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1.1 Introduction

Subspace clustering is the problem of grouping an unlabeled set of points into
a number of clusters corresponding to subspaces of the ambient space. This
problem has applications in unsupervised learning and computer vision. One
of the computer vision applications is motion segmentation, where a number
of feature point trajectories need to be grouped into a small number of clus-
ters according to their common motion model. The feature point trajectories
are obtained by detecting a number of feature points using an interest point
detector and tracking them through many frames using a feature point tracker
or an optical flow algorithm.
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A common approach in the state of the art sparse motion segmentation
methods [6][12][13][24][27] is to project the feature trajectories to a lower di-
mensional space and use a subspace clustering method based on spectral clus-
tering to group the projected points and obtain the motion segmentation.

Even though these methods obtain very good results on standard bench-
mark datasets, the spectral clustering algorithm requires expensive computa-
tion of eigenvectors and eigenvalues on an N × N dense matrix where N is
the number of data points. In this manner, the computation time for these
subspace clustering/motion segmentation methods scales as O(N3), so it can
become prohibitive for large problems (e.g. N = 105 − 106).

This chapter proposes a completely different approach to subspace clus-
tering, based on the Swendsen-Wang Cut (SWC) algorithm [2] and brings the
following contributions:

• The subspace clustering problem is formulated as Maximum A Posteriori
(MAP) optimization problem in a Bayesian framework with Ising/Potts
prior [16] and likelihood based on a linear subspace model.

• The optimization problem is solved using the Swendsen-Wang Cuts (SWC)
algorithm and simulated annealing. The SWC algorithm needs a weighted
graph to propose good data-driven clusters for label switching. This graph
is constructed as a k-NN graph from an affinity matrix.

• The computation complexity of the SWC algorithm is evaluated and ob-
served to scale as O(N2), making the proposed approach more scalable
than spectral clustering (an O(N3) algorithm) to large scale problems.

• Motion segmentation experiments on the Hopkins 155 dataset are con-
ducetd and the performance of the proposed algorithm is compared with
the state of the art methods. The SWC obtains an error less than twice the
error of the state of the art methods. The experiments obtain an observed
scaling of about O(N1.3) for the SWC and about O(N2.5) for the spectral
clustering.

Compared to other statistical methods [7, 14, 21], the proposed SWC
method does not require a good initialization, which can be hard to obtain.

Overall, the proposed method provides a new perspective to solve the
subspace clustering problem, and demonstrates the power of Swendsen-Wang
Cuts algorithm in clustering problems. While it does not obtain a better av-
erage error, it scales better to large datasets, both theoretically as O(N2) and
practically as O(N1.3).

1.2 Subspace Clustering by Spectral Clustering

Given a set of points {x1, ...,xN} ∈ RD, the subspace clustering problem is to
group the points into a number of clusters corresponding to linear subspaces of
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FIGURE 1.1
Left. two subspaces in 2D. Right. two 2D subspaces in 3D. The points in both
2D subspaces have been normalized to unit length. Due to noise, the points
may not lie exactly on the subspace. One can observe that the angular distance
finds the correct neighbors in most places except at the plane intersections.

RD. The problem is illustrated in Figure 1.1, left, showing two linear subspaces
and a number of outliers in R2.

A popular subspace clustering method [5][12][17] is based on spectral clus-
tering, which relies on an affinity matrix that measures how likely any pair of
points belong to the same subspace.

Spectral clustering [15, 18] is a generic clustering method that groups a
set of points into clusters based on their connectivity. The point connectivity
is given as an N × N affinity matrix A with Aij close to 1 if point i is close
to point j and close to zero if they are far away. The quality of the affinity
matrix is very important for obtaining good clustering results. The affinity
matrix for spectral subspace clustering will be described below.

The spectral clustering algorithm proceeds by computing the matrix S =
L−1/2AL−1/2, where L is a diagonal matrix with Lii as the sum of row i of
A. It then computes the k-leading eigenvectors of S and obtains points in
Rk from the eigenvectors. The points are then clustered by k-means or other
clustering algorithm. The number k of clusters is assumed to be given. The
spectral clustering algorithm is described in detail in Figure 1.2.

Input: A set of points x1, . . . ,xN ∈ RD and the number k of clusters.
1. Construct the affinity matrix A ∈ RN×N .
2. Construct the diagonal matrix L, with Lii =

∑N
j=1Aij .

