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Abstract—Many computer vision problems can be formulated global minimum for most energy functions associated to-real
in a Bayesian framework based on Markov Random Fields world applications is NP hard. For example, finding the globa
(MRF) or Conditional Random Fields (CRF). Generally, the inimum of the Potts model [28], used in Stereo Matching as

MRF/CRF model is learned independently of the inference . .
algorithm that is used to obtain the final result. In this paper, we a prior term [5], [31], [32], is NP hard [5]. In such cases,

observe considerable gains in speed and accuracy by training the Polynomial-time algorithms are not expected to be found.

MRF/CRF model together with a fast and suboptimal inference s diti hard to find functi that al
algorithm. An Active Random Field (ARF) is defined as a econd, 1tis very hard 1o Tind energy functions that always

combination of a MRF/CRF based model and a fast inference have a global minimum exactly at the desired solution. For
algorithm for the MRF/CRF model. This combination is trained ~ example, even though the Potts model has been widely used
through an optimization of a loss function and a training set in Stereo, the energy level of the desired result is highan th
consisting of pairs of input images and desired outputs. We {ha energy obtained by different optimization algorithrag][
apply the Actlve Random Field concept to image d_en0|s_|ng, or the global minimum [23]. Recent work [1], [19], [20], [34]
using the Fields of Experts MRF together with a 1-4 iteration . 9 s ’ ' ’
gradient descent algorithm for inference. Experimental validation [35] introduced methods for training the MRF parametersisuc

on unseen data shows that the Active Random Field approach that the MRF energy minimum is as close as possible to the
obtains an improved benchmark performance as well as a 1000- desired output on a training set.

3000 times speedup compared to the Fields of Experts MRF.

Using the ARF approach, image denoising can be performed in ~ The goal of this paper is to observe that when an approxi-

real-time, at 8fps on a single CPU for a256 x 256 image sequence, mate model is sought, it is sometimes not necessary to find the
with close to state-of-the-art accuracy. global minimum of the MRF energy. It has been shown in [39]
Index Terms—MREF training, CRF training, Fields of Experts, that for applications with limited computational budgéiet
image denoising. MAP parameter estimation does not give the best accurady, an
EDICS: TEC-RST training biased estimators could compensate some of tbeserr
introduced by the fast and approximate inference algorithm
How much can the biased estimators compensate for the
suboptimal algorithm? In this paper we attempt to answer
Many real-world applications can be regarded as grapflis question for image denoising with a target on real-time
based optimization problems, where the graph nodes &formance. The energy model and the inference algorithm
some smaller granularities of the system, such as atoms #9g no longer independent, so we consider them as parts of an
material science and pixels for computer vision. In some®aictive Random Field, and their parameters are learned so tha
(e.g. material science), a unique energy function that @n fhey work best together to obtain the desired results. Fer th
described mathematically exists and can accurately repreqmage denoising application, we use the Fields of Expef} [2
the relationship between the graph nodes. In computernisiqarkov Random Field (MRF) model and a 1-4 iteration gra-
the natural images exhibit very complex structures for WhiGjient descent inference algorithm. The algorithm is retstd
it is difficult if not impossible to find an exact mathematicaly pe 1000-3000 times faster than the one previously used for
model that is computationally feasible. image denoising and the best model-algorithm parameters ar
Many of these computer vision problems are approached p¥ined using a dataset of training pairs consisting of inpu
constructing models based on Markov Random Field (MREhages corrupted with noise and the desired denoised output
or Conditional Random Field (CRF) energy functions an@he images without the noise). A comprehensive evaluation
obtaining the solution through an optimization procedditte g8 standard benchmark images that were not used for training
optimization is one of the available MRF/CRF Maximunteyealed that the trained model-algorithm combinatioraiist
A Posteriori (MAP) inference algorithms such as gradieffyproved denoising performance compared to the equivalent

descent, Belief Propagation [44], Graph Cuts [5], lteratqlRF model while being thousands of times faster.
Conditional Modes [3], etc. However, such an approach faces ] ) ]
two challenges when applied to real-world problems. Section Il presents an overview of Markov Random Fields,

First, the energy function must be computationally feasipENergy Based Models and introduces the Active Random Field

in the sense that the minimum should be found in polynomigPncept. Section Il applies the Active Random Field to imag

time. This does not usually happen in reality, since findhng t d€noising using the Fields of Experts model, presenting a
detailed overview of the training procedure and resultsaly,
A. Barbu is with the Department of Statistics, Florida StateiMersity, Section IV presents conclusions and future directions.
Tallahassee, Florida 32306, USA, Phone: 850-644-6688, §80-644-5271, ) ] ]
Email: abarbu@stat.fsu.edu. A shorter version of this paper appeared in CVPR [2].
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Fig. 1. The Markov Random Field model makes use of an inferelgesithm £y > The Markov Random Field model is usually trained iretefent of
to solve a given task (image denoising in this example). the inference algorithm. The impact of training the model with inference
algorithm will be studied in this paper.

Il. ACTIVE RANDOM FIELD: JOINTLY TRAINING THE
MODEL WITH A FAST AND SUBOPTIMAL INFERENCE - Inferring the optimal state is computationally demanding
ALGORITHM For example, the exact inference is NP hard [5] even for

one of the simplest pairwise MRF priors: the Potts model

[28]. Hence, approximate solutions are used in practice.
- The MRF is difficult to train, since the normalization

constantZ is needed to comparing different MRF models.
- The the MRF/CREF is always used with an inference algo-
A. Overview of Markov Random Fields and Conditional Ran-  rithm, as shown in Figure 1. However, the MRF/CRF is

Markov Random Fields (MRF) are used extensively in many
areas of computer vision, signal processing and beyondy The
are capable of enforcing strong regularization on the ddsir
results.

