set of n tasks, i.e.

H = {h1, h2, . . . , hk} and T = {t1, t2, . . . , tn}. The tasks are specifically “goto points,”

which can be sequenced in any order and can be performed by any robot. Also, hetero-

geneity does not necessarily imply that the robots perform different tasks. It implies

that they do not perform each task with the same efficiency. For example, in the sim-

ulation results of Section 3.2 the robots move at different speeds, so they cannot reach

a destination (i.e., perform a task) with equal efficiency, even when starting from the

same spatial location.

Let A denote the allocation, A = {a1, a2, . . . , ak}, The cost associated with A is

given by either

C(A) =

k∑
s=1

cs(as), (1)

or

C(A) = max
s
cs(as), (2)

where cs(as) is the minimum cost for robot hs to complete the set of tasks as. The

individual cost function cs(·) is based on characteristics of each robot, e.g., the dynamic

model of the robot, the state of the market, current task commitments and/or a human-

inspired measure. The problem is to solve the optimization min
A

C(A). In practice the

cost function in Equation (1) might be used to represent the total distance traveled or

the total energy expended by the robots while the cost function in Equation (2) might

be used to represent the maximum time taken to accomplish the tasks.

2.2 The Modified Swendsen-Wang Stochastic Clustering Auction

As previously discussed, there are currently three variants of an SCA: the Gibbs Sam-

pler SCA (GSSCA), the generalized Swendsen-Wang SCA (SW1SCA), and the mod-

ified Swendsen-Wang SCA (SW2SCA). Below, the SCAs are put in the framework of
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the auctioning algorithms (or contract approaches) developed for the CSAs [10,11] and

the general features of an SCA are described before detailing SW2SCA.

Algorithm 2 Principal Mechanisms for the Non-greedy and Greedy Versions of a

Stochastic Clustering Auction

1: Choose an initial task allocation (e.g., using a simple greedy algorithm) and initialize the
annealing suite.

2: repeat
3: Randomly select 2 robots for reclustering.
4: Stochastically propose a reclustering for the selected robots.
5: Decide whether to accept the proposed cluster.
6: if the solution is better (for greedy SCAs only) then
7: Accept.
8: else
9: Accept with an acceptance probability.

10: end if
11: Update the annealing suite.
12: until termination is reached

As previously mentioned, an SCA is similar to the auction methods of the CSAs

[10,11], described by Algorithm 1. Algorithm 2 describes the generic structure of the

non-greedy and greedy versions of a Stochastic Clustering Auction (SCA). An SCA

is always guaranteed to result in an allocation that has a cost less than or equal to

the cost of the initial allocation. The GSSCA, the SW1SCA and the SW2SCA each

follow Algorithm 2. These algorithms primarily differ in line 4, where they propose

reclustering. The proposals of GSSCA are based on treating tasks individually and

hence involve simple transfer and swaps of individual tasks. In contrast, SW1SCA and

SW2SCA are based on transfers and swaps of interconnected tasks. All SCA algorithms

can be made greedy by not allowing the uphill movements associated with line 9, which

enable the algorithm to escape local minima. The ability to initialize and update the

annealing suite in lines 1 and 11 and turn the uphill movements on and off in lines 6

and 7 provides SCA with the ability to trade off the converged algorithm cost with

computational and communication efficiency. This is a novel feature of an SCA.

Comparing Algorithms 1 and 2 reveals that CSA and SCA have similar features.

However, unlike CSA, SCA makes choices stochastically. In particular, referring to Al-

gorithm 2, SCA randomly chooses two robots for reclustering in line 3, it stochastically

proposes the reclustering in line 4, and probabilistically accepts a proposed reclustering

in line 9. It follows that SCA is an auction method where the participants are cho-

sen randomly, there is a certain randomness in the choice of tasks to be bid, and the

auctioneer may choose to make choices stochastically, not always greedily.

It was shown in a prior research [5] that for homogeneous teams SW1SCA can

achieve much greater performance than GSSCA in fewer iterations. Unfortunately,

as discussed in Section 1, SW1SCA is not suited for heterogeneous teams since an

auctioneer connects the tasks and has to be homogeneous with the negotiating robots.

The novelty of this paper is the presentation of a modified Swendsen-Wang SCA for

heterogeneous robotic teams in which each robot decomposes the adjacency graph for

connected components in Step 6 of SW2SCA, given below.

Modified Swendsen-Wang Auction (SW2SCA)
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1. The auctioneer partitions T into k clusters to form an initial allocation A(0) =

{a(0)
1 , a

(0)
2 , . . . , a

(0)
k }, where each cluster a

(0)
s is an unordered subset of T . Let

A = A(0) and A∗ = A(0). (A is the current algorithm allocation, while A∗ is

the allocation that has the lowest cost.)

2. Each robot hp ∈ H (p = 1, 2, . . . , k) uses a “constrained Prim’s Algorithm”2 (a

greedy algorithm) to efficiently approximate the cost cp(ap) and submits its cost

to the auctioneer. In this bid valuation stage, each cluster ap becomes an ordered

subset of T . The auctioneer computes the global cost C(A) using Equation (1) or

Equation (2) and sets the temperature T to a high initial value T0.

3. The auctioneer randomly selects two robots hs and ht for either transfers or swaps

and lets Ĥ = {hs, ht}.
4. Each robot hp ∈ Ĥ constructs an adjacency graph G(ap) = 〈T (ap), E(ap)〉 for each

cluster ap, where E(ap) is the edge set of T (ap).

