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Training an Active Random Field for Real-Time
Image Denoising

Adrian Barbu

Abstract—Many computer vision problems can be formulated
in a Bayesian framework based on Markov Random Fields
(MRF) or Conditional Random Fields (CRF). Generally, the
MRF/CRF model is learned independently of the inference
algorithm that is used to obtain the final result. In this paper, we
observe considerable gains in speed and accuracy by training the
MRF/CRF model together with a fast and suboptimal inference
algorithm. An Active Random Field (ARF) is defined as a
combination of a MRF/CRF based model and a fast inference
algorithm for the MRF/CRF model. This combination is trained
through an optimization of a loss function and a training set
consisting of pairs of input images and desired outputs. We
apply the Active Random Field concept to image denoising,
using the Fields of Experts MRF together with a 1-4 iteration
gradient descent algorithm for inference. Experimental validation
on unseen data shows that the Active Random Field approach
obtains an improved benchmark performance as well as a 1000-
3000 times speedup compared to the Fields of Experts MRF.
Using the ARF approach, image denoising can be performed in
real-time, at 8fps on a single CPU for a256×256 image sequence,
with close to state-of-the-art accuracy.

Index Terms—MRF training, CRF training, Fields of Experts,
image denoising.
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I. I NTRODUCTION

Many real-world applications can be regarded as graph-
based optimization problems, where the graph nodes are
some smaller granularities of the system, such as atoms for
material science and pixels for computer vision. In some cases
(e.g. material science), a unique energy function that can be
described mathematically exists and can accurately represent
the relationship between the graph nodes. In computer vision,
the natural images exhibit very complex structures for which
it is difficult if not impossible to find an exact mathematical
model that is computationally feasible.

Many of these computer vision problems are approached by
constructing models based on Markov Random Field (MRF)
or Conditional Random Field (CRF) energy functions and
obtaining the solution through an optimization procedure.The
optimization is one of the available MRF/CRF Maximum
A Posteriori (MAP) inference algorithms such as gradient
descent, Belief Propagation [44], Graph Cuts [5], Iterated
Conditional Modes [3], etc. However, such an approach faces
two challenges when applied to real-world problems.

First, the energy function must be computationally feasible
in the sense that the minimum should be found in polynomial
time. This does not usually happen in reality, since finding the
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global minimum for most energy functions associated to real-
world applications is NP hard. For example, finding the global
minimum of the Potts model [28], used in Stereo Matching as
a prior term [5], [31], [32], is NP hard [5]. In such cases,
polynomial-time algorithms are not expected to be found.

Second, it is very hard to find energy functions that always
have a global minimum exactly at the desired solution. For
example, even though the Potts model has been widely used
in Stereo, the energy level of the desired result is higher than
the energy obtained by different optimization algorithms [32],
or the global minimum [23]. Recent work [1], [19], [20], [34],
[35] introduced methods for training the MRF parameters such
that the MRF energy minimum is as close as possible to the
desired output on a training set.

The goal of this paper is to observe that when an approxi-
mate model is sought, it is sometimes not necessary to find the
global minimum of the MRF energy. It has been shown in [39]
that for applications with limited computational budget, the
MAP parameter estimation does not give the best accuracy, and
training biased estimators could compensate some of the errors
introduced by the fast and approximate inference algorithm.
How much can the biased estimators compensate for the
suboptimal algorithm? In this paper we attempt to answer
this question for image denoising with a target on real-time
performance. The energy model and the inference algorithm
are no longer independent, so we consider them as parts of an
Active Random Field, and their parameters are learned so that
they work best together to obtain the desired results. For the
image denoising application, we use the Fields of Experts [29]
Markov Random Field (MRF) model and a 1-4 iteration gra-
dient descent inference algorithm. The algorithm is restricted
to be 1000-3000 times faster than the one previously used for
image denoising and the best model-algorithm parameters are
trained using a dataset of training pairs consisting of input
images corrupted with noise and the desired denoised output
(the images without the noise). A comprehensive evaluationon
68 standard benchmark images that were not used for training
revealed that the trained model-algorithm combination obtains
improved denoising performance compared to the equivalent
MRF model while being thousands of times faster.

Section II presents an overview of Markov Random Fields,
Energy Based Models and introduces the Active Random Field
concept. Section III applies the Active Random Field to image
denoising using the Fields of Experts model, presenting a
detailed overview of the training procedure and results. Finally,
Section IV presents conclusions and future directions.

A shorter version of this paper appeared in CVPR [2].
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Fig. 1. The Markov Random Field model makes use of an inference algorithm
to solve a given task (image denoising in this example).

II. A CTIVE RANDOM FIELD : JOINTLY TRAINING THE

MODEL WITH A FAST AND SUBOPTIMAL INFERENCE

ALGORITHM

Markov Random Fields (MRF) are used extensively in many
areas of computer vision, signal processing and beyond. They
are capable of enforcing strong regularization on the desired
results.