3..Compute S = L−1/2AL−1/2.
4. Compute the matrix U = (u1, . . . , uk) ∈ Rn×k containing the leading k
eigenvectors of S.
5. Treat each row of U as point in Rk and normalize them to unit length.
6. Cluster the n points of Rk into k clusters by k-means or other algorithm.
7. Assign the points xi to their corresponding clusters.

FIGURE 1.2
The spectral clustering algorithm [15].
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Affinity Matrix for Subspace Clustering. A common practice
[5][12][17] before computing the affinity matrix is to normalize the points to
unit length, as shown in Figure 1.1, right.. Then the following affinity measure
based on the angle between the vectors has been proposed in [12]

Aij = (
xTi xj

‖xi‖2‖xj‖2
)2α, (1.1)

where α is a tuning parameter, and the value α = 4 has been used in [12].
Fig 1.1, right shows two linear subspaces, where all points have been nor-

malized. It is intuitive to find that the points tend to lie in the same subspace
as their neighbors in angular distance except those near the intersection of
the subspaces.

1.3 Scalable Subspace Clustering by Swendsen-Wang
Cuts

This section presents a novel subspace clustering algorithm that formulates the
subspace clustering problem as a MAP estimation of a posterior probability
in a Bayesian framework and uses the Swendsen-Wang Cuts algorithm [2] for
sampling and optimization.

A subspace clustering solution can be represented as a partition (labeling)
π : {1, ..., N} → {1, ...,M} of the input points x1, . . . ,xN ∈ RD. The number
M ≤ N is the maximum number of allowed clusters.

In this section is assumed that an affinity matrix A is given, representing
the likelihood for any pair of points to belong to the same subspace. One form
of A has been given in (1.1) and another one will be given in section 1.3.3.

1.3.1 Posterior Probability

A posterior probability will be used to evaluate the quality of any partition π.
A good partition can then be obtained by maximizing the posterior probability
in the space of all possible partitions. The posterior probability is defined in
a Bayesian framework

p(π) ∝ exp[−Edata(π)− Eprior(π)].

The normalizing constant is irrelevant in the optimization since it will cancel
out in the acceptance probability.

The data term Edata(π) is based on the fact that the subspaces are assumed
to be linear. Given the current partition (labeling) π, for each label l an affine
subspace Ll is fitted in a least squares sense through all points with label l.
Denote the distance of a point x with label l to the linear space Ll as d(x, Ll).
Then the data term is

Edata(π) =

M∑
l=1

∑
i,π(i)=l

d(xi, Ll) (1.2)
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The prior term Eprior(π) is set to encourage tightly connected points to
stay in the same cluster.

Eprior(π) = −ρ
∑

<i,j>∈E,π(i)6=π(j)

log(1−Aij), (1.3)

where ρ is a parameter controlling the strength of the prior term. It will be
clear in the next section that this prior is exactly the Potts model (1.4) that
would have Aij as the edge weights in the original SW algorithm.

1.3.2 Overview of the Swendsen-Wang Cuts Algorithm

The precursor of the Swenden-Wang Cuts algorithm is the Swendsen-Wang
(SW) method [20], which is a Markov Chain Monte Carlo (MCMC) algo-
rithm for sampling partitions (labelings) π : V → {1, ..., N} of a given graph
G =< V,E >. The probability distribution over the space of partitions is the
Ising/Potts model [16]

p(π) =
1

Z
exp[−

∑
<i,j>∈E

βijδ(π(i) 6= π(j)]. (1.4)

where βij > 0,∀ < i, j >∈ E and N = |V |.
The SW algorithm addresses the slow mixing problem of the Gibbs Sam-

pler [10], which changes the label of a single node in one step. Instead, the
SW algorithm constructs clusters of same label vertices in a random graph
and flips together the label of all nodes in each cluster. The random graph is
obtained by turning off (removing) all graph edges e ∈ E between nodes with
different labels and removing each of the remaining edges < i, j >∈ E with
probability e−βij . While the original SW method was developed originally for
Ising and Potts models, the Swendsen-Wang Cuts (SWC) method [2] gener-
alized SW to arbitrary posterior probabilities defined on graph partitions.

The SWC method relies on a weighted adjacency graph G =< V,E >
where each edge weight qe, e =< i, j >∈ E encodes an estimate of the prob-
ability that the two end nodes i, j belong to the same partition label. The
idea of the SWC method is to construct a random graph in a similar manner
to the SW but based on the edge weights, then select one connected compo-
nent at random and accept a label flip of all nodes in that component with a
probability that is based on the posterior probabilities of the before and after
states and the graph edge weights.