5. Each robot hp ∈ Ĥ submits lmin(ap) to the auctioneer, where lmin(ap) = min
e∈E(ap)

l(e),

and l(e) denotes the length3 of the edge e.

6. For each e ∈ E(ap) (p = s, t), the robot turns the edge e off (such that the tasks at

the end of the edges are no longer considered connected) with a probability 1− pe,
e.g., pe =

lmin(ap)
l(e)

. For p = s, t this results in the decomposition of ap ∈ A into np

connected components api such that ap =
np⋃
i=1

api.

7. The auctioneer collects all the connected components in the set CP.

8. With a 50%-50% probability the auctioneer selects either a transfer a) or swap b).

(a) Connected Component Transfer: Select a connected component asi ∈ CP
from robot hs with a probability in P (asi|CP), e.g., P (asi|CP) = 1

||CP|| in a

uniform distribution. Let A(asi) = t denote that asi is reassigned to robot ht
and assume that this reassignment occurs with probability P (A(asi) = t|asi,A),

e.g., P (A(asi) = t|asi,A) = 1
k in a uniform distribution , resulting in the

new allocation A(s,t)
i that has two modified clusters a

(−i)
s and a

(+i)
t . Assume

that robot hs computes cs(a
(−i)
s ) and for t = 1, 2, . . . , k (t 6= s) robot ht

computes ct(a
(+i)
t ), which the auctioneer uses to compute the corresponding

cost C(A(s,t)
i ) (based on (1) or (2)). The probability αS(A → A(s,t)

i ) of the

acceptance of the transfer of the connected component asi from robot hs to

robot ht is computed using Theorem 1 and a transfer move is illustrated in Fig.

1. (Note that the denominator of the right hand side expression in Equation

(8) of Theorem 1 requires each robot to compute its cost.) If C(A(s,t)
i ) is less

than C(A∗), then the new A∗ is updated to A(s,t)
i .

(b) Connected Component Swap: Select two connected components in as and

at, one connected component asi from robot hs with a probability in P (asi|CP)

and the other connected component atj from robot ht with a probability in

P (atj |CP), and swap them, resulting in the new allocation A(s,t)
i,j that has

2 This algorithm fixes the initial vertex with a single edge in Prim’s Algorithm [13,14] as building
a minimum spanning tree, and hence, unlike Prim’s algorithm, is not guaranteed to be optimal. It is
well known to be 2-approximate (i.e., the cost of the resulting allocation is at most twice the total
cost of an optimal allocation).

3 In the results in this paper the length is Euclidean length since the nodes refer to physical
locations of the tasks.
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two modified clusters a
(−i,+j)
s and a

(+i,−j)
t . Assume that robot hs computes

cs(a
(−i,+j)
s ) and robot ht computes ct(a

(+i,−j)
t ), which the auctioneer uses to

compute the corresponding cost C(A(s,t)
i,j ) (based on (1) or (2)). Then, the

probability αD(A → A(s,t)
i,j ) of swapping the two connected components is

computed using Theorem 2. If C(A(s,t)
i,j ) is less than C(A∗), then the new A∗

is updated to A(s,t)
i,j .

9. For the non-greedy SCA the auctioneer accepts the proposal with probability

αS(A → A(s,t)
i ) or αD(A → A(s,t)

i,j ), while for the greedy SCA the auctioneer

accepts the proposal if C(A(s,t)
i ) or C(A(s,t)

i,j ) is less than C(A∗). Then A is up-

dated and the cost C(A) is updated and stored. Otherwise, the auctioneer declines

the proposal and the auctioneer keeps the current configuration.

10. If the auction evolution termination criterion is satisfied, i.e., T < Tcut, where

Tcut is some threshold temperature, then the auction is terminated and the final

allocation is A∗ with final cost C(A∗) ≤ C(A(0)). If the criterion is not satisfied,

reduce T , using T ← T/β where β > 1 and go to Step 3).

In order to search for the global optimum, a simulated annealing method has been

adopted. It is well known that the convergence rate of simulated annealing depends on

the “depth” of the instance [15] (i.e., the highest you have to go upward to eventually

reach a lower (better) point than where you are, where the maximum is taken over all

starting points) and that changing the neighborhood structure can drastically change

the depth. Simulation results (omitted for brevity) showed that adding swaps has

decreased the depth, which accounts for the faster convergence.

Computational Complexity Analysis for SW2SCA

Proposition 1 The computational complexity of SW2SCA is O((k(k + n)n log2 n) +
k

log2 β
log2

T0
Tcut

(k((k+n)n log2 n)+3)), where k is the number of robots, n is the number

of tasks.

Proof. Since computational complexity is O((k + n)n log2 n) [16] by using Prim’s

algorithm, the computational complexity of computing k costs in Step 2 is O(k(k +

n)n log2 n) and the total number of iterations is 1
log2 β

log2
T0
Tcut

. Usually adjacency

graphs have a small number of edges in each node (task), so the edges are O(n).