dom Fields usually trained independently of the inference algorithm,

Let G = (V,E) be a graph with node¥ and edgesF, through a procedure illustrated Figure 2. We will observe
x = (z.,)scv be a set of random variables representing some ~that by training the MRF/CRF together with the inference
hidden attributes (e.g. labels) of the graph nodes V, and algorithm, significant _|mprovements in both speed and
C be a set of cliques (fully connected subgraphsy:ofin a accuracy can be obtained.
Bayesian framework, the posterior probability of the hidlde
variablesx given input data (image, signay) is B. Energy Based Models and Loss Functions

P(xly) x P(y|x)P(x) 1) Recent work on Energy Based Models [1], [19], [25], [35]

deals with the normalization constant by training the MRF
The Markov Random FieldC, #) models the prior on the parameters) so that the MAP estimates are as similar as

hidden variables possible to the corresponding desired outputs. The diftae
Plx) = 1 between the MAP estimates; and the desired outputs;
(x) = 7 exp[zc Pe(xc)] (2)  are measured using a loss functibix;, t;) and the training
ce

procedure for the Energy Based Models can be written as:
where¢.(x.) are potential functions that enforce the regular- ) i

ization between the variables. corresponding to the clique H{}“ZL(X%“)’ with x; = arg m,?Xp(XWi?Q) 4)

c. The cligues can be as small as graph edges (order 2), K

however larger cliques are preferred, since they are capabl This approach eliminates the need to compute the normal-
of representing more complex relationships. ization constant by comparing models using the loss functio

In our denoising application, the graghis the pixel lattice However, these methods still deal with an idealized situsti
and the clique se€ contains all thes x 5 pixel patches of Since in reality the minimum energy MRF point is often
the image, thus each cliquec C contains 25 nodes. too expensive to compute (e.g. NP-hard for the Potts model)

Quite recently, Conditional Random Fields (CRF) [18], [17pbtaining a suboptimal point instead.
were developed as an extension of the MRF so that the clique
potentials depend on the observed daté CRF is also a pair C. Active Random Fields
(C, ¢) with ¢ depending ory, aimed at directly modeling the  Since most fast inference algorithms obtain a sub-optimal

posterior P(x|y) (thus the task that is being solved). solution anyway, we follow [39] and propose a different
1 approach in which the model parameters are trained such
P(xly) = 70y exp[ ) de(xe,y)] (3)  that the inference algorithm output (and not the "ideal” MAP
ec

estimate as in the Energy Based Models) is close to the
The MRFs and CRFs have the following advantages adésired output. This way, the suboptimal inference algorit
disadvantages: is involved in the parameter learning phase. This combined
+ They are capable of encoding complex relationshig®proach can be written as:
between the graph attributes resulting in flexible yet . I .
isti), with ;= A i,@ 5
powerful models memzlj (xi, t:) x (i, 0) ©®)



2) The training set consists of pairs of input images and
desired results. With the loss functions, this avoids the
need for sampling from the learned distribution as in the
MRF/CRF training. The new training approach gives a
better idea on when the training is completed or whether
overfitting occurs.

3) The trained model and algorithm complement each other
and result in a fast and accurate system.

4) The MRF/CRF are just models that are always used with
the help of an inference algorithm. On the other hand,
the ARF is a trained model+algorithm combination
that given an input, returns a result, thus it is a full

Current results computational solution.
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Fig. 3. An Active Random Field is a MRF/CRF model trained tbgelWith D. Related Work
a fast inference algorithm using pairs of input and desirethut as training In the literature, a substantial amount of work combines
examples. Trgining is achieveq by optimi_zing a loss functmt teva_luates models with algorithms in different ways. Active Appearanc
how well the given model+algorithm combination solves theegitask (image
denoising in this example). Models [8] are iterative algorithms driven by data and a PCA-
like model to find objects of interest in the image. The soluti
depends on the starting location, so they are usually used in
wherex = A(y, 0) is the result of the algorithmd with the cooperation with other algorithms or with user initialipet
model and algorithm parametes= (0,,,6,) on the input A more complete solution for object or shape detection is
image y. As with the Energy Based Models from Sectiomffered by the Shape Regression Machine [46], where an
II-B, the training data consists of pai(y;, t;) consisting of image based regression algorithm is trained to find a vector
input imagesy; and the corresponding desired outputsThis  toward the object of interest from any random location iasid
approach is illustrated in Figure 3. the image. Fast and robust object detection is obtained by
Since the MRF model and the inference algorithm aigsing hundreds of random initializations and a verificatitep
now inseparable, we define akctive Random FieldARF) based on Adaboost. The Shape Regression Machine can thus
as a triplet(C, ¢, A) consisting of a MRF or CRKC,¢) be seen as a trained model-algorithm combination for object
together with an inference algorithmd € A. The algorithm or shape detection. Our work differs from the Regression
A is selected from a family of algorithmsl that provides Machine because it is aimed at training models and algosithm
inference on the input datg using the modelC, ¢). The for MRF/CRF inference instead of object/shape detection.
algorithm family A can include any type of algorithm thatAnother related work is [12], learning detectors for faced a
can be used for MRF/CRF inference: gradient descent, Belfate parts by exploiting the context between them, but witho
Propagation [44], Graph Cuts [5], etc. However, in contragh explicit MRF formulation.
to the standard MRF/CRF approaches, the algorithms in theThe ARF resembles thenergy based modeld9], [25],
family A are restricted to be very fast, by sacrificing accuracyy that only the energy part of the MRF is used without
For example, the number of gradient descent iterations in @He normalization constant, and a loss function is used for
image denoising application is kept small, on the order of tlaining. The energy based models are models trained in such
to 4, as opposed to 3000-10000 iterations used in [29]. Theway that the minimum energy is at the desired location on
inaccuracy of the algorithm is compensated by training thRe training set, independent of the optimization (infesn
model to give best results on this algorithm, resulting imst f algorithm used. In order for that to happen, specific coouti
and accurate combination. on the energy function are imposed [19]. By contrast, the ARF
The performance of the Active Random Field is measuregining finds the model parameters that give best results on
using a loss functiod. that is a generally accepted benchmary training set using a preselected inference algorithm. As a
in the community. In image denoising we use the averagensequence, no conditions on the energy function or tre los
PSNR (peak signal-to-noise ratio) over the set of imag@snction are imposed on the ARF. The applicability of the ARF
(training or testing) and replace the minimization in Edquat is only limited by the existence of a fast inference algarith
(5) with a maximization. Other more appropriate loss fumtsi that obtains results in a matter of seconds, since it willehav
could be used instead of the PSNR, for example the Structuiglbe applied many times during training.