A. Overview of Markov Random Fields and Conditional Ran-
dom Fields

Let G = (V,E) be a graph with nodesV and edgesE,
x = (xv)v∈V be a set of random variables representing some
hidden attributes (e.g. labels) of the graph nodesv ∈ V , and
C be a set of cliques (fully connected subgraphs) ofG. In a
Bayesian framework, the posterior probability of the hidden
variablesx given input data (image, signal)y is

P (x|y) ∝ P (y|x)P (x) (1)

The Markov Random Field(C, φ) models the prior on the
hidden variablesx

P (x) =
1

Z
exp[

∑

c∈C

φc(xc)] (2)

whereφc(xc) are potential functions that enforce the regular-
ization between the variablesxc corresponding to the clique
c. The cliques can be as small as graph edges (order 2),
however larger cliques are preferred, since they are capable
of representing more complex relationships.

In our denoising application, the graphG is the pixel lattice
and the clique setC contains all the5 × 5 pixel patches of
the image, thus each cliquec ∈ C contains 25 nodes.

Quite recently, Conditional Random Fields (CRF) [18], [17]
were developed as an extension of the MRF so that the clique
potentials depend on the observed datay. A CRF is also a pair
(C, φ) with φ depending ony, aimed at directly modeling the
posteriorP (x|y) (thus the task that is being solved).

P (x|y) =
1

Z(y)
exp[

∑

c∈C

φc(xc,y)] (3)

The MRFs and CRFs have the following advantages and
disadvantages:

+ They are capable of encoding complex relationships
between the graph attributesx resulting in flexible yet
powerful models

Fig. 2. The Markov Random Field model is usually trained independent of
the inference algorithm. The impact of training the model with the inference
algorithm will be studied in this paper.

- Inferring the optimal state is computationally demanding.
For example, the exact inference is NP hard [5] even for
one of the simplest pairwise MRF priors: the Potts model
[28]. Hence, approximate solutions are used in practice.

- The MRF is difficult to train, since the normalization
constantZ is needed to comparing different MRF models.

- The the MRF/CRF is always used with an inference algo-
rithm, as shown in Figure 1. However, the MRF/CRF is
usually trained independently of the inference algorithm,
through a procedure illustrated Figure 2. We will observe
that by training the MRF/CRF together with the inference
algorithm, significant improvements in both speed and
accuracy can be obtained.

B. Energy Based Models and Loss Functions

Recent work on Energy Based Models [1], [19], [25], [35]
deals with the normalization constant by training the MRF
parametersθ so that the MAP estimates are as similar as
possible to the corresponding desired outputs. The differences
between the MAP estimatesxi and the desired outputsti

are measured using a loss functionL(xi, ti) and the training
procedure for the Energy Based Models can be written as:

min
θ

∑

i

L(xi, ti), with xi = arg max
x

p(x|yi; θ) (4)

This approach eliminates the need to compute the normal-
ization constant by comparing models using the loss function.
However, these methods still deal with an idealized situation,
since in reality the minimum energy MRF point is often
too expensive to compute (e.g. NP-hard for the Potts model)
obtaining a suboptimal point instead.

C. Active Random Fields

Since most fast inference algorithms obtain a sub-optimal
solution anyway, we follow [39] and propose a different
approach in which the model parameters are trained such
that the inference algorithm output (and not the ”ideal” MAP
estimate as in the Energy Based Models) is close to the
desired output. This way, the suboptimal inference algorithm
is involved in the parameter learning phase. This combined
approach can be written as:

min
θ

∑

i

L(xi, ti), with xi = A(yi, θ) (5)
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Fig. 3. An Active Random Field is a MRF/CRF model trained together with
a fast inference algorithm using pairs of input and desired output as training
examples. Training is achieved by optimizing a loss function that evaluates
how well the given model+algorithm combination solves the given task (image
denoising in this example).

wherex = A(y, θ) is the result of the algorithmA with the
model and algorithm parametersθ = (θm, θa) on the input
image y. As with the Energy Based Models from Section
II-B, the training data consists of pairs(yi, ti) consisting of
input imagesyi and the corresponding desired outputsti. This
approach is illustrated in Figure 3.

Since the MRF model and the inference algorithm are
now inseparable, we define anActive Random Field(ARF)
as a triplet(C, φ,A) consisting of a MRF or CRF(C, φ)
together with an inference algorithmA ∈ A. The algorithm
A is selected from a family of algorithmsA that provides
inference on the input datay using the model(C, φ). The
algorithm family A can include any type of algorithm that
can be used for MRF/CRF inference: gradient descent, Belief
Propagation [44], Graph Cuts [5], etc. However, in contrast
to the standard MRF/CRF approaches, the algorithms in the
family A are restricted to be very fast, by sacrificing accuracy.
For example, the number of gradient descent iterations in our
image denoising application is kept small, on the order of 1
to 4, as opposed to 3000-10000 iterations used in [29]. The
inaccuracy of the algorithm is compensated by training the
model to give best results on this algorithm, resulting in a fast
and accurate combination.

The performance of the Active Random Field is measured
using a loss functionL that is a generally accepted benchmark
in the community. In image denoising we use the average
PSNR (peak signal-to-noise ratio) over the set of images
(training or testing) and replace the minimization in Equation
(5) with a maximization. Other more appropriate loss functions
could be used instead of the PSNR, for example the Structural
Similarity Index (SSIM) [40].