Therefore, at each iteration up to k costs are computed and Steps 4, 6 and 7 have the

respective computational complexities O(n). Hence, the computational complexity of

SW2SCA is given as in Proposition 1. �

Probabilities Associated with Step 8 of the SW2SCA Algorithm

The probabilities αS(A → A(s,t)
i ) and αD(A → A(s,t)

i,j ), respectively associated with

the connected-components transfer of Step 8a of the SW2SCA algorithm and the

connected-components swap of Step 8b of the SW2SCA algorithm, have not been

defined. They will be based on the the Metropolis-Hastings method [9,17]. Given the
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Fig. 1 Illustration of the Swendsen-Wang cuts Ē(asi, as \ asi), associated with the transfer
move of Step 8a of the SW2SCA algorithm. (A set of tasks connected by thick edges forms a
connected component. The dark circles denote the tasks in the cluster as and the light circles
denote the tasks in the cluster at while the medium dark circles denote the tasks in a third
cluster. The thin lines marked with crosses are edges of the Swendsen-Wang “cuts.”)

current solution A1 and a new solution A2, the Metropolis-Hastings acceptance proba-

bility α(A1 → A2) is defined as

α(A1 → A2)
∆
= min

(
1,
P (A2 → A1)

P (A1 → A2)
· exp(−C(A2)/T )

exp(−C(A2)/T ) + exp(−C(A1)/T )

)
, (3)

where T is the current annealing temperature and C(·) is the cost associated with a

given solution. This definition is not immediately useable since constructive formulas

are needed for the probabilities on the right hand side of Equation (3).

In Theorem 1, which was originally presented in prior research [9], provides a means

to construct the Metropolis-Hastings acceptance probability αS(A → A(s,t)
i ), while

Theorem 2, which is new, provides a means to construct the Metropolis-Hastings ac-

ceptance probability αD(A → A(s,t)
i,j ). These theorems are stated using the following

notation.
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Given two, distinct sets of connected components ap and aq, the Swendsen-Wang

cuts refers to the set of edges Ē(ap, aq) connecting ap to aq, which is formally defined

by

Ē(ap, aq)
∆
= {< u, v >: u ∈ ap, v ∈ aq}. (4)

The cuts for Ē(asi, as \ asi), which correspond to the transfer move of Step 8a, are

marked by the crosses in Figure 1.

Theorem 1 [9] Referring to Step 8a of the SW2SCA algorithm, the Metropolis-Hastings

acceptance probability αS(A → A(s,t)
i ) is given by

αS(A → A(s,t)
i ) = min(1, α1

S · α
2
S · α

3
S), (5)

where

α1
S =

∏
e∈Ē(asi,at)

(1− pe)∏
e∈Ē(asi,as\asi)(1− pe)

, (6)

α2
S =

P (A(asi) = s|asi,A
(s,t)
i )

P (A(asi) = t|asi,A)
, (7)

α3
S =

exp(−C(A(s,t)
i )/T )

k∑
p=1,p6=s

exp(−C(A(s,p)
i )/T )

. (8)

Theorem 2 Referring to Step 8b of the SW2SCA algorithm, the Metropolis-Hastings

acceptance probability αD(A → A(s,t)
i,j ) is given by

αD(A → A(s,t)
i,j ) = min(1, α1

D · α
2
D), (9)

where

α1
D =

∏
e∈Ē(asi,at)

(1− pe)∏
e∈Ē(asi,as\asi)(1− pe)

·

∏
e∈Ē(atj ,as)(1− pe)∏

e∈Ē(atj ,at\atj)(1− pe)
, (10)

α2
D =

exp(−C(A(s,t)
i,j )/T )

exp(−C(A(s,t)
i,j )/T ) + exp(−C(A)/T )

. (11)

Proof: The proof is given in the Appendix.

3 EXPERIMENTAL RESULTS FOR CENTRALIZED APPLICATION

OF OCCSA, GSSCA, SW1SCA AND SW2SCA

This section provides simulation results for centralized application of OCCSA, GSSCA,

SW1SCA and SW2SCA to homogeneous and heterogeneous teams using the multi-

robot routing problem, which is a standard test domain for robot coordination using

auctions [1,10,11,18–20]. The task allocation is a time-extended assignment such that

all tasks are assigned to robots before the assignments are carried out [21]. It is free of

conflicts since each task is assigned to no more than one robot. The tasks in the multi-

robot routing problem considered here are to visit targets and complete an assignment.
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The costs resulting from OCCSA, GSSCA, SW1SCA and SW2SCA are compared to

the best cost obtained using the Sequential (single-item) Auction (SA) and the Parallel

Auction (PA), which are standard auction methods in the existing literature [1,2,22,

23], and their variants, the Look-Back Sequential (single-item) Auction (LBSA) and

the Look-Back Parallel Auction (LBPA), which were described in prior research [3,4].

For each simulation the stochastic random scenario appears in a 10000m×10000m

area involving 1000 random scenarios for a given number of tasks and robots. The initial

robot positions were evenly distributed along one edge of the area. (When the initial

robot positions are distributed differently, e.g., randomly, the qualitative results given

below remain the same.) Also, for each simulation the following SCA parameters were

used: initial temperature, T0 = 1000; and termination temperature, Tcut = 20. (T0 and

Tcut are a priori knowledge regarding the scenario scale so they are scenario-dependent.

But they are always the same for different robots, different tasks and different missions

in a fixed scenario scale.) In terms of the experimental scenario, a particular case was

selected where all robots begin evenly distributed along a line. This assumption has

been justified in prior distributed implementation of SCA [4] using the four benchmark

auction communication scenarios, derived from fundamental network topologies. These

and other experiments performed by the authors make it clear that the insights gained

from the initial experiments are not an artifact of that particular setting but are indeed

a general phenomena which is expected to see for a wide variety of robot and task

instantiations.

In order to evaluate the performance of an SCA the concept of Mean Cost Improve-

ment (MCI ) is introduced in Definition 1. The communication complexity of an SCA

is measured by the number of Auction Cycles (AC ), also as given in Definition 2. In

addition, the concept of Robot Type Vector is introduced in Definition 3 to measure the

different types of robots that constitute a given heterogeneous team in the evaluations

of Section 3.2.