Similarity Index (SSIM) [40]. A number of works use the model-algorithm combination
The differences from the standard MRF/CRF approachgsy learning the model, but without imposing any computa-
and the proposed ARF approach are tional complexity constraints. In this category is [36], ek

1) The normalization constarif is not important in the a CRF based on pairwise potentials is trained for object
ARF since different models are compared using th&assification using boosting and a pixelwise loss funct®n
loss function L instead of the likelihood or posteriora similar note, [37] trains a sequence of classifiers for abje
probability. segmentation. Each classifier is based on features fronathe d



and on the probability map obtained so far. These two methdgs Training the Active Random Field
train MRF model-algorithm combinations that slowly des®a  Training of the Active Random Field, is achieved using
in speed at each training iteration, because the modelsﬁmc%xammes in the form of pairgy;, t;) of the observed images

more and more complex. In [30], an approximate posterior Wgs and the corresponding desired outptitsGiven a training
maximized by gradient optimization for learning a pairwisget 7 = {(y,, t;),i = 1,...,n} consisting of such pairs, the
MRF for stereo matching. loss functionL(y,t) is used to evaluate how well the model

There exist a number of works that train model-algorithrand algorithm solve the given problem on this training set.
combinations with a loss function that is used to report the If the model-algorithm combination is parametrizedthy:
results. However, these works use inference algorithms thé,,, 6,,), the training is an optimization procedure to find
are focused on exact MAP estimation, which is different i

than what is proposed in this paper. The same quantity from 0 =arg meanL(A(y“e)’ti> ©)
Eq. (5) is minimized in [34] for image denoising, but as an Depending on the proﬁém, different optimization algo-
attempt to obtain a stronger MRF optimum than the gradieffy,ms (coordinate descent, conjugate gradient, simdlate
descent. For that, a more complex inference algorithm,d:)asr?ea"ng, genetic algorithm, etc) could be appropriate.

on variational optimization, is derived. On a similar NO,  There are two main concerns regarding this Active Random
[33] Gaussian Conditional Random Fields are defined aphq approach.

used for image denoising. They allow exact computation of
the MAP solution as well as an analytic gradient of a loss
function (the MSE) comparing the solution and the desired
result. The analytic computation of the MAP solution and
of the gradient are possible by making some compromises
in the model (the GCRF). The results presented in [33] are
comparable to the two iterations of ARF though obtained at
least one hundred times slower. We show in Section IlI-F that examples (e.g. larger images to avoid boundary effects)
MAP estimation for the Fields Of Experts MRF model can 2) Another con;:érn is the computational complexity of the.
be obtained by a sequence of GCRF estimations. Finally, a) : ; b - piexity
model-algorithm combination for optical flow was trained in applying the algorithm on all the training examples for
each optimization iteration. This concern is addressed in

[20] using stochastic optimization and a loss function Hase : . . )
. three ways. First, for certain problems, different design
the average endpoint error. The MRF model was based on 3- : o ;
strategies (e.g. memorization of partial results) can be

cligues and inference was obtained by limited memory BFGS . :
: . used to reduce the computation to a fraction of the
[21]. A common theme in these works is the fact that all use . . L
a lot of computation in the inference algorithm for obtagin full evaluation cost. Second, efficient optimization algo-
P . . oA . ootam rithms such as conjugate gradient or genetic algorithms,
an strong MRF optimum. This paper differs in this regard . . .
. . ) . can make good use of each function evaluation. Third,
by using a fast (close to real-time) and suboptimal infeeenc . . .
. ) . : the computational demand is less of an issue every day
algorithm which does not try to obtain a strong optimum. . ; )
We argue in this paper that it is more important to prevent due to the exponential growth in computational power
g pap b P of a standard PC. Even though the CPU frequency has

overfitting than to. obtain a s-trong MRF opt@um. reached a limit recently, the number of CPU cores in a
Even when using a fast inference algorithm such as one  standard PC still increases exponentially. Furthermore,

1) The main concern is overfitting the training data. This

happens when an increased performance on the training
data is reflected in a decreased performance on an
unseen dataset. Overfitting can be detected using a
validation set and appropriate measures can be taken.
Possible measure include increasing the number of
training examples or changing the type of the training

iteration of gradient descent, through appropriate trgjrand the training can be easily parallelized, resulting in a good
adapt to the simple descent algorithm as predicted by [39].
Consequently, the image denoising results presented $ thi 1. A PPLICATION: IMAGE DENOISING

paper surpass any previous results based on MRF models i(}Ve apply the ARF idea to image denoising, where given

both speed and accuracy. . , : . . ;
an image corrupted with noise, the goal is to obtain an image

Similar goals in obtaining good results with low computafom which the noise was removed. This problem has been
tional expense are explored in cost-sensitive learning38h  5qdressed using wavelets in [27], [26] and by learning a
a decision tree was trained to minimize a cost function witgrg prior model known as Fields of Experts 6n< 5 pixel
terms for accuracy and computational expense fOI’eaCh’Eatl(I;”ques in [29]. Non-local image denoising methods include
Also related is [42], where for each instance of the Weltﬁ] and especially 3D collaborative filtering (BM3D) [9], &h
known SAT problem, the most efficient algorithm is selectegter obtaining very good results with low computational
from a pool of SAT solvers using regressors that estimate thgyense. An example of an image denoising problem and
algorithm running time. These regressors have been traingdyits obtained using the above mentioned methods as svell a
beforehand on a dataset of SAT instances. the ARF approach proposed in this paper are shown in Figure

In general, parameter tuning for a specific application thasé, together with the CPU time required to obtain each result.
on a training dataset can be viewed as related work, but we &mother approach [10] uses a sparse representation based on
unaware of any work specifically aimed at studying parametierarned dictionary of primitives and is more computatitnal
tuning and ways to prevent overfitting. expensive.