This algorithm was proved to simulate ergodic and reversible Markov chain
jumps in the space of graph partitions and is applicable to arbitrary posterior
probabilities or energy functions.

From [2], there are different versions of the Swendsen-Wang Cut algorithm.
The SWC-1 algorithm is used in this chapter, and is summarized in Figure 1.3.

The set of edges C(V0, Vl′ − V0), C(V0, Vl − V0) from eq. (1.5) are the SW
cuts defined in general as

C(V1, V2) = {< i, j >∈ E, i ∈ V1, j ∈ V2}
The SWC algorithm could automatically decide the number of clusters,
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Input: Graph G =< V,E >, with weights qe, ∀e ∈ E, and posterior prob-
ability p(π|I).
Initialize: A partition π : V → {1, ..., N} by random clustering
for t = 1, . . . T , current state π, do

1. Find E(π) = {< i, j >∈ E, π(i) = π(j)}
2. For e ∈ E(π), turn µe = off with probability 1− qe.
3. Vl = π−1(l) is divided into Nl connected components Vl = Vl1 ∪ . . . ∪
Vlnl

for l = 1, 2, . . . , N .
4. Collect all the connected components in set CP = {Vli : l =
1, . . . , N, i = 1, . . . , Nl}.
5. Select a connected component V0 ∈ CP with probability q(V0|CP ) =

1

|CP |
, say V0 ⊂ Vl.

6. Propose to assign V0 a new label cV0
= l′ with a probability q(l′|V0, π),

thus obtaining a new state π′.
7. Accept the proposed label assignment with probability

α(π → π′) = min(1,

∏
e∈C(V0,Vl′−V0)

(1− qe)∏
e∈C(V0,Vl−V0)

(1− qe)
· q(cV0 = l|V0, π′)
q(cV0

= l′|V0, π)
· p(π

′|I)

p(π|I)
. (1.5)

end for
Output: Samples π ∼ p(π|I).

FIGURE 1.3
The Swendsen-Wang Cut algorithm [2].

however in this chapter, as in most motion segmentation algorithms, it is
assumed that the number of subspaces M is known. Thus the new label for
the component V0 is sampled with uniform probability from the number M
of subspaces:

q(cV0
= l′|V0, π) = 1/M.

1.3.3 Graph Construction

Section 1.2 described a popular subspace clustering method based on spectral
clustering. Spectral clustering optimizes an approximation of the normalized
cut or the ratio cut [25], which are discriminative measures. In contrast, the
proposed subspace clustering approach optimizes a generative model where
the likelihood is based on the assumption that the subspaces are linear. It is
possible that the discriminative measures are more flexible and work better
when the linearity assumption is violated, and will be studied in future work.

The following affinity measure, inspired by [12], will be used in this work

Aij = exp(−mθij
θ̄

), i 6= j (1.6)

where θij is based on the angle between the vectors xi and xj ,

θij = 1− (
xTi xj

‖xi‖2‖xj‖2
)2,

and θ̄ is the average of all θ. The parameter m is a tuning parameter to
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control the size of the connected components obtained by the SWC algorithm.
The subspace clustering performance with respect to this parameter will be
evaluated in Section 1.4.2 for motion segmentation.

The affinity measure based on the angular information between points
enables to obtain the neighborhood graph, for example based on the k-nearest
neighbors. After the graph has been obtained, the affinity measure is also used
to obtain the edge weights for making the data driven clustering proposals in
the SWC algorithm as well as for the prior term of the posterior probability.

The graph G = (V,E) has as vertices the set of points that need to be
clustered. The edges E are constructed based on the proposed distance mea-
sure from eq. (1.6). Since the distance measure is more accurate in finding the
nearest neighbors (NN) from the same subspace, the graph is constructed as
the k-nearest neighbor graph (kNN), where k is a given parameter.

Examples of obtained graphs will be given in Section 1.4.2.

Input: N points (x1, . . . ,xN ) from M subspaces
Construct the adjacency graph G as a k-NN graph using eq (1.6).
for r = 1, . . . , Q do

Initialize the partition π as π(i) = 1,∀i.
for i = 1, . . . , N it do

1. Compute the temperature Ti using eq (1.7).
2. Run one step of the SWC algorithm 1.3 using p(π|I) = p1/Ti(π) in
eq (1.5).

end for
Record the clustering result πr and the final probability pr = p(πr).

end for
Output: Clustering result πr with the largest pr.