Definition 1 For m stochastic scenarios let {CSCA(r) : r = 1, · · · ,m} denote the set

of m costs resulting from SCA and let {CBestGreedy(r) : r = 1, · · · ,m} denote the set

of minimum costs achievable with the greedy algorithms: SA, LBSA, PA and LBPA.

The Mean Cost Improvement (MCI) is the geometric mean of the normalized im-

provement of the SCA cost over the best of the greedy algorithms, such that

MCI
∆
=

(
m∏
r

(
CBestGreedy(r)− CSCA(r)

CBestGreedy(r)

)) 1
m

. (12)

Definition 2 An Auction Cycle (AC) is the number of iterations to algorithm con-

vergence, where for a CSA an iteration corresponds to Steps 2 through 6 of Algorithm

1, while for an SCA an iteration corresponds to Steps 3 through 10 of Algorithm 2.

Definition 3 Let at(p) denote a type p robot for p ∈ {1, 2, ..., v}, where at(p) 6= at(q)

for p 6= q. Assume that a team consist of k robots, where k ≥ v and that m(p) denotes

the number of robots of type at(p). The Robot Type Vector (RTV) for this k-robot

team is denoted by M(k) and defined by M(k) = [m(1) m(2) . . . m(i) . . . m(v) ], where
v∑
p=1

m(p) = k.
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3.1 Comparison of OCCSA with GSSCA, SW1SCA and SW2SCA Using

Homogeneous Teams
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Fig. 2 Mean cost improvement (MCI) and average number of auction cycles (ACs) of OCCSA,
GSSCA, SW1SCA and SW2SCA for 5 robots with the number of tasks ranging from 10 to 260
in increments of 10

As originally mentioned in Section 1.2, it has been shown [11] that within the

CSA framework, OSCSA, an algorithm based on O and C contracts, yields the best

performance among the algorithms based on various sub-combinations of the OCSM

contracts. Hence, for centralized auctioning it is compared here with GSSCA, SW1SCA

and SW2SCA. Since SW1SCA cannot be directly applied to heterogeneous teams, the

comparison uses homogeneous robots. The comparison metrics are MCIs and ACs and

the cost function is the MinSum cost function of Equation (1), corresponding in this

study to the total distance traveled by the robots. Each of the robots was assumed to

have the constant speed (i.e., the robots are homogeneous), chosen randomly from the

interval (0m/s,20m/s] assuming a uniform distribution. The comparison was based on

5 robots with the number of tasks ranging from 10 to 260 in increments of 10. The

cooling schedule ratio is chosen as β = 1.001, which yields relatively slow annealing.
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Further comparison of GSSCA and SWSCA based on various cooling schedule ratios

is given in prior research [5].

Figure 2 illustrates the main results. The MCIs of SW2SCA are in the interval

[21.04%,44.52%] and are very similar to those for SW1SCA, which are in [22.34%,45.96%]

and those for OCCSA, which are in [26.23%,43.12%]. The MCIs for GSSCA are sub-

stantially smaller, lying in [8.87%,21.65%]. In contrast the ACs of SW2SCA lie in

[11,826] similar to SW1SCA in [12,827], while the ACs of OCCSA lie in [519,16792],

and for each specified number of tasks the ACs of SW1SCA and SW2SCA are at least a

factor of 20 times smaller than the corresponding AC for OCCSA. The ACs of GSSCA

lie in [37,4561] and for each specified number of tasks the AC of GSSCA lies between

the corresponding ACs for SW2SCA and OCCSA.

The results show that for homogeneous teams SW2SCA can be far more computa-

tionally efficient than the OCCSA at obtaining very similar performance, has similar

performance to SW1SCA, and is superior to GSSCA. The performance of the OCCSA

is fixed. In contrast, as illustrated in prior research [5], the SCAs can sacrifice perfor-

mance (i.e., MCI) for computations (i.e., ACs). For example, at the expense of greater

ACs it is possible for SW2SCA to increase its MCIs by further slowing the annealing.

The better outcomes reported in this paper and in the prior paper [5] are due in large

part to the stochasticity of the algorithm, which in effect permits a swap to occur as a

sequence of O or C moves, and in other cases due to the existence of swaps themselves

in the neighborhood structure.

3.2 Evaluation of SW2SCA for Heterogeneous Teams

This section evaluates SW2SCA for heterogeneous teams. The cost function is a Min-

Max cost function in Equation (2) corresponding to the maximum time taken to ac-

complish the tasks. The speeds for each of the robots were assumed to be constant and

were chosen randomly from the speed set {20m/s, 10m/s, 1m/s}. In the subsequent

simulations, v ≤ 3 (i.e., the number of robot types is at most 3). The robots were as-

sumed to differ in terms of their speed of travel. In particular, at(1) traveled at 20m/s,

at(2) at 10m/s and at(3) at 1m/s. Table 3 shows the assumed RTVs when the number

of robots k varies from 2 to 10. The auctioneer was assumed to be of type at(1). As

before, 1000 random scenarios were studied for a given number of robots and tasks

with the number of robots now ranging from 2 to 10 and the number of tasks ranging

from 10 to 260 in increments of 10.