Fig. 4. Image denoising example. Top, from left to right: ariimage, image corrupted with additive Gaussian noise witk 25, PSNR=20.17; our
result, PSNR=28.94, 0.6 seconds and Fields of ExpertstrfZ8]l PSNR=28.67, 2280 seconds. Bottom results, fromtteftight: wavelet denoising [27],
PSNR=29.05, 16 seconds; overcomplete DCT, PSNR=28.81,@#dg, KSVD [10], PSNR=29.02, 250 seconds and BM3D [9], PSAER60, 4.3 seconds.

The ARF approach to image denoising proposed in thisiage with predefined filters such as Laplacian of Gaussian,
paper uses the Fields of Experts MRF model and the gradi&@ubor, etc. The difference is that in the FRAME model the
descent algorithm that were presented in [29] and will bmonvolution filters are predefined and the potential fumgio
briefly mentioned in the next section. The loss function usede learned, while in the FOE the potential functions aredfixe
for training the ARF is the average PSNR (Peak Signal snd the convolution filters are learned.

Noise Ratio) over the training set. For image denoising, this prior is used together with a
likelihood that assumes i.i.d. Gaussian n0|se
A. Fields of Experts p(y|x)  exp(—Edata(x]y)), Edata(x|y) = 53 Z yI—x7)?
The Fields of Experts [29] is a Markov Random Field
prior model with potential functions based on a collectidn dvherex’ is the value of pixelj of imagex. (8)
convolution kernels (filtersy;, f = 1,..., N and coefficients The beauty of the Fields of Experts formulation consists
af, f=1,..,N of an analytical solution for the gradient of the energy with
proe(x,0) = ——exp(—Eror(x,0)), respect tax.
Z(G) Jix
(7) VxErop(x,0) Zaf‘]f T
EFOE X, 9 ZZaflog 1+ JT (k)) ) 1 (9)
kof=1 vxEdata(Xb’) = ﬁ(x - Y)

The first sum is taken over the cliqueof the denoised image
x, andx(®) are the pixels ok corresponding to cliqué. There where J; is the mirror image of filter/; around its center
is a clique centered at each pixel location inside the imaggxel.
Basically, each expert is a convolution followed by a robust Given a noisy image and learned paramefietie denoising
potential function. is obtained by gradient descent in the enefgy,:,(x|y) +

A convolutional approach is also taken in the FRAMErog(x,0). Thus, by taking small steps in the direction of
model for texture modeling [47]. This is a Maximum Entropyhe energy gradient, a denoised imagés obtained in about
Model with learned potential functions and convolutionshef 3000 iterations. For more details, see [29].



Fig. 5. The thirteerb x 5 Active Random Field filters trained for the level of noise= 20 and for a one iterationn(;;.,, = 1, top) and three iteration

(niter = 3, bottom) steepest descent inference algorithm.

Fig. 6. The twenty fous x 5 FOE filters from [29].
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B. Active Random Field Approach distribution, obtained using MCMC sampling. The training

In the Fields of Experts formulation, the model (MRF prioprpcedure is computati_onally intensive and yields a generi
+likelihood) is trained independently from the MAP infecen Prior model for natural images.
algorithm (gradient descent). In what follows, they will be In [34], the same FOE model is used and trained using a
trained together in a joint optimization. loss function and stochastic gradient descent. With the bkl

For image denoising with Active Random Fields, we use tifefamily of upper bounds of the nonlinear functilog(1+x2),
model and family of algorithms4 from the Fields of Experts another inference algorithm is obtained, with the hope that
formulation presented above. By ignoring the normalizaticc@n obtain a stronger optimum than the gradient descent (10)
constant, from the gradient equation (9) we obtain thetitera [N what follows, we will show that this is not necessary,

gradient descent inference algorithm that is used for MA®NCe by appropriately training the ARF (i.e. the FOE model
estimation. together with the steepest descent algorithm), the model wi

al _ T adapt to make the simple gradient descent work very well,
X‘_XJF‘S[ﬁ(X_W +Zo‘f‘]f * W] (10) making it unnecessary to use a more powerful inference
These iterative algorith{n},1 from equation (10) form aﬁlgorithm. This was predicted t.)y Waipwrigh tin [39.] b ut the
algorithm family A, parametrized byN' convolution kernels extent to which this state_ment is true is quite surprising.
Js, f = 1,...,N with corresponding coefficients;, the data 1) Dataset: The same images as [29] are used for training,
coefficient 3, the numbern,;.. of gradient update iterations namely 40 natural images from the Berkeley dataset [22]. The

(10), and the update parameterTherefore Fraining examples _consist of thg 40 paifg;,t;) of input
imagesy; and desired results;,i = 1,...,40. The desired

0= (6m,0a) = (N, Ji,a1, .., N, an, B, miver, 6). - (11)  results t; are the original noise-free training images. The
When training for a particular noise level we observed a input imagesy; are the original training imagets corrupted
very modest contribution of at most01dB of the data term with Gaussian noise of similar variance as expected angpsti
%(x —y) to the final result. Hence we keep = 0 until time. Since each training example contairi®), 000 cliques,
section llI-E. the training set containg, 000, 000 cliques. We experimented

In our approach, instead of taking;:., = 3000 iterations with smaller patches (e.g. of sizE5 x 15 as in [29]) and
with small stepsd = 0.2) as in the FOE model, the algorithmsobserved that overfitting occurs when the patches are amalle
in the family A have a small number of iterations;.,., € than250x250 pixels. This could be due to the boundary effect
{1,2,3,4} with 6 = 400/n;.,. Since the number of iteration since the graph nodes close to the patch boundary don't have
is small, the result is obtained between 800 and 3000 timal the neighbors to communicate with and behave diffeyentl
faster than the FOE. At the same time we observe that tth@n the interior nodes.
denoising performance actually increases compared to FOH-or testing, we use the same 68 natural images from the

for an appropriately trained system. Berkeley dataset as [29] as well as some standard image
denoising test images. These testing images were not used
C. Training the Active Fields of Experts for training.