The differences from the standard MRF/CRF approaches
and the proposed ARF approach are

1) The normalization constantZ is not important in the
ARF since different models are compared using the
loss functionL instead of the likelihood or posterior
probability.

2) The training set consists of pairs of input images and
desired results. With the loss functions, this avoids the
need for sampling from the learned distribution as in the
MRF/CRF training. The new training approach gives a
better idea on when the training is completed or whether
overfitting occurs.

3) The trained model and algorithm complement each other
and result in a fast and accurate system.

4) The MRF/CRF are just models that are always used with
the help of an inference algorithm. On the other hand,
the ARF is a trained model+algorithm combination
that given an input, returns a result, thus it is a full
computational solution.

D. Related Work

In the literature, a substantial amount of work combines
models with algorithms in different ways. Active Appearance
Models [8] are iterative algorithms driven by data and a PCA-
like model to find objects of interest in the image. The solution
depends on the starting location, so they are usually used in
cooperation with other algorithms or with user initialization.
A more complete solution for object or shape detection is
offered by the Shape Regression Machine [46], where an
image based regression algorithm is trained to find a vector
toward the object of interest from any random location inside
the image. Fast and robust object detection is obtained by
using hundreds of random initializations and a verificationstep
based on Adaboost. The Shape Regression Machine can thus
be seen as a trained model-algorithm combination for object
or shape detection. Our work differs from the Regression
Machine because it is aimed at training models and algorithms
for MRF/CRF inference instead of object/shape detection.
Another related work is [12], learning detectors for faces and
face parts by exploiting the context between them, but without
an explicit MRF formulation.

The ARF resembles theenergy based models[19], [25],
in that only the energy part of the MRF is used without
the normalization constant, and a loss function is used for
training. The energy based models are models trained in such
a way that the minimum energy is at the desired location on
the training set, independent of the optimization (inference)
algorithm used. In order for that to happen, specific conditions
on the energy function are imposed [19]. By contrast, the ARF
training finds the model parameters that give best results on
a training set using a preselected inference algorithm. As a
consequence, no conditions on the energy function or the loss
function are imposed on the ARF. The applicability of the ARF
is only limited by the existence of a fast inference algorithm
that obtains results in a matter of seconds, since it will have
to be applied many times during training.

A number of works use the model-algorithm combination
for learning the model, but without imposing any computa-
tional complexity constraints. In this category is [36], where
a CRF based on pairwise potentials is trained for object
classification using boosting and a pixelwise loss function. On
a similar note, [37] trains a sequence of classifiers for object
segmentation. Each classifier is based on features from the data
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and on the probability map obtained so far. These two methods
train MRF model-algorithm combinations that slowly decrease
in speed at each training iteration, because the models become
more and more complex. In [30], an approximate posterior was
maximized by gradient optimization for learning a pairwise
MRF for stereo matching.

There exist a number of works that train model-algorithm
combinations with a loss function that is used to report the
results. However, these works use inference algorithms that
are focused on exact MAP estimation, which is different
than what is proposed in this paper. The same quantity from
Eq. (5) is minimized in [34] for image denoising, but as an
attempt to obtain a stronger MRF optimum than the gradient
descent. For that, a more complex inference algorithm, based
on variational optimization, is derived. On a similar note,in
[33] Gaussian Conditional Random Fields are defined and
used for image denoising. They allow exact computation of
the MAP solution as well as an analytic gradient of a loss
function (the MSE) comparing the solution and the desired
result. The analytic computation of the MAP solution and
of the gradient are possible by making some compromises
in the model (the GCRF). The results presented in [33] are
comparable to the two iterations of ARF though obtained at
least one hundred times slower. We show in Section III-F that
MAP estimation for the Fields Of Experts MRF model can
be obtained by a sequence of GCRF estimations. Finally, a
model-algorithm combination for optical flow was trained in
[20] using stochastic optimization and a loss function based on
the average endpoint error. The MRF model was based on 3-
cliques and inference was obtained by limited memory BFGS
[21]. A common theme in these works is the fact that all use
a lot of computation in the inference algorithm for obtaining
an strong MRF optimum. This paper differs in this regard
by using a fast (close to real-time) and suboptimal inference
algorithm which does not try to obtain a strong optimum.
We argue in this paper that it is more important to prevent
overfitting than to obtain a strong MRF optimum.

Even when using a fast inference algorithm such as one
iteration of gradient descent, through appropriate training and
with a complex and flexible enough model, the model will
adapt to the simple descent algorithm as predicted by [39].
Consequently, the image denoising results presented in this
paper surpass any previous results based on MRF models in
both speed and accuracy.

Similar goals in obtaining good results with low computa-
tional expense are explored in cost-sensitive learning. In[38],
a decision tree was trained to minimize a cost function with
terms for accuracy and computational expense for each feature.
Also related is [42], where for each instance of the well-
known SAT problem, the most efficient algorithm is selected
from a pool of SAT solvers using regressors that estimate the
algorithm running time. These regressors have been trained
beforehand on a dataset of SAT instances.

In general, parameter tuning for a specific application based
on a training dataset can be viewed as related work, but we are
unaware of any work specifically aimed at studying parameter
tuning and ways to prevent overfitting.