Table 3 Assumed Robot Type Vector (RTV) as the number of robots varies from 2 to 10

no. of robots (k) RTV

2 M(2) = [ 2 0 0 ]
3 M(3) = [ 2 1 0 ]
4 M(4) = [ 2 1 1 ]
5 M(5) = [ 2 2 1 ]
6 M(6) = [ 2 2 2 ]
7 M(7) = [ 3 2 2 ]
8 M(8) = [ 3 3 2 ]
9 M(9) = [ 3 3 3 ]
10 M(10) = [ 4 3 3 ]
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Figure 3 displays the costs (in this case for SW2SCA with β = 1.01) as a function

of the number of robots and tasks. It shows that as the number of tasks increases, a

substantial performance improvement (i.e., time savings) can be achieved by adding

a small number of robots. For example in Figure 3(b), which shows the costs for 260

tasks, the cost corresponding to 2 robots is 250 hours, while the costs with 4 robots

improves to 82 hours. In general for a fixed number of tasks, the corresponding “slice”

of a 3-D curve such as Figure 3(b) may be used to trade off performance vs. the number

of robots and hence provides a guideline for choosing the desired number of robots for

the expected mission. It is important to note that Figure 3 shows that the cost decreases

more than linearly with the addition of robots. It is because 4 robots not only split

the work among each other, but also start from different locations so that every job is

reasonably close to some robot, compared with what happens with two robots. Using

the given metric, a solution would only improve linearly if robots are added but the

tasks are not reallocated. Overall, the curves of Figures 3 provide cost information to

aid in choosing the number of robots needed to execute a given range of tasks. This

information can be an important component of a systematic engineering approach to

designing multi-robot systems.
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Fig. 3 (a) Mean cost vs. the number of robots and the number of tasks for SW2SCA with
β = 1.01 and the RTVs in Table 3; (b) The “slice” of (a) corresponding to 260 tasks
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4 EXPERIMENTAL RESULTS FOR DISTRIBUTED APPLICATION

OF SW2SCA

As previously discussed, distributed auctions are needed due to limited communication

between robots. This section uses numerical experiments to evaluate the efficacy of the

distributed auction of SW2SCA.

For each simulation the stochastic random scenario appears in a 10000m×10000m

area involving 1000 random scenarios for a given number of tasks and robots. The

initial robot positions were evenly distributed along one edge of the area. As in Section

3.2, the robots were assumed to differ in terms of their speed of travel. In particular,

at(1) traveled at 20m/s, at(2) at 10m/s and at(3) at 1m/s. The type of each robot

was chosen randomly from the set {at(1), at(2), at(3)}. RTV follows Table 3 in Section

3.2. The cost function is a MinMax cost function Equation (2), representing time to

mission completion. The SW2SCA parameters used were as before: initial temperature,

T = 1000; termination temperature, Tcut = 20; and the cooling schedule ratio, β =

1.01.

The efficacy of distributed SW2SCA is measured by comparing the resultant global

cost with the corresponding SW2SCA global cost. This leads to the following definition

for optimization efficiency.

Definition 4 The optimization efficiency for scenario r is denoted by ηr ∈ (0, 1]

and defined by

ηr
∆
=
C∗r
Cr

, (13)

where C∗r is the global cost resulting from the application of SW2SCA and Cr is the

global cost resulting from the application of distributed SW2SCA.

A tournament corresponds to one round of distributed auctioning in which one of

the robots serves as the auctioneer and leads an auction with the robots that are within

communication range. To quantify the extent of robot interaction in the tournaments of

the distributed auctioning the concept of tournament participation index is introduced

in the following definition. Increasing values of this index corresponds to increasing

communication between the robots.

Definition 5 The Tournament Participation Index (TPI)4 for k robots is denoted

by ζ(k) ∈ (0, 1] and defined by

ζ(k)
∆
=

k∑
p=1

b2(p)

k

k2
=

k∑
p=1

b2(p)

k3
, (14)

where b(p) is the number of robots that participate in the regional auction in which robot

hp is the auctioneer. Hence ζ(k) is the mean of b2(p) for the k robots, normalized so

that it lies in the interval (0, 1].

4 TPI is similar to but different than the degree or connectivity in networks or graph theory since
there are no redundant connections between two robots and b(p) counts the robots instead of the
links.



16

Fig. 4 A SFN communication pattern for 11 robots configured in a circular network (The solid
lines represent communication links among the 11 robots while the dashed lines represent the
communication links determined by the growth and preferential attachment laws when a 12th
robot is added to the network.)

4.1 Evaluation of Distributed SW2SCA Using Scale Free Networks

A key issue is how to evaluate distributed SW2SCA (dSW2SCA) using simulations.

Prior work [4] performed evaluation of an SCA using four benchmark auction com-

munication scenarios that were derived from fundamental network topologies. This

methodology was useful in demonstrating that an SCA can perform well in distributed

communication conditions when robots or communication links fail. However, in this

section the simulations are based on robots whose communication links are determined

according to the topology of a scale free network (SFN) [24]. The resulting SFN tends

to have some robots that have sparse communication links while others have more

dense communication links. Hence, the SFN may be viewed as combining aspects of

all of the previously used fundamental network topologies [4].

A benchmark circular SFN network for 11 robots is illustrated in Fig. 4. This

network was used in the simulations and each robot was sequentially assigned to serve

as the auctioneer in the pattern r1 → r2 → r3 → . . .. The underlying assumption is

that each robot has its own identification, known to the other robots, and each robot

is made aware of the sequence of which robot serves as an auctioneer and the times

that the auctioneer switch occurs. The origin of the circle defining the positions of the

robots was at the center of a 10000m × 10000m area and the diameters of the circles

were chosen to be 5000m. Each simulation involved 1000 random scenarios for a given

number of tasks and robots.