2) Loss Function: The ARF is trained by optimizing the

In [29], the Fields of Experts model is trained USING ame criterion that is used for evaluating the denoisinteays

Contrastive Divergence [15] and Markov Chain Monte Carl erformance, namely the average PSNR over the images in the
sampling. The procedure involves gradient descent in t & Thus thé loss function is

parameter space to minimize the KL divergence between t%e'
model probability and the empirical prior probability oipted L(x,t) = 201og,((255/std(t — x)) (12)
from the training examples. The parameters are updated bagtere std(t — x) is the standard deviation of the difference
on expected values with respect to the current probabilibetween the original imageand the denoised image More
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appropriate loss functions could be used instead of the RSNR
for example the Structural Similarity Index (SSIM) [40].
Learning is an optimization on the paramet@te maximize

M(O) = = 3" L(A(yi,0), 4, (13)
1

271

26

25|

i= o
the average PSNR obtained after running the denoising algo- &
. . .. o ol
rithm A(y;, 8) with parameter® on the 40 training examples
yi- 23 —
3) Optimization: In this work, coordinate ascent was used — QEE Pa'tr_"ng
for maximizing the loss function. Coordinate ascent is @dye 2 GMRFefrg?ﬁiégnsee”)
iterative optimization algorithm in which at each step, afie GMRF Testing (unseen)
the variablesd; of the current staté is chosen at random 2 1 2 3 P 5
Steps x10000

.and Its valug IS mOdI.fled by a small amouat01 to 0.001 Fig. 8. PSNR evolution on the training and test set observeitevtraining
in our experiments) if\/ (0) does not decrease. If th&/(6) e one iteration{;s.,r = 1) ARF parameters for the level of noise= 25.

decreases, the variabfe is rolled back to its old value. For Also displayed in dotted lines are the training and testiSNR of a GMRF

our problem, each filter is constrained to have a zero-suMi" the same model complexity, described in section III-G.

so we modified the coordinate ascent so that when a filter

is selected to be modified, two locations inside the filter are

chosen randomly and modified by the same small amount, Isingle particle (maximum) is propagated starting from the

with opposite signs. This way the filters always remain zerémall dimensional space of parameters of only one filter and

sum. gradually increasing the dimensionality by adding filters o
We also experimented with gradient ascent, conjugate gty increasing the filter size. Each time the dimensionakty i

dient and the simplex method [24]. For this particular aggpli increased, the position of the particle in the larger Maabin

tion, we observed that these other methods could not find sugpace is searched by Coordinate Ascent.

a strong optimum as the coordinate ascent. This is probablyMore specifically, the Marginal Space Learning procedure

because the optimum path is very narrow and a fast algorithisnstarted with one filter of siz& x 3 with all entries 0 except

could not follow it properly. Other optimization methodscbu on the first row, Fy(1,1) = 0.1, F1(1,2) = —0.1. Starting

as genetic algorithms [14] or simulated annealing [16] doufrom this initial setting, the PSNR optimization was runilint

be more appropriate for avoiding local optima and are stibjemt much improvement inV/(6) was observed. This is the

to further investigation. location of the particle in the first Marginal Space. Then the
1 Fiter |_ [ 2Fiters | [5Fiters| [5Fiters | [6Fiters| _ [13Fiters| ~ parameter space was enlarged by adding another filter with
33 33 3x3 55 55 5x5 all entries0 and optimizing for 3000 steps, obtaining the

Fig. 7. Training diagram for Active Random Field parametersthe level ~particle position in the second space. The process of istrga
of noisec = 25 and the one iterationn(:.,- = 1) steepest descent mferencethe Marginal Space by adding one filter and retraining was

algorithm. . . .
The one iteration parameters were trained first, for tngeated until there were a total of figex 3 filters. Then the

level of noisec = 25. For the one iteration parameters, thg/larginal Space was enlarged by increasing the filter size to

coefficientsay can be well approximated analytically as the X ,5_ by padding ZEros on j[he border of each filter. The new
solution of the least squares problem: position of the particle (maximum) was searched througr0300

40 N steps of optimization. The process of enlarging the Matgina
Z [[t; —x; — & Z afg}H?, where Space by adding filters (now of sizex 5) and retraining was
=1 =1 repeated until the number of filters reachad = 13. This

14
JTX(j) ( )
(&%) = J7 * —
f P 1 gTD)2
+ 2( f i ) r]iter=‘| « niter=‘| « niter=‘| «— niter=‘| > niter=‘|
This leaves only the value of the filtef§, f = 1,..., N for o=10 o=15 0=20 0=25 0=50
optimization. At each step of the optimization, the coeffits J, J,
ay are obtained by solving the above least squares problel n, =2 n_ =2 n_ =2 n, =2 n, =2
R A i i iter < iter < iter < iter iter
and thenM () is evaluated. This technique is know Bso- c=10 0=15 6=20 0=25 0=50
Blackwellization[4], [7]. i i
Since the functionV/ () is not convex, the optimization is N, =3 N, =3 N, =3 N, =3 N, =3
prone to be stuck in local maxima. To alleviate this problem, c=10 € o215 [€] o=20 € o225 6=50
the one iteration filters forr = 25 are trained using a || || || || ||
simplified version ofMarginal Space Learning45]. Marginal - - - - B
. . P . . . . niter_4 niter_“' niter_4 niter_4' niter_4
Space Learning is an optimization procedure aimed at findini 5219 =15 =20 G225 6250

optima in high dimensional spaces by propagating a set 01
P 9 P y propag 9 Fig. 9. Diagram of the training of the ARF parameters for défe levels of

par_t'CIes in a sequence of Spaces of increasing dimensiQgie and numbers of iterations of the steepest desceneimteralgorithm.
until the full parameter space is reached. In our case,Tie double lines mean that the filters are the same.