E. Training the Active Random Field

Training of the Active Random Field, is achieved using
examples in the form of pairs(yi, ti) of the observed images
yi and the corresponding desired outputsti. Given a training
set T = {(yi, ti), i = 1, ..., n} consisting of such pairs, the
loss functionL(y, t) is used to evaluate how well the model
and algorithm solve the given problem on this training set.

If the model-algorithm combination is parametrized byθ =
(θm, θa), the training is an optimization procedure to find

θ = arg min
θ

n
∑

i=1

L(A(yi, θ), ti) (6)

Depending on the problem, different optimization algo-
rithms (coordinate descent, conjugate gradient, simulated an-
nealing, genetic algorithm, etc) could be appropriate.

There are two main concerns regarding this Active Random
Field approach.

1) The main concern is overfitting the training data. This
happens when an increased performance on the training
data is reflected in a decreased performance on an
unseen dataset. Overfitting can be detected using a
validation set and appropriate measures can be taken.
Possible measure include increasing the number of
training examples or changing the type of the training
examples (e.g. larger images to avoid boundary effects).

2) Another concern is the computational complexity of the
applying the algorithm on all the training examples for
each optimization iteration. This concern is addressed in
three ways. First, for certain problems, different design
strategies (e.g. memorization of partial results) can be
used to reduce the computation to a fraction of the
full evaluation cost. Second, efficient optimization algo-
rithms such as conjugate gradient or genetic algorithms,
can make good use of each function evaluation. Third,
the computational demand is less of an issue every day
due to the exponential growth in computational power
of a standard PC. Even though the CPU frequency has
reached a limit recently, the number of CPU cores in a
standard PC still increases exponentially. Furthermore,
the training can be easily parallelized, resulting in a good
utilization of all available computing power.

III. A PPLICATION: IMAGE DENOISING

We apply the ARF idea to image denoising, where given
an image corrupted with noise, the goal is to obtain an image
from which the noise was removed. This problem has been
addressed using wavelets in [27], [26] and by learning a
MRF prior model known as Fields of Experts on5× 5 pixel
cliques in [29]. Non-local image denoising methods include
[6] and especially 3D collaborative filtering (BM3D) [9], the
latter obtaining very good results with low computational
expense. An example of an image denoising problem and
results obtained using the above mentioned methods as well as
the ARF approach proposed in this paper are shown in Figure
4, together with the CPU time required to obtain each result.
Another approach [10] uses a sparse representation based ona
learned dictionary of primitives and is more computationally
expensive.
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Fig. 4. Image denoising example. Top, from left to right: original image, image corrupted with additive Gaussian noise withσ = 25, PSNR=20.17; our
result, PSNR=28.94, 0.6 seconds and Fields of Experts result [29], PSNR=28.67, 2280 seconds. Bottom results, from leftto right: wavelet denoising [27],
PSNR=29.05, 16 seconds; overcomplete DCT, PSNR=28.81, 38 seconds; KSVD [10], PSNR=29.02, 250 seconds and BM3D [9], PSNR=29.60, 4.3 seconds.

The ARF approach to image denoising proposed in this
paper uses the Fields of Experts MRF model and the gradient
descent algorithm that were presented in [29] and will be
briefly mentioned in the next section. The loss function used
for training the ARF is the average PSNR (Peak Signal to
Noise Ratio) over the training set.

A. Fields of Experts

The Fields of Experts [29] is a Markov Random Field
prior model with potential functions based on a collection of
convolution kernels (filters)Jf , f = 1, ..., N and coefficients
αf , f = 1, ..., N

pFOE(x, θ) =
1

Z(θ)
exp(−EFOE(x, θ)),

EFOE(x, θ) =
∑

k

N
∑

f=1

αf log(1 +
1

2
(JT

f x(k))2)
(7)

The first sum is taken over the cliquesk of the denoised image
x, andx(k) are the pixels ofx corresponding to cliquek. There
is a clique centered at each pixel location inside the image.
Basically, each expert is a convolution followed by a robust
potential function.

A convolutional approach is also taken in the FRAME
model for texture modeling [47]. This is a Maximum Entropy
Model with learned potential functions and convolutions ofthe

image with predefined filters such as Laplacian of Gaussian,
Gabor, etc. The difference is that in the FRAME model the
convolution filters are predefined and the potential functions
are learned, while in the FOE the potential functions are fixed
and the convolution filters are learned.

For image denoising, this prior is used together with a
likelihood that assumes i.i.d. Gaussian noise:

p(y|x) ∝ exp(−Edata(x|y)), Edata(x|y) =
1

2σ2

∑

j

(yj−xj)2

(8)wherexj is the value of pixelj of imagex.
The beauty of the Fields of Experts formulation consists

of an analytical solution for the gradient of the energy with
respect tox.

∇xEFOE(x, θ) =
N

∑

f=1

αfJ−

f ∗
JT

f x

1 + 1
2 (JT

f x)2

∇xEdata(x|y) =
1

2σ2
(x− y)

(9)

whereJ−

f is the mirror image of filterJf around its center
pixel.