17

6 8 10 12 14 16 18
0.7

0.75

0.8

0.85

0.9

0.95

1

TOURNAMENT

O
P

T
IM

IZ
A

T
IO

N
 E

F
F

IC
IE

N
C

Y

 

 

L=1/30

L=1/10

L=1/6

L=1/3

Fig. 5 Mean optimization efficiency vs. number of tournaments and the ratio (L) of new tasks
to initial tasks for a SFN of abstract auction rotation patterns in [5]: 300 initial tasks with a
new robot and new tasks introduced between Tournament 11 and Tournament 12, which cause
a decrease in TPI

In the dynamic scenarios 300 tasks were randomly given at the outset of auctioning

and after a certain number of tournaments a new robot is introduced and new tasks

are added in some ratio L. Subsequently, the tournaments continue and assign the new

tasks to the appropriate robots. The number of new tasks introduced varies with each

simulation and is some ratio L times the number of the initial tasks.

The SFN network for 11 robots is illustrated with M(11) = [ 3 3 5 ]T . The sequence

of the robot types starting from h1 is ordered as follows: at(1) → at(2) → at(3) →
at(3) → at(2) → at(2) → at(2) → at(3) → at(1) → at(2) → at(1). However, a

new robot h12 in at(1) is added and a number of new tasks are introduced after

robot h1 serves as the auctioneer for the second time. Figure 5 showed that the mean

optimization efficiency actually decreased after the new robot h12 was introduced due

to the TPI decreasing from 0.0744 to 0.0689. However, the distributed auctioning

accommodated the new robot and additional tasks as the tournaments progressed; the

optimization efficiency increased as the tournaments progressed and the optimization

efficiency intervals increased from [76%,85%] to [88%,97%] with the ratio L decreased.

5 Summary and Final Discussions

This paper presented a novel and efficient Stochastic Clustering Auction (SCA), called

called the SW2SCA, based on the modified Swendsen-Wang method. Unlike the previ-

ously developed generalized Swendsen-Wang SCA (SW1SCA), it allows each robot to

reconstruct the tasks that have been connected and applied to heterogeneous teams.

Using homogeneous teams, GSSCA, SW1SCA, and SW2SCA were compared with

each other and with OCCSA, which has been shown to yield the best cost improve-

ments in the fewest steps of all the contracts sequencing algorithm based on a subset

of the OCSM contract types. It was seen that for homogeneous teams centralized

SW2SCA can be far more computationally efficient than OCCSA at obtaining very

similar performance, is similar to SW1SCA, and is superior to centralized GSSCA.

However, whereas the performance and computations of OCCSA are fixed, the SCAs

can sacrifice performance for computations.

The random simulation for centralized SW2SCA also resulted in 3-D curves that

show cost vs. number of robots and number of tasks. Given a fixed number of tasks, a

2-D slice of the 3-D curve shows the tradeoff between cost and number of robots. This

enables an appropriate choice of the number of robots for a given mission that has an

expected number of tasks. The important point to note is that the improvement from
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adding robots is better than linear. Using the given metric, a solution would improve

linearly just by adding robots and not reallocating any tasks.

Distributed SW2SCA, denoted as dSW2SCA, was based on using SW2SCA in

regional auctions. Its performance was evaluated in random simulations using commu-

nication links derived from a scale free network. The simulation results showed that

dSW2SCA continuously improved the global performance each time one of the robots

completed its tournament (i.e., its auction process) and that dSW2SCA can sucessfully

accommodate a new robot and new tasks. However, as expected, the costs achieved with

decentralized auctioning were worse than those achieved with centralized auctioning.

5.1 Practical Implementation of SCAs

Prior work [4] has demonstrated that centralized SCA incurs lower costs than greedy

centralized SCA for slow annealing (e.g., β = 1.001) and greedy centralized SCA incurs

lower costs than centralized SCA for faster annealing (e.g., β = 1.01 or β = 1.1) while

being substantially faster. Based on these prior results, the results of this paper, and

the experience gained in developing these results, it is possible to propose a systematic

engineering approach to multi-robot system applications using SW2SCA. It is assumed

that a mission is given in which the physical scale of the distribution of tasks is known

along with some range of the number of tasks. It is also assumed that a set of candidate

robots is potentially available for the mission, but the numbers of each robot type that

are actually needed are not known a priori. The approach is presented below in four

steps.

Step 1 - Simulations to Determine Annealing Parameters: For the multi-robot prob-

lem considered in this and prior SCA research [3–5] it has been observed that choice of

the annealing suite {T0,Tcut,β} depends largely on the physical scale of the area over

which the tasks are distributed, not particularly on the number of tasks or number

of robots. (It is conjectured that different types of task allocation missions will have

similar invariance.) Hence, T0, Tcut and β may be chosen based on a relatively small

number of randomly distributed tasks and (initially) randomly distributed robots as

long as the area of the task distribution is that envisioned for the actual mission. For

this problem it may be possible to solve for an optimal or nearly optimal task allo-

cation using a combinatorial algorithm, including the contract sequencing algorithm

(CSA) built on all of the OCSM contracts. Using non-greedy centralized SW2SCA,

this knowledge is helpful in using trial and error to choose T0 and Tcut and determine

values of β that correspond to slow and fast annealing. Slow annealing should yield

a near optimal task allocation, while fast annealing should converge quickly, but with

noticeable improvement over the initial task allocation, which will typically be chosen

to be the best solution resulting from a suite of fast, greedy auctioning algorithms. T0

and Tcut are not expected to change in the following steps, but β may be chosen for

slow annealing, fast annealing, or something in between.