TABLE |
PERFORMANCE EVALUATION AND COMPARISON OF OUR METHOD(1-4 ITERATIONS) WITH OTHER METHODS ON SOME STANDARD BENCHMARK IMAGES
o = 25. THE ARF RESULTS ARE OBTAINED7-3000TIMES FASTER

Image Lena Barbara Boats House Peppers Average
Fields of Experts [29] 30.82 27.04 28.72 3111 29.20 29.38
1-iteration ARF 30.15 27.10 28.66 30.14 28.90 28.99
2-iteration ARF 30.66 27.49 28.99 30.80 29.31 29.45
3-iteration ARF 30.76 27.57 29.08 31.04 29.45 29.58
4-iteration ARF 30.86 27.59 29.14 31.18 29.51 29.66
Wavelet Denoising [27] 31.69 29.13 29.37 31.40 29.21 30.16
Overcomplete DCT [10] 30.89 28.65 28.78  31.03 29.01 29.67
Globally Trained Dictionary [10] 31.20 27.57 29.17 3182 .8® 29.92
KSVD [10] 31.32 29.60 29.28 3215 29.73 30.42
BM3D [9] 32.08 30.72 29.91 32.86 30.16 31.15

number was chosen by observing on the validation set thateacho, 4: Fields of Experts (FOE) [29] with 3000 iterations,
further improvement in PSNR could be obtained. The whol6,7,8: our algorithm with 1,2,3,4 iterations, 9: wavdlased
procedure is illustrated in Figure 7. denoising [27], 10: Overcomplete DCT [10], 11: KSVD [10]

The evolution of the PSNR over all this training, startingind 12: BM3D [9]. Since this evaluation is on 68 images, it
with one 3 x 3 filter and ending with thirteers x 5 filters should be regarded as a more thorough evaluation than the
is plotted in Figure 8. Training the 5 filters of sizZ2x 3 results on 5 specific images. We should mention that all other
takes about 7 hours on a dual-core 2.4Ghz PC while the whalgorithms were run on Matlab code provided by their authors
training for the one iteration = 25 filters takes about 3 days.and were not implemented by us.

Since the optimization is prone to be stuck in local optima, From the evaluation, it is clear that the one iteration ARF is
the other filters are initialized from already trained fitén on par with the FOE while being000 times faster. Therefore,
the order presented in Figure 9. The 3-iteration filters ae# wtraining the MRF model together with a suboptimal inference
trained to perform iterative denoising and can also be used &lgorithm offers significant advantages in speed and acgura
4-jterations without any modifications. One could also observe that the ARF is wittlirsdB from

Training each of the arrows in Figure 9 takes about oribe best method and it is outperformed by two methods:
day on a 8-core 2Ghz PC. We believe that by using betté5VD [10], BM3D [9] and for some noise levels by wavelet
optimization algorithms, the training time can be furthedlenoising [27] and overcomplete DCT [10].
improved. The trained x 5 filters for o = 20 andn;ye, = 3 Depending on application, trade-offs between speed and
are shown in Figure 5. accuracy might be important. Figure 11 shows a plot of the

4) Overfitting: As already mentioned, we initially usedPSNR performance in dB of the algorithms compared above as
images of size 5 x 15 as in [29] and observed that the traininga function of the processing speed in fps. From the figure, one
PSNR was increasing significantly while the PSNR on thgan see that the Active Random Fields are very competitive
validation set was actually decreasing, a sign of overfjttive candidates when high processing speeds are required such as
experimented with increasing the size of the training insagé real-time medical applications.
and observed that this alleviated the overfitting problem. The computation complexity of the ARF image denoising
Finally we observed that when the training images were algorithm is due to the necessity of performigg’ convo-

least250 x 250, there were no signs of overfitting. lutions (whereN is the number of filters) for each iteration.
A standard Matlab implementation takes about 0.8s for each
D. Results iteration on &56 x 256 image and a 2.4GHz PC. A better C++

implementation using IPL (Intel Image Processing Library)
The performance of the Active Random Field system is

evaluated on the same datasets as [29]. First, results oa som
standard images - Lena, Barbara, Boats, House and Peppegsg; TABLE I
g ! ' ! u pp ﬁ%RFORMANCE EVALUATION OF DIFFERENT DENOISING METHODS 08

at the noise leveb = 25 are shown in Table |. Note that  IMAGES FROM THEBERKELEY DATASET. AVERAGE PSNROF THE
these images were not used for training. The ARF result@ENOISING RESULTS OBTAINED BY THE METHODS AT DIFFERENT NOIS

are obtained between 7 and 3000 times faster than the other LEVELS.

methods Level of Noiseo 10 15 20 25 50
For f .th : Table Il and Ei 10 1. Wiener Filter 31.65 29.18 27.53 26.37 22.94
or turther comparison, fable [l and Figure Present nonlinear Diffusion [41]  32.03 29.83 28.28 27.25 2473
results on the same 68 test images from the Berkeley datas@tNon-local [6] 3148 29.86 28.62 27.59 24.22
as [29]. Note that these images were also not used for tgainin 4- Fields of Experts [29] - 32.68  30.50  28.78  27.60  23.25
Wi t results for 1: Wiener filter. 2: Nonlinear Di . 5. 1-iteration ARF 32.74 30.57 2892 27.77 2458
€ present results 1or 1. Vviener tifter, 2. ! ifUsi 6 2.iteration ARF 32.74 3070 29.23 2810 24.88
[41] using the nonlinear diffusion Matlab toolbox provided 7. 3-iteration ARF 3284 3076 29.29 28.17 2511