Given a noisy image and learned parametersθ, the denoising
is obtained by gradient descent in the energyEdata(x|y) +
EFOE(x, θ). Thus, by taking small steps in the direction of
the energy gradient, a denoised imagex̂ is obtained in about
3000 iterations. For more details, see [29].
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Fig. 5. The thirteen5 × 5 Active Random Field filters trained for the level of noiseσ = 20 and for a one iteration (niter = 1, top) and three iteration
(niter = 3, bottom) steepest descent inference algorithm.

Fig. 6. The twenty four5 × 5 FOE filters from [29].

B. Active Random Field Approach

In the Fields of Experts formulation, the model (MRF prior
+likelihood) is trained independently from the MAP inference
algorithm (gradient descent). In what follows, they will be
trained together in a joint optimization.

For image denoising with Active Random Fields, we use the
model and family of algorithmsA from the Fields of Experts
formulation presented above. By ignoring the normalization
constant, from the gradient equation (9) we obtain the iterative
gradient descent inference algorithm that is used for MAP
estimation.

x← x + δ
[ β

2σ2
(x− y) +

N
∑

f=1

αfJ−

f ∗
JT

f x

1 + 1
2 (JT

f x)2

]

(10)

These iterative algorithms from equation (10) form an
algorithm familyA, parametrized byN convolution kernels
Jf , f = 1, ..., N with corresponding coefficientsαf , the data
coefficientβ, the numberniter of gradient update iterations
(10), and the update parameterδ. Therefore

θ = (θm, θa) = (N, J1, α1, ..., JN , αN , β, niter, δ). (11)

When training for a particular noise levelσ, we observed a
very modest contribution of at most0.01dB of the data term

β
2σ2 (x − y) to the final result. Hence we keepβ = 0 until
section III-E.

In our approach, instead of takingniter = 3000 iterations
with small steps (δ = 0.2) as in the FOE model, the algorithms
in the family A have a small number of iterationsniter ∈
{1, 2, 3, 4} with δ = 400/niter. Since the number of iteration
is small, the result is obtained between 800 and 3000 times
faster than the FOE. At the same time we observe that the
denoising performance actually increases compared to FOE
for an appropriately trained system.

C. Training the Active Fields of Experts

In [29], the Fields of Experts model is trained using
Contrastive Divergence [15] and Markov Chain Monte Carlo
sampling. The procedure involves gradient descent in the
parameter space to minimize the KL divergence between the
model probability and the empirical prior probability obtained
from the training examples. The parameters are updated based
on expected values with respect to the current probability

distribution, obtained using MCMC sampling. The training
procedure is computationally intensive and yields a generic
prior model for natural images.

In [34], the same FOE model is used and trained using a
loss function and stochastic gradient descent. With the help of
a family of upper bounds of the nonlinear functionlog(1+x2),
another inference algorithm is obtained, with the hope thatit
can obtain a stronger optimum than the gradient descent (10).

In what follows, we will show that this is not necessary,
since by appropriately training the ARF (i.e. the FOE model
together with the steepest descent algorithm), the model will
adapt to make the simple gradient descent work very well,
making it unnecessary to use a more powerful inference
algorithm. This was predicted by Wainwright in [39] but the
extent to which this statement is true is quite surprising.

1) Dataset:The same images as [29] are used for training,
namely 40 natural images from the Berkeley dataset [22]. The
training examples consist of the 40 pairs(yi, ti) of input
imagesyi and desired resultsti, i = 1, ..., 40. The desired
results ti are the original noise-free training images. The
input imagesyi are the original training imagesti corrupted
with Gaussian noise of similar variance as expected at testing
time. Since each training example contains150, 000 cliques,
the training set contains6, 000, 000 cliques. We experimented
with smaller patches (e.g. of size15 × 15 as in [29]) and
observed that overfitting occurs when the patches are smaller
than250×250 pixels. This could be due to the boundary effect
since the graph nodes close to the patch boundary don’t have
all the neighbors to communicate with and behave differently
than the interior nodes.

For testing, we use the same 68 natural images from the
Berkeley dataset as [29] as well as some standard image
denoising test images. These testing images were not used
for training.

2) Loss Function:The ARF is trained by optimizing the
same criterion that is used for evaluating the denoising system
performance, namely the average PSNR over the images in the
set. Thus the loss function is

L(x, t) = 20 log10(255/std(t− x)) (12)

wherestd(t − x) is the standard deviation of the difference
between the original imaget and the denoised imagex. More
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appropriate loss functions could be used instead of the PSNR,
for example the Structural Similarity Index (SSIM) [40].

Learning is an optimization on the parametersθ to maximize

M(θ) =
1

n

n
∑

i=1

L(A(yi, θ), ti), (13)

the average PSNR obtained after running the denoising algo-
rithm A(yi, θ) with parametersθ on the 40 training examples
yi.

3) Optimization: In this work, coordinate ascent was used
for maximizing the loss function. Coordinate ascent is a greedy
iterative optimization algorithm in which at each step, oneof
the variablesθi of the current stateθ is chosen at random
and its value is modified by a small amount (0.0001 to 0.001
in our experiments) ifM(θ) does not decrease. If theM(θ)
decreases, the variableθi is rolled back to its old value. For
our problem, each filter is constrained to have a zero-sum
so we modified the coordinate ascent so that when a filter
is selected to be modified, two locations inside the filter are
chosen randomly and modified by the same small amount, but
with opposite signs. This way the filters always remain zero-
sum.