FIGURE 1.4
The Swendsen-Wang Cuts algorithm for subspace clustering.

1.3.4 Optimization by Simulated Annealing

The SWC algorithm is designed for sampling the posterior probability p(π).
To use SWC for optimization, a simulated annealing scheme should be applied
while running the SWC algorithm.

Simulated annealing means the probability used by the algorithm is not
p(π) but p(π)1/T where T is a ”temperature” parameter that is large at the
beginning of the optimization and is slowly decreased according to an an-
nealing schedule. If the annealing scheduled is slow enough, it is theoretically
guaranteed [11] that the global optimum of the probability p(π) will be found.

In reality we use a faster annealing schedule, and the final partition π will
only be a local optimum. We use an annealing schedule that is controlled by
three parameters: the start temperature Tstart, the end temperature as Tend,
and the number of iterations N it. The temperature at step i is calculated as
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Ti =
Tend

log
(
i
N [e−exp( Tend

Tstart
)]+exp( Tend

Tstart
)
) , i = 1, N it (1.7)

To better explore the probability space, we also use multiple runs with different
random initializations. Then the final algorithm is shown in Figure 1.4.

1.3.5 Complexity Analysis

This section presents an evaluation of the computation complexity of the
proposed SWC-based subspace clustering algorithm. To our knowledge, the
complexity of SWC has not been calculated yet in the literature.

Let N be the number of points in RD that need to be clustered. The
computation complexity of the proposed subspace clustering method can be
broken down as follows:

• The adjacency graph construction is O(N2D log k) where D is the space
dimension. This is because one needs to calculate the distance from each
point to the other N − 1 points and use a heap to maintain its k-NNs.

• Each of the N it iterations of the SWC algorithm involves:

– Sampling the edges at each SWC step is O(|E|) = O(N) since the
k-NN graph G =< V,E > has at most 2kN edges.

– Constructing connected components at each SWC step isO(|E|α(|E|)) =
O(Nα(N)) using the disjoint set forest data structure [9, 8]. The func-
tion α(N) is the inverse of f(n) = A(n, n) where A(m,n) is the fast

growing Ackerman function [1] and α(N)≤5 for N ≤22
1019729

.

– Computing Edata(π) involves fitting linear subspaces for each motion
cluster, which is O(D2N +D3)

– Computing the Eprior(π) is O(N).

The number of iterations is N it = 2000, so all the SWC iterations take
O(Nα(N)) time.

In conclusion, the entire algorithm complexity in terms of the number N of
points is O(N2) so it scales better than spectral clustering for large problems.

(a) 1RT2TC (b) cars3 (c) articulated

FIGURE 1.5
Examples of SWC weighted graphs for a checkerboard (left), traffic (mid) and
articulated (right) sequence. Shown are the feature point positions in the first
frame. The edge intensities represent their weights from 0 (white) to 1 (black).
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1.4 Application: Motion Segmentation

This section presents an application of the proposed subspace clustering algo-
rithm to motion segmentation.

Most recent works on motion segmentation use the affine camera model,
which is approximatively satisfied when the objects are far from the camera.
Under the affine camera model, a point on the image plane (x, y) is related to
the real world 3D point X by[

x
y

]
= A

[
X
1

]
, (1.8)

where A ∈ R2×4 is the affine motion matrix.
Let ti = (x1i , y

1
i , x

2
i , y

2
i , . . . , x

F
i , y

F
i )T , i = 1, . . . .N be the trajectories of

tracked feature points in F frames (2D images), where N is the number of
trajectories. Let the measurement matrix W = [t1, t2, . . . , tN ] be constructed
by assembling the trajectories as columns.

If all trajectories undergo the same rigid motion, equation (1.8) implies
that W can be decomposed into a motion matrix M ∈ R2F×4 and a structure
matrix S ∈ R4×N as

W = MS
x11 x12 · · · x1N
y11 y12 · · · y1N
...

...
. . .

...
xF1 xF2 · · · xFN
yF1 yF2 · · · yFN

 =

 A1

...
AF

[ X1 · · · XN

1 · · · 1

]

where Af is the affine object to world transformation matrix at frame f . It
implies that rank(W ) ≤ 4. Since the entries of the last row of S are always 1,
under the affine camera model, the trajectories of feature points from a rigidly
moving object reside in an affine subspace of dimension at most 3.