: .. . . 9. Wavelet Denoising [27] 33.05 30.73 29.18 28.03 25.37
diffusivity = 3, step size= 8, steps= 2, and with theaos 1y overcomplete DCT [10] 3319 30.75 29.15 27.98 24.86

option, 3: Non-local means [6] with search winddw x 17, 11. KSVD [10] 33.30 3096 29.43 2833 2520
similarity window 9 x 9 and h tuned for best results for _12. BM3D [9] 33.53 3121 29.71 2863 25.47
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Fig. 10. Average PSNR in dB for different image denoising gtgms at different noise levels on 68 images from the Berkelataset. 1: Wiener Filter,
2: nonlinear diffusion, 3: Non-local means [6] 4: Fields ofpexts [29], 5,6,7,8: our algorithm with 1,2,3 and 4 iteratip9: wavelet based denoising [27],
10: Overcomplete DCT [10], 11: KSVD [10] and 12: BM3D [9]. Thesults are also shown in Table II.

cuts computation time to 0.12s per iteration for the samgéna First, we plot in Figure 12 the performance of the 1-
size. Furthermore, a parallel implementation on multipRJS iteration ARF in the range < [10, 50]. For comparison, the
and/or a GPU implementation could bring this algorithm t6OE performance is also displayed. It is clear that the ARF

real-time performance. algorithms are specialized at the levels of noise they were
trained for.
E. A Study of the One lIteration Algorithms Then we evaluated the FOE model with a single iteration

It is intriguing that such results could be obtained in a Enggradient descent algorithm on the same 68 images from the
gradient descent iteration. Could this be due to the spgciaBerkeley dataset, choosing the step sizéo maximize the
trained filters F; or to the filter coefficientsa;? In this PSNR. The results are presented in the second row in Table
section we perform more experiments on different one immat 11l and in Figure 13.

algorithms to determine the cause of this performance. . . . -
g P Another 1-iteration FOE model was obtained by retraining

the coefficientsa; for eachos to maximize the PSNR on

29 ; ; the training data, while keeping the original filteFs. These
o R results are posted in the third row in Table Ill and in Figuge 1
sasl y ksvo || For each algorithm are also displayed in Table Il the number
v Wavelet of parameters that are trained for each noise level
a > FOE
288 ° . < Nonlocal_| The fourth row of the table displays an evaluation of the
o [k Wiener FOE filters when the filter norms; (i.e. scalar multipliers
x F; = v;FJ'©F) and their coefficients,; were trained for each
4 215 | value ofo by maximizing the PSNR on the training set.
+
27l i The fifth row in Table Il presents the performance of a
l-iteration ARF that was trained on images corrupted with
noise levelss = 15 and 25 and no data term. Observe that
265 * 1 the performance decreased slightly while the noise range wa
extended.
®0 1 2 3 a4 5 6 7 8 9 10 In the 1-iteration ARF, the data term has theoretically no

Frames per second : ; ; ; ;
influence, since before the iteration— y = 0. We slightl
Fig. 11. PSNR (dB) vs speed (fps) of different denoising athms on the Y gntly

68 Berkeley test images far = 25. The colors are the same as in FigurernOdiﬁed the 1'iter5_‘ti0n ARF to a 2-step Version that bears
10. the same computational expense but can take into account the
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TABLE Il
TESTING ERRORS ONG8 UNSEENBERKELEY IMAGES WHEN TRAINING DIFFERENT1-ITERATION ARF ALGORITHMS.

Algorithm Number ofs-dependent params 10 15 20 25 50

FOE [29] 1 32.68 3050 28.78 27.60 23.25

1-iteration FOE 1 29.57 2596 23.35 21.31 14.92

1-iter. FOE, retrained coeffs 24 30.23 26.63 24.00 21.92 3495.

1-iter. FOE, retrained coeffs & norms 48 32,29 29.73 27.99 626. 22.39

ARF, no data term 0 30.13 29.89 28.99 27.40 18.69

ARF w/data term, trained withr € [15, 25] 1 31.99 30.37 2899 27.63 20.26

ARF w/data term, train withr € [15, 40] 1 31.13 2955 2856 27.72 23.38
data term: F. Relation to M-estimation and Gaussian CRF

N JTy In this section we will use a standard statistical method
lL.x—y+9¢ Z apd; o« lf T3 named M-estimation [11], p. 99, which maps robust regressio
f=1 1+5(5y) (15) to an iterative weighted regression.
The FOE energy with rm can written as:
2.x<—x+5ﬂa(x—y) e FOE energy with a data term can be written as
202
N
where the data term has a coefficiefit that depends om, Erop(x)=»_ Y ap(Jix)+px-y) (x—y)
as in [29]. This can be also written in a single iteration as f=1 j
N
T T
+5§: ﬂ+-&WJ_ JTy 16) => > app(Jfx) +B8x-y) (x-y)
Xy arl+ o5y * T 7700 f=1 g
=1 20 1+ §(Jf y) (17)

The last two rows of Table Ill and the red and green solid where p(z) = log(1 + 2%/2) is the Lorentzian and; ; is
lines in Figure 13 show results obtained with this modified the j-th column of.J;.
iteration ARF. The first one is trained with images corrupted Thys minimizingE o (x) means solving a robust regres-
with noise levelso = 15 and 25, while the second one with sjon problem. One commonly used algorithm for robust regres

images corrupted with noise levets= 15 and40. One can see sjon s the iterative weighted regression using M-estiomati
that the band-pass behavior disappeared after the intioduc[11], p. 99.