Step 2 - Simulations to Determine the Mission Robots: Because the exact tasks

to be performed are not known a priori, stochastic simulations are chosen to repre-

sent the possible task distributions and numbers of tasks in the actual mission. The

numbers of the different types of robots (and possibly their initial locations) are sys-

tematically varied in simulation. Non-greedy centralized SW2SCA, using β chosen for

slow annealing (or faster annealing if time does not permit), is then used to compute
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a (multi-dimensional) table that shows expected cost vs. distribution of the numbers

of each robot type.

Step 3 - Task Allocation at the Beginning of the Mission: The robot team was

determined in Step 2. At the beginning of an actual mission it is assumed that a set of

tasks are actually known and need to be assigned to the robots. Assuming each robot

can communicate with the auctioneer, non-greedy centralized SW2SCA with β chosen

for slow annealing (or faster annealing if time does not permit) is chosen to develop

the initial task allocation.

Step 4 - Task Allocation During the Mission: Once the mission commences, each

robot may no longer be able to communicate with the auctioneer and distributed

auctioning using greedy SW2SCA with β chosen for fast annealing (or slower annealing

if the time and communication are available) is used to reallocate tasks as the tasks

and cost change during the mission.

5.2 Future Work

Future research can apply SCAs to a variety of cooperative assignment problems using

a process similar to that given above. Some of these problems will require the expansion

of SCA features, such as adding the ability to allocate interdependent tasks. It is also

envisioned that distributed SCA algorithms that use multiple auctioneers working in

parallel can be developed . This will require the incorporation of mechanisms for conflict

resolution.

SCA was compared here with a contract sequencing algorithm. However, additional

comparisons would be beneficial. For example, it can be compared with a genetic

algorithm [25–31].

APPENDIX- Proof of Theorem 2: The Swapping of Connected Components

As Figure 6 illustrates, the Swendsen-Wang method introduces a set of auxiliary vari-

ables on the edges in Equation (15).

U = {µe : µe ∈ {1, 0},∀e ∈ E(G)}. (15)

The edge e is disconnected (or turned off) if and only if µe = 0. Considering a swap

movement between two states A and A(s,t)
i,j , only asi changes from the cluster as to the

cluster at, and atj change from the cluster at to the cluster as while all other connected

components remain.

From Equation (3), we will now compute the proposal probabilities P (A(s,t)
i,j →

A) and P (A → A(s,t)
i,j ). Let U(A)|A and U(A(s,t)

i,j )|A(s,t)
i,j be the auxiliary variables.

They lead to two sets of connected components CP(U(A)|A) and CP(U(A(s,t)
i,j )|A(s,t)

i,j )

respectively. We divide U into two sets for the “on” and “off” edges respectively,

U = Uon ∪Uoff , (16)

with Uon = {µe : µe = 1} and Uoff = {µe : µe = 0}. We are only interested in the

configurations U (and thus CP) which yield the connected components asi and atj .
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Fig. 6 An adjacency graph G with each edge e augmented with a binary variable µe ∈ {1, 0}.

We collect all such U given A in the set,

Ψ(asi|A) = {U1(A) : asi ∈ CP(U1(A)|A)}, (17)

Ψ(atj |A) = {U2(A) : atj ∈ CP(U2(A)|A)}. (18)

In order for asi and atj to be connected components in A, all edges between asi and

as− asi and all edges between atj and at− atj must be cut (turned off), otherwise asi
is connected to other tasks in as or atj is connected to other tasks in at in such a way

that asi and atj cannot be connected components. So we denote the remaining “off”

edges by −Uoff ,

U1
off(A) = Ē(asi, as) ∪ −U1

off(A), ∀U1(A) ∈ Ψ(asi|A), (19)

U2
off(A) = Ē(atj , at) ∪ −U2

off(A), ∀U2(A) ∈ Ψ(atj |A). (20)

Similarly, we collect all U(A(s,t)
i,j ) in the state A(s,t)

i,j which produces the connected

components asi and atj ,

Ψ(asi|A
(s,t)
i,j ) = {U1(A(s,t)

i,j ) : asi ∈ CP(U1(A(s,t)
i,j )|A(s,t)

i,j )}, (21)

Ψ(atj |A
(s,t)
i,j ) = {U2(A(s,t)

i,j ) : atj ∈ CP(U2(A(s,t)
i,j )|A(s,t)

i,j )}. (22)

In order for asi and atj to be connected components in U(A(s,t)
i,j )|A(s,t)

i,j , all the edges

between asi and at and all edges between atj and as must be cut (turned off). Thus

we have

U(A(s,t)
i,j ) = Uon(A(s,t)

i,j ) ∪Uoff(A(s,t)
i,j ), (23)
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U1
off(A(s,t)

i,j ) = Ē(asi, as) ∪ −U1
off(A(s,t)

i,j ), ∀U1(A(s,t)
i,j ) ∈ Ψ(asi|A), (24)

U2
off(A(s,t)

i,j ) = Ē(atj , at) ∪ −U2
off(A(s,t)

i,j ), ∀U2(A(s,t)
i,j ) ∈ Ψ(atj |A). (25)

We are now ready to compute P (A → A(s,t)
i,j ). Suppose that we choose the connected

component asi from robot hs with a probability in P (asi|CP) and the other connected

component atj from robot ht with a probability in P (atj |CP). Since for all configura-

tions Ψ(asi|A), the probability to change the clustering of asi to at has the same value

P (A(asi) = t|asi,A). The same is applied to atj . Thus we have

P (A → A(s,t)
i,j ) = P (asi|A)P (A(asi) = t|asi,A)P (atj |A)P (A(atj) = s|atj ,A). (26)