In general, we are given a measurement matrixW that contains trajectories
from multiple possibly nonrigid motions. The task of motion segmentation is
to cluster together all trajectories coming from each motion.

A popular approach [5][12][17][24] is to project the trajectories to a lower
dimensional space and to perform subspace clustering in that space, using
spectral clustering as described in section 1.2. These methods differ in the
projection dimension D and in the affinity measure A used for spectral clus-
tering.

1.4.1 Dimension Reduction

Dimension reduction is an essential preprocessing step for obtaining a good
motion segmentation. To realize this goal, the truncated SVD is often ap-
plied [5, 12, 17, 24].
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To project the measurement matrix W ∈ R2F×N to X = [x1, ..., xN ] ∈
RD×N , where D is the desired projection dimension, the matrix W is decom-
posed via SVD as W = UΣV T and the first D columns of the matrix V are
chosen as XT .

The value of D for dimension reduction is also a major concern in motion
segmentation. This value has a large impact on the speed and accuracy of the
final result, so it is very important to select the best dimension to perform
the segmentation. The dimension of a motion is not fixed, but can vary from
sequence to sequence, and since it is hard to determine the actual dimension
of the mixed space when multiple motions are present, different methods may
have different dimensions for projection.

The GPCA [24] suggests to project the trajectories onto a 5-dimensional
space. ALC [17] chooses to use the sparsity-preserving dimension dsp =
argmind≥2D log(2T/d) d for D-dimensional subspaces. The SSC [6] and LRR [13]
simply projects the trajectories to the 4M subspace, where M is the number
of motions. Some methods [5, 12] use an exhaustive search strategy to perform
the segmentation in spaces with a range of possible dimensions and pick the
best result. In this chapter, we find that projecting to dimension D = 2M + 1
can generate good results.

The computation complexity of computing the SVD of a m× n matrix U
when m >> n is O(mn2 + n3) [22]. If n >> m then it is faster to compute
the SVD of UT , which takes O(nm2 +m3).

Assuming that 2F << N , it means that the SVD of W can be computed
in O(NF 2 + F 3) operations.

After projecting to the subspace of dimension D = 2M + 1, the SWC
subspace clustering algorithm from Section 1.3 is applied and the clustering
result gives the final motion segmentation result.

1.4.2 Experiments on the Hopkins 155 Dataset

This section presents experiments with the proposed SWC-based motion seg-
mentation algorithm on the Hopkins 155 motion database [23]. The database
has been created with the goal of providing an extensive benchmark for testing
feature based motion segmentation algorithms. It consists of 155 sequences of
two and three motions. The ground-truth segmentation is also provided for
evaluation purposes. Based on the content of the video, the sequences could be
categorized into three main categories: checkerboard, traffic, and articulated
sequences, with examples shown in Figure 1.6. The trajectories are extracted
automatically by a tracker, so they are slightly corrupted by noise.

As already mentioned, before applying the SWC algorithm, the dimension
of the data is reduced from 2F to D = 2M + 1, where M is the number of
motions. After the projection, the initial labeling state in the SWC algorithm
has all points having the same label.

The motion segmentation results are evaluated using the misclassification
error rate
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(a) Checkerboard (b) Traffic (c) Articulated

FIGURE 1.6
Sample images from some sequences of three categories in the Hopkins 155
database with ground truth superimposed.

Misclassification Rate =
# of misclassified points

total # of points
(1.9)

Parameter settings. The proposed motion segmentation algorithm has a
number of tuning parameters that were held constant to the following values.
The number of NN (nearest neighbors) for graph construction is k = 7, the
parameter m in the affinity measure (1.6) is m = 10, and the prior coefficient
in (1.3) is ρ = 2.2. The sensitivity of the average misclassification error to
the parameters m and ρ is shown in Figure 1.7. The annealing parameters
are Tstart = 1, Tend = 0.01, N it = 2000. The number of independent runs to
obtain the most probable partition is Q = 10. An example of all the partition
states during an SWC run is shown in Figure 1.8.

FIGURE 1.7
Dependence of the misclassification rate on the affinity parameter m (left) and
prior strength ρ (right).