of the data term. Taking the derivative with respect to*) and setting it to
The FOE with the coefficients and norms retrained at eagBro, gives:

noise level (fourth row in Table Ill) has a very good overall

performance. However, compared to the ARF algorithms dis- N
played in Table Ill, it has 48 times more parameters (24 nor%EFOE(x) = Z Z afp’(Jijx)Jf,j7k+2ﬂ(x—y) =0,
and 24 coefficients) that are trained at each noise level. x f=1 3
(18)
34 ‘ ‘ ‘
— 3000-iter. FOE i i i T ———— :
) . = 3000-iteration FOE
- 1—!tel’- ARF, s!gmazlo | 321 1-iteration FOE i
1-iter. ARF, sigma=15 N = = 1l-iter FOE,retrained coeffs
1-iter. ARF, sigma=20 30k 3 =" 1-it. FOE,retr. coeffs & norm ||
30 1-iter. ARF, sigma=25 | N = = ARF,no data term,train 15-25
C 1 =i H = \ ARF w/ data term,train 15-25
1-iter. ARF, sigma=50 28+ NN —— ARF w/ data term,train 15-40
28 A
\
DZ: x 261 S
n 26 Z Js
(8 DU S LN e KR o 24r N
24 o S RS R
22 S o So i
~ - ~ N
~
22 20l ~. R S o O
S o ~ d
20 18} s ~ 1
~ N = ~ -
~ ~
18 1 1 1 1 1 ~ 1 1 16 - ~ ~
10 15 20 25 30 35 40 45 50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ b
Level of noise sigma 10 15 20 25 30 35 40 45 50
Fig. 12. PSNR (dB) curve of the 1-iteration denoising aftyoris from Level of noise sigma

Table Il and Figure 10 for all noise levels in the rangec [10,50] on the Fig. 13. PSNR (dB) curve of different 1-iteration denoisialgorithms at
68 Berkeley test images. The 3000 iteration FOE algorithmaiss included different noise levels on the 68 Berkeley test images. Th® 3@@ation FOE
for comparison. algorithm was also included for comparison.
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16 ‘ ‘ ‘ ‘ ‘ By limiting to only short-range interactions, (23) can berse
Ll | as a filtering operation
x=Fxy. (24)
t Comparing this to the one-iteration ARF equation e.g. (16),
1l ] the Gaussian MRF solution above (24) is linear whereas the
one iteration ARF is non-linear.
08¢ 1 To see how close the one iteration ARF is to being a linear
operator, we obtained a histogram of the filter responses ove
06r 1 the test set, displayed in Figure 14. Approximatélf of
the filter responses fall outside the interyall, 1] where the
o4 | Lorentzianp(z) = log(1 + z%/2) can be well approximated
o2l with a Gaussian, i.e. where the derivatiyéz) (overlaid as a
dashed curve in Figure 14) is approximately linear.
0 —~ ~ . - - . To compare how well the GMRF can denoise with the

Filter responses, sigma=25 same model complexity, we trained it on the same 40 images
Fig. 14. Histogram of the filter responses over the trainiegfsr the one 1TOM the Berkeley dataset. We. Ulsed the same Marginal Space
iteration algorithm fors = 25. Approximately 8% of the responses fall Learning approach as for training the ARF, but now there
outside the interval where the robust functjofx) = log(1+2*/2) behaves jg gnly one filter that is started as tHex 1 identity filter
like a gaussian, i.e. where the derivatip&z) (displayed as a dashed curve) . .
is almost linear. and is enlarged by placing zeros on the border followed by
3000 iterations of coordinate ascent with the same PSNR

loss function as the ARF. The enlarging and 3000 iteration

which can be written as optimization were alternated until the filter had sizex 19,
N 1 which has slightly more parameters as 13 FOE filters of size
YN ap—————Jpkdfx+28(x—y) =0 (19) 5 x 5. The PSNR on the training and test set are plotted in
f=1 j 1+ (J7,;%)?/2 Figure 8. One could see that the Fields of Experts has better

modeling power and it is better suited for image denoising,
achieving more than 1.5dB improvement when compared to
the GMRF.

By fixing w; ; = oy /(1 + (J] ;x)?/2), observe that (19) can
be regarded as solving (minimizing) the weighted least szgua

N
Bu(x) =YY wis(JI;x)* + Bx—-y) (x—y) (20) IV. DISCUSSION ANDCONCLUSIONS

f=tJ Wainwright [39] predicted that in computationally resteid

This leads to a fixed point solution to the M-estimatiompplications, models trained using MAP estimation might no
problem by starting with an initiak = x and iteratively be the best choice and biased models might give better sesult
minimizing (20) and updating the weights; ; = a¢/(1 + In this paper, we studied what biased models can give us for
(J;{jx)Q/Q) based on the newly obtained real-time image denoising. We defined Active Random Field
Since the weighted sum of squares from eq. (20) is exactg the combination of a MRF/CRF with a fast and suboptimal

the energy of a Gaussian Conditional Random Field [33] inference algorithm and trained this combination usingsai
N of input and desired output as well as a benchmark error

_ ) G) _ ()2 measure (loss function). This training approach does ned ne
Eeorr(x) ;ijwf(w (g »x rs)7)" (@) to evaluate the MRF normalization constant and can use a

. o . ) validation set to detect when the training is completed and
we obtain that the FOE energy can be minimized in an iteratiy@ iher overfitting occurs

way by alternatively minimizing a GCRF energy (20) and appjied to image denoising, experiments show that con-
updating the weights as described apove.. . siderable gains in speed and accuracy are obtained when
In the ARF approach presented in this paper, a simplgfnnared to the standard MRF formulation. Moreover, the

approach to minimizing the FOE energy is taken as a feyained results are comparable in terms of accuracy with th
iterations of gradient descent. This eliminates the neete®e i io of the art while being faster.

costly least squares problems and it works very well. A direct practical application of this method is denoising
fluoroscopy (X-ray) sequences, where one could use pairs of

G. Comparison to Gaussian MRF low-dose (noisy) and high-dose (good quality) X-rays aiedi
Finally, to see how close the one iteration ARF is to exaffom cadavers or phantoms to train a similar Active Random
inference on a Gaussian MRF with energy Field based real-time image denoising system.
P . This type of training can be used in other applications where
Egrr(x)=x" X" x+(x—-y) (x—y), (22) fast MRF inference is desired on models with a large number

of parameters, for example super-resolution [13], [43thH
number of model parameters is small, the model might not be
x=02x '+ )y = Ay. (23) flexible enough to adapt to the fast inference algorithm.

we get the exact minimum at
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