The probability P (asi|A) of choosing asi at stateA is the sum over all possible U1(A) ∈
Ψ(asi|A) of the probability of choosing U1(A) ∈ Ψ(asi|A) times the probability of

choosing asi from CP(U1(A)|A),

P (asi|A) =
∑

U1(A)∈Ψ(asi|A)

[P (asi|CP(U1(A)|A))
∏

e∈U1
on(A)

pe
∏

e∈−U1
off (A)

(1− pe)]

∏
e∈Ē(asi,as\asi)

(1− pe) . (27)

Similarly, the probability for choosing atj ⊆ at at state A is

P (atj |A) =
∑

U2(A)∈Ψ(atj |A)

[P (atj |CP(U2(A)|A))
∏

e∈U2
on(A)

pe
∏

e∈−U2
off (A)

(1− pe)]

∏
e∈Ē(atj ,at\atj)

(1− pe) . (28)

Similarly, the probability for choosing asi ⊆ at at state A(s,t)
i,j is

P (asi|A
(s,t)
i,j ) =

∑
U1(A(s,t)

i,j )∈Ψ(asi|A(s,t)
i,j )

[P (asi|CP(U1(A(s,t)
i,j )|A(s,t)

i,j ))

∏
e∈U1

on(A(s,t)
i,j )

pe
∏

e∈−U1
off (A

(s,t)
i,j )

(1− pe)]
∏

e∈Ē(asi,at)

(1− pe) . (29)

Similarly, the probability for choosing atj ⊆ as at state A(s,t)
i,j is

P (atj |A
(s,t)
i,j ) =

∑
U2(A(s,t)

i,j )∈Ψ(atj |A(s,t)
i,j )

[P (atj |CP(U2(A(s,t)
i,j )|A(s,t)

i,j ))

∏
e∈U2

on(A(s,t)
i,j )

pe
∏

e∈−U2
off (A

(s,t)
i,j )

(1− pe)]
∏

e∈Ē(atj ,as)

(1− pe) . (30)

We see that these proposal probabilities are difficult to compute, because of the expo-

nential number of combinations U1(A) ∈ Ψ(asi|A) which produce the same connected
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component asi. In what follows, we will show how the ratio of the proposal probabilities

can be simplified. From Equation (26) and its similar derivation we can obtain

P (A(s,t)
i,j → A)

P (A → A(s,t)
i,j )

=
P (asi|A

(s,t)
i,j )

P (asi|A)
·
P (A(asi) = s|asi,A

(s,t)
i,j )

P (A(asi) = t|asi,A)
·
P (atj |A

(s,t)
i,j )

P (atj |A)

·
P (A(atj) = t|atj ,A

(s,t)
i,j )

P (A(atj) = s|atj ,A)
. (31)

Dividing Equation (29) by Equation (27), we obtain the ratio

P (asi|A
(s,t)
i,j )

P (asi|A)
=

∏
e∈Ē(asi,at)

(1− pe)∏
e∈Ē(asi,as\asi)

(1− pe)
· N
D
. (32)

where

N =
∑

U1(A(s,t)
i,j )∈Ψ(asi|A(s,t)

i,j )

[P (asi|CP(U1(A(s,t)
i,j )|A(s,t)

i,j ))

∏
e∈U1

on(A(s,t)
i,j )

pe
∏

e∈−U1
off (A

(s,t)
i,j )

(1− pe)] , (33)

and

D =
∑

U1(A)∈Ψ(asi|A)

[P (asi|CP(U1(A)|A))
∏

e∈U1
on(A)

pe
∏

e∈−U1
off (A)

(1− pe)]. (34)

The sums in the numerator and denominator of Equation (32) are equal because

of Observation 1.

Observation 1 For any U1(A) ∈ Ψ(asi|A), there exists exactly one U1(A(s,t)
i,j ) ∈

Ψ(asi|A
(s,t)
i,j ) such that

CP(U1(A)|A) = CP(U1(A(s,t)
i,j )|A(s,t)

i,j ), (35)

and

U1
on(A) = U1

on(A(s,t)
i,j ),−U1

off(A) =− U1
off(A(s,t)

i,j ). (36)

That is, U1(A) and U1(A(s,t)
i,j ) differ only in cuts Ē(asi, at) and Ē(asi, as \ asi).

The cancelation of the sums in Equation (32) gives

P (asi|A
(s,t)
i,j )

P (asi|A)
=

∏
e∈Ē(asi,at)

(1− pe)∏
e∈Ē(asi,as\asi)

(1− pe)
. (37)

Similarly we can obtain

P (atj |A
(s,t)
i,j )

P (atj |A)
=

∏
e∈Ē(atj ,as)

(1− pe)∏
e∈Ē(atj ,at\atj)

(1− pe)
. (38)
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Because of the symmetry of the swap move, the following equations can be derived.

P (A(asi) = s|asi,A
(s,t)
i,j ) = P (A(atj) = s|atj ,A) (39)

P (A(asi) = t|asi,A) = P (A(atj) = t|atj ,A
(s,t)
i,j ) (40)

Therefore, Equation (31) can be rewritten as

P (A(s,t)
i,j → A)

P (A → A(s,t)
i,j )

=

∏
e∈Ē(asi,at)

(1− pe)∏
e∈Ē(asi,as\asi)

(1− pe)
·

∏
e∈Ē(atj ,as)

(1− pe)∏
e∈Ē(atj ,at\atj)

(1− pe)
. (41)
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