We also experimented with gradient ascent, conjugate gra-
dient and the simplex method [24]. For this particular applica-
tion, we observed that these other methods could not find such
a strong optimum as the coordinate ascent. This is probably
because the optimum path is very narrow and a fast algorithm
could not follow it properly. Other optimization methods such
as genetic algorithms [14] or simulated annealing [16] could
be more appropriate for avoiding local optima and are subject
to further investigation.
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Fig. 7. Training diagram for Active Random Field parameters for the level
of noiseσ = 25 and the one iteration (niter = 1) steepest descent inference
algorithm.

The one iteration parameters were trained first, for the
level of noiseσ = 25. For the one iteration parameters, the
coefficientsαf can be well approximated analytically as the
solution of the least squares problem:

40
∑

i=1

||ti − xi − δ

N
∑

f=1

αfg
i
f ||

2, where

(gi
f )j = J−

f ∗
JT

f x
(j)
i

1 + 1
2 (JT

f x
(j)
i )2

(14)

This leaves only the value of the filtersFf , f = 1, ..., N for
optimization. At each step of the optimization, the coefficients
αf are obtained by solving the above least squares problem
and thenM(θ) is evaluated. This technique is know asRao-
Blackwellization[4], [7].

Since the functionM(θ) is not convex, the optimization is
prone to be stuck in local maxima. To alleviate this problem,
the one iteration filters forσ = 25 are trained using a
simplified version ofMarginal Space Learning[45]. Marginal
Space Learning is an optimization procedure aimed at finding
optima in high dimensional spaces by propagating a set of
particles in a sequence of spaces of increasing dimensions
until the full parameter space is reached. In our case, a
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ARF Testing (unseen)
GMRF Training
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Fig. 8. PSNR evolution on the training and test set observed while training
the one iteration (niter = 1) ARF parameters for the level of noiseσ = 25.
Also displayed in dotted lines are the training and testing PSNR of a GMRF
with the same model complexity, described in section III-G.

single particle (maximum) is propagated starting from the
small dimensional space of parameters of only one filter and
gradually increasing the dimensionality by adding filters or
by increasing the filter size. Each time the dimensionality is
increased, the position of the particle in the larger Marginal
Space is searched by Coordinate Ascent.

More specifically, the Marginal Space Learning procedure
is started with one filter of size3× 3 with all entries 0 except
on the first row,F1(1, 1) = 0.1, F1(1, 2) = −0.1. Starting
from this initial setting, the PSNR optimization was run until
not much improvement inM(θ) was observed. This is the
location of the particle in the first Marginal Space. Then the
parameter space was enlarged by adding another filter with
all entries 0 and optimizing for 3000 steps, obtaining the
particle position in the second space. The process of increasing
the Marginal Space by adding one filter and retraining was
repeated until there were a total of five3× 3 filters. Then the
Marginal Space was enlarged by increasing the filter size to
5× 5 by padding zeros on the border of each filter. The new
position of the particle (maximum) was searched through 3000
steps of optimization. The process of enlarging the Marginal
Space by adding filters (now of size5×5) and retraining was
repeated until the number of filters reachedN = 13. This
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Fig. 9. Diagram of the training of the ARF parameters for different levels of
noise and numbers of iterations of the steepest descent inference algorithm.
The double lines mean that the filters are the same.
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TABLE I
PERFORMANCE EVALUATION AND COMPARISON OF OUR METHOD(1-4 ITERATIONS) WITH OTHER METHODS ON SOME STANDARD BENCHMARK IMAGES,

σ = 25. THE ARF RESULTS ARE OBTAINED7-3000TIMES FASTER.

Image Lena Barbara Boats House Peppers Average

Fields of Experts [29] 30.82 27.04 28.72 31.11 29.20 29.38
1-iteration ARF 30.15 27.10 28.66 30.14 28.90 28.99
2-iteration ARF 30.66 27.49 28.99 30.80 29.31 29.45
3-iteration ARF 30.76 27.57 29.08 31.04 29.45 29.58
4-iteration ARF 30.86 27.59 29.14 31.18 29.51 29.66
Wavelet Denoising [27] 31.69 29.13 29.37 31.40 29.21 30.16
Overcomplete DCT [10] 30.89 28.65 28.78 31.03 29.01 29.67
Globally Trained Dictionary [10] 31.20 27.57 29.17 31.82 29.84 29.92
KSVD [10] 31.32 29.60 29.28 32.15 29.73 30.42
BM3D [9] 32.08 30.72 29.91 32.86 30.16 31.15

number was chosen by observing on the validation set that no
further improvement in PSNR could be obtained. The whole
procedure is illustrated in Figure 7.

The evolution of the PSNR over all this training, starting
with one 3 × 3 filter and ending with thirteen5 × 5 filters
is plotted in Figure 8. Training the 5 filters of size3 × 3
takes about 7 hours on a dual-core 2.4Ghz PC while the whole
training for the one iterationσ = 25 filters takes about 3 days.

Since the optimization is prone to be stuck in local optima,
the other filters are initialized from already trained filters in
the order presented in Figure 9. The 3-iteration filters are well
trained to perform iterative denoising and can also be used for
4-iterations without any modifications.

Training each of the arrows in Figure 9 takes about one
day on a 8-core 2Ghz PC. We believe that by using better
optimization algorithms, the training time can be further
improved. The trained5× 5 filters for σ = 20 andniter = 3
are shown in Figure 5.

4) Overfitting: As already mentioned, we initially used
images of size15×15 as in [29] and observed that the training
PSNR was increasing significantly while the PSNR on the
validation set was actually decreasing, a sign of overfitting. We
experimented with increasing the size of the training images
and observed that this alleviated the overfitting problem.
Finally we observed that when the training images were at
least250× 250, there were no signs of overfitting.

D. Results

The performance of the Active Random Field system is
evaluated on the same datasets as [29]. First, results on some
standard images - Lena, Barbara, Boats, House and Peppers -
at the noise levelσ = 25 are shown in Table I. Note that
these images were not used for training. The ARF results
are obtained between 7 and 3000 times faster than the other
methods.

For further comparison, Table II and Figure 10 present
results on the same 68 test images from the Berkeley dataset
as [29]. Note that these images were also not used for training.
We present results for 1: Wiener filter, 2: Nonlinear Diffusion
[41] using the nonlinear diffusion Matlab toolbox provided
by Frederico D’Almeida, with parametersλ = 8, σ = 1,
diffusivity = 3, step size= 8, steps= 2, and with theaos
option, 3: Non-local means [6] with search window17× 17,
similarity window 9 × 9 and h tuned for best results for

eachσ, 4: Fields of Experts (FOE) [29] with 3000 iterations,
5,6,7,8: our algorithm with 1,2,3,4 iterations, 9: waveletbased
denoising [27], 10: Overcomplete DCT [10], 11: KSVD [10]
and 12: BM3D [9]. Since this evaluation is on 68 images, it
should be regarded as a more thorough evaluation than the
results on 5 specific images. We should mention that all other
algorithms were run on Matlab code provided by their authors
and were not implemented by us.

From the evaluation, it is clear that the one iteration ARF is
on par with the FOE while being3000 times faster. Therefore,
training the MRF model together with a suboptimal inference
algorithm offers significant advantages in speed and accuracy.
One could also observe that the ARF is within0.5dB from
the best method and it is outperformed by two methods:
KSVD [10], BM3D [9] and for some noise levels by wavelet
denoising [27] and overcomplete DCT [10].

Depending on application, trade-offs between speed and
accuracy might be important. Figure 11 shows a plot of the
PSNR performance in dB of the algorithms compared above as
a function of the processing speed in fps. From the figure, one
can see that the Active Random Fields are very competitive
candidates when high processing speeds are required such as
in real-time medical applications.

The computation complexity of the ARF image denoising
algorithm is due to the necessity of performing2N convo-
lutions (whereN is the number of filters) for each iteration.
A standard Matlab implementation takes about 0.8s for each
iteration on a256×256 image and a 2.4GHz PC. A better C++
implementation using IPL (Intel Image Processing Library)

TABLE II
PERFORMANCE EVALUATION OF DIFFERENT DENOISING METHODS ON68

IMAGES FROM THEBERKELEY DATASET. AVERAGE PSNROF THE

DENOISING RESULTS OBTAINED BY THE METHODS AT DIFFERENT NOISE

LEVELS.

Level of Noiseσ 10 15 20 25 50

1. Wiener Filter 31.65 29.18 27.53 26.37 22.94
2. Nonlinear Diffusion [41] 32.03 29.83 28.28 27.25 24.73
3. Non-local [6] 31.48 29.86 28.62 27.59 24.22
4. Fields of Experts [29] 32.68 30.50 28.78 27.60 23.25
5. 1-iteration ARF 32.74 30.57 28.92 27.77 24.58
6. 2-iteration ARF 32.74 30.70 29.23 28.10 24.88
7. 3-iteration ARF 32.84 30.76 29.29 28.17 25.11
8. 4-iteration ARF 32.82 30.76 29.33 28.24 25.14
9. Wavelet Denoising [27] 33.05 30.73 29.18 28.03 25.37
10. Overcomplete DCT [10] 33.19 30.75 29.15 27.98 24.86
11. KSVD [10] 33.30 30.96 29.43 28.33 25.20
12. BM3D [9] 33.53 31.21 29.71 28.63 25.47
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Fig. 10. Average PSNR in dB for different image denoising algorithms at different noise levels on 68 images from the Berkeleydataset. 1: Wiener Filter,
2: nonlinear diffusion, 3: Non-local means [6] 4: Fields of Experts [29], 5,6,7,8: our algorithm with 1,2,3 and 4 iterations, 9: wavelet based denoising [27],
10: Overcomplete DCT [10], 11: KSVD [10] and 12: BM3D [9]. The results are also shown in Table II.

cuts computation time to 0.12s per iteration for the same image
size. Furthermore, a parallel implementation on multiple CPUs
and/or a GPU implementation could bring this algorithm to
real-time performance.

E. A Study of the One Iteration Algorithms

It is intriguing that such results could be obtained in a single
gradient descent iteration. Could this be due to the specially
trained filters Fj or to the filter coefficientsαj? In this
section we perform more experiments on different one iteration
algorithms to determine the cause of this performance.
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N
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ARF
BM3D
KSVD
DCT
Wavelet
FOE
Nonlocal
NonLinDiff
Wiener

Fig. 11. PSNR (dB) vs speed (fps) of different denoising algorithms on the
68 Berkeley test images forσ = 25. The colors are the same as in Figure
10.

First, we plot in Figure 12 the performance of the 1-
iteration ARF in the rangeσ ∈ [10, 50]. For comparison, the
FOE performance is also displayed. It is clear that the ARF
algorithms are specialized at the levels of noise they were
trained for.

Then we evaluated the FOE model with a single iteration
gradient descent algorithm on the same 68 images from the
Berkeley dataset, choosing the step sizeδ to maximize the
PSNR. The results are presented in the second row in Table
III and in Figure 13.

Another 1-iteration FOE model was obtained by retraining
the coefficientsαj for each σ to maximize the PSNR on
the training data, while keeping the original filtersFj . These
results are posted in the third row in Table III and in Figure 13.
For each algorithm are also displayed in Table III the number
of parameters that are trained for each noise levelσ.

The fourth row of the table displays an evaluation of the
FOE filters when the filter normsνj (i.e. scalar multipliers
Fj = νjF

FOE
j ) and their coefficientsαj were trained for each

value ofσ by maximizing the PSNR on the training set.

The fifth row in Table III presents the performance of a
1-iteration ARF that was trained on images corrupted with
noise levelsσ = 15 and 25 and no data term. Observe that
the performance decreased slightly while the noise range was
extended.

In the 1-iteration ARF, the data term has theoretically no
influence, since before the iterationx − y = 0. We slightly
modified the 1-iteration ARF to a 2-step version that bears
the same computational expense but can take into account the
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TABLE III
TESTING ERRORS ON68 UNSEENBERKELEY IMAGES WHEN TRAINING DIFFERENT1-ITERATION ARF ALGORITHMS.

Algorithm Number ofσ-dependent params 10 15 20 25 50

FOE [29] 1 32.68 30.50 28.78 27.60 23.25
1-iteration FOE 1 29.57 25.96 23.35 21.31 14.92
1-iter. FOE, retrained coeffs 24 30.23 26.63 24.00 21.92 15.39
1-iter. FOE, retrained coeffs & norms 48 32.29 29.73 27.99 26.69 22.39
ARF, no data term 0 30.13 29.89 28.99 27.40 18.69
ARF w/data term, trained withσ ∈ [15, 25] 1 31.99 30.37 28.99 27.63 20.26
ARF w/data term, train withσ ∈ [15, 40] 1 31.13 29.55 28.56 27.72 23.38

data term:

1. x← y + δ

N
∑

f=1

αfJ−

f ∗
JT

f y

1 + 1
2 (JT

f y)2

2. x← x + δ
βσ

2σ2
(x− y)

(15)

where the data term has a coefficientβσ that depends onσ,
as in [29]. This can be also written in a single iteration as

x← y + δ
N

∑

f=1

αf (1 +
βσ

2σ2
)J−

f ∗
JT

f y

1 + 1
2 (JT

f y)2
(16)

The last two rows of Table III and the red and green solid
lines in Figure 13 show results obtained with this modified 1-
iteration ARF. The first one is trained with images corrupted
with noise levelsσ = 15 and 25, while the second one with
images corrupted with noise levelsσ = 15 and40. One can see
that the band-pass behavior disappeared after the introduction
of the data term.

The FOE with the coefficients and norms retrained at each
noise level (fourth row in Table III) has a very good overall
performance. However, compared to the ARF algorithms dis-
played in Table III, it has 48 times more parameters (24 norms
and 24 coefficients) that are trained at each noise level.
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Fig. 12. PSNR (dB) curve of the 1-iteration denoising algorithms from
Table II and Figure 10 for all noise levels in the rangeσ ∈ [10, 50] on the
68 Berkeley test images. The 3000 iteration FOE algorithm wasalso included
for comparison.

F. Relation to M-estimation and Gaussian CRF

In this section we will use a standard statistical method
named M-estimation [11], p. 99, which maps robust regression
to an iterative weighted regression.

The FOE energy with a data term can be written as:

EFOE(x) =

N
∑

f=1

∑

j

αfρ(JT
f x(j)) + β(x− y)T (x− y)

=

N
∑

f=1

∑

j

αfρ(JT
f,jx) + β(x− y)T (x− y)

(17)

whereρ(x) = log(1 + x2/2) is the Lorentzian andJf,j is
the j-th column ofJf .

Thus minimizingEFOE(x) means solving a robust regres-
sion problem. One commonly used algorithm for robust regres-
sion is the iterative weighted regression using M-estimation,
[11], p. 99.

Taking the derivative with respect tox(k) and setting it to
zero, gives:

∂

∂x(k)
EFOE(x) =

N
∑

f=1

∑

j

αfρ′(JT
f,jx)Jf,j,k+2β(x−y) = 0,

(18)
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Fig. 13. PSNR (dB) curve of different 1-iteration denoisingalgorithms at
different noise levels on the 68 Berkeley