Results. The average and median misclassification errors are listed in
Table 1.1. For accuracy, the results of the SWC algorithm from Table 1.1 are
averaged over 10 runs and the standard deviations are shown in parentheses.
In order to compare the SWC method with the state of the art methods, we
also list the results of ALC [17], SC [12], SSC [6] and VC [5].

The SWC based algorithm obtains average errors that are less than twice
the errors of the other methods. In our experiments we observed that the
energy of the final state is usually smaller than the energy of the ground
truth state. This fact indicates that the SWC algorithm is doing a good job
optimizing the model but the Bayesian model is not accurate enough in its
current form and needs to be improved.

Also shown in Table 1.1 are the columns labeled SC4 and SC4k representing
the misclassification errors of the SC method [12] with an affinity matrix with
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FIGURE 1.8
SWC clustering of the Hopkins 155 sequence 1R2TCR, containing M = 3
motions. Shown are the feature point positions in the first frame, having colors
as the labeling states π obtained while running the SWC algorithm from the
initial state (top left) to the final state (bottom right).

4-NN and 4k-NN respectively. These errors are 13.32 and 8.59 respectively
and indicate that the Spectral Clustering really needs a dense affinity matrix
to work well, and it cannot be accelerated using sparse matrix operations.

Finally, the performance of the SWC-based algorithm is compared with the
KASP algorithm [26], which is a fast approximate spectral clustering and was
used in place of the spectral clustering step in the SC method [12]. The data
reduction parameter used was γ = 10, which still results in a O(N3) clustering
algorithm. The total misclassification error is 5.72, about three times larger
than the SWC method.

1.4.3 Scalability Experiments on Large Data

In order to evaluate the scalability of different algorithms, sequences with a
large number of trajectories are needed. The trajectories can be generated
by some optical flow algorithm, but it is difficult to obtain the ground truth
segmentation and remove bad trajectories caused by occlusions. Brox et.al. [3]
provided a dense segmentation for some frames in 12 sequences in the Hopkins
155 dataset1. From them, we picked the cars10 sequence and tracked all pixels

1http://lmb.informatik.uni-freiburg.de/resources/datasets/
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TABLE 1.1
Misclassification rates (in percent) of different motion segmentation algo-
rithms on the Hopkins 155 dataset.

Method ALC SC SSC VC SWC (std) SC4 SC4k KSP

Checkerboard (2 motion)
Average 1.55 0.85 1.12 0.67 1.25 (0.11) 10.98 5.25 1.25
Median 0.29 0.00 0.00 0.00 0.00 (0.00) 1.16 0.00 0.00
Traffic (2 motion)
Average 1.59 0.90 0.02 0.99 1.87 (0.55) 12.85 12.48 8.65
Median 1.17 0.00 0.00 0.22 0.00 (0.00) 7.55 1.30 0.53
Articulated (2 motion)
Average 10.70 1.71 0.62 2.94 2.15 (0.11) 11.38 12.94 18.67
Median 0.95 0.00 0.00 0.88 0.00 (0.00) 0.95 0.95 0.95
All (2 motion)
Average 2.40 0.94 0.82 0.96 1.49 (0.19) 11.50 7.82 4.76
Median 0.43 0.00 0.00 0.00 0.00 (0.00) 2.09 0.27 0.00

Checkerboard (3 motion)
Average 5.20 2.15 2.97 0.74 2.26 (0.04) 16.74 6.58 4.86
Median 0.67 0.47 0.27 0.21 0.67 (0.00) 14.82 0.49 1.46
Traffic (3 motion)
Average 7.75 1.35 0.58 1.13 2.88 (0.00) 30.04 24.87 21.80
Median 0.49 0.19 0.00 0.21 0.81 (0.00) 26.82 30.91 26.36
Articulated (3 motion)
Average 21.08 4.26 1.42 5.65 6.33 (1.88) 19.48 24.27 18.42
Median 21.08 4.26 0.00 5.65 6.33 (1.88) 19.48 24.27 18.42
All (3 motion)
Average 6.69 2.11 2.45 1.10 2.62 (0.13) 19.55 11.25 9.00
Median 0.67 0.37 0.20 0.22 0.81 (0.00) 18.88 1.42 1.70

All sequences combined
Average 3.37 1.20 1.24 0.99 1.75 (0.15) 13.32 8.59 5.72
Median 0.49 0.00 0.00 0.00 0.00 (0.00) 6.46 0.36 0.31

of the first frame using the Classic+NL method [19]. There are two reasons
for choosing cars10. First, it has three motions, two moving cars and the
background. Second, the two moving cars are relatively large in the video, so
that a large number of trajectories can be obtained from each motion.

There are 30 frames in the sequence, and 3 of them have a dense manual
segmentation of all pixels. We removed trajectories that have different labels
on the 3 ground truth frames. To avoid occlusion, the trajectories close to the
motion boundaries were also removed. Plus, we only kept the full trajectories
for clustering. Finally, we obtained around 48,000 trajectories as a pool. From
the pool, different numbers N of trajectories were subsampled for evaluation.
For each given N , a total of N trajectories were randomly selected from the
pool such that the number of trajectories in each of the three motions was
roughly the same. For example, to generate N = 1000 trajectories, we would
randomly pick from the pool 333 trajectories from two of the motions and
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(a) Frame 1 (b) Frame 15 (c) Frame 30

FIGURE 1.9
Selected frames of sequence cars10 with 1000 tracked feature points.

334 trajectories from the third motion. If there were not enough trajectories
available from one motion, we added more from the motion that has the most
trajectories.

We compared the SWC method with the SC algorithm [12] discussed in
Section 1.2, which is one of the fastest and most accurate algorithms [5] based
on spectral clustering. We generated data containing between 1,000 to 15,000
trajectories, and applied the two segmentation algorithms. Sample frames are
shown in Figure 1.9. The parameters for SC were kept the same as in the
original paper, and those for SWC were identical with Section 1.4.2. The SC
algorithm is implemented in Matlab (which has optimized SVD algorithms),
while the SWC code is in C++. The experiments were performed on a Win-
dows machine with an Intel core i7-3970 CPU and 12 GB memory. We also
generated data with N = 24, 000 and N = 48, 000 trajectories for SWC clus-
tering. For SC, the same experiments could not be conducted because Matlab
ran out of memory.

FIGURE 1.10
Left. Computation time (sec) vs number of trajectories N for SC and SWC.
Right: log-log plot of same data with the fitted regression lines.

The misclassification rate is recorded in Table 1.2 and the running time is
shown on Figure 1.10. Table 1.2 shows that both methods perform well and
the misclassification rate of SWC is about one third of that of the SC.

From Figure 1.10, which shows the computation time vs the number N of
trajectories, one could find that for a small number of trajectories, the SC is
faster than SWC, but for more than N = 6, 000 trajectories, the computation
time of SC is greater than that of SWC, and increases much faster. We also
plot the log(time) vs. log(N) and use linear regression to fit lines through
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the data points of the two methods. If the slope of the line is α, then the
computation complexity is O(Nα). We observe that the slope of SC is 2.52
while the slope for SWC is 1.29, which is consistent with the complexity
analysis of Section 1.3.5.

TABLE 1.2
Average misclassification rate for the sequence cars10 (in percent).

Number of Trajectories N SC SWC
1000 to 15,000 2.77 0.99

24,000 to 48,000 - 1.00

1.5 Conclusion

This chapter presented a stochastic method for clustering points belonging
to a number of linear subspaces using the Swendsen-Wang Cuts (SWC) algo-
rithm. The posterior probability is a generative model defined in a Bayesian
framework with data and likelihood parts. The graph used by the SWC al-
gorithm for making informed relabeling proposals was defined as the k-NN
graph based on an affinity matrix.

The complexity analysis showed that the proposed algorithm is O(N2) in
the number N of data points that need to be clustered.This is in contrast to
the spectral clustering algorithms that have O(N3) complexity.

Motion segmentation experiments on the Hopkins 155 dataset showed that
the algorithm performs slightly worse than the state of the art motion seg-
mentation algorithms based on spectral clustering. This could probably be
due to the rigidity of the generative model in contrast to the flexibility of the
Normalized Cut or Ratio Cut or their approximations that are optimized by
the spectral clustering algorithms. Experiments also revealed that the spectral
clustering is about O(N2.5) on the data that was evaluated while the proposed
SWC method is O(N1.3).

The SWC algorithm uses many Markov Chains to better explore the par-
tition space. These chains are independent and could be run in parallel if
desired. Parallel implementations of Spectral Clustering have also been devel-
oped recently [4].

In the future we will investigate posterior probabilities based on the Nor-
malized Cut or Ratio Cut instead of the generative model to see if the
Swendsen-Wang Cuts algorithm can obtain state of the art errors using such
discriminative models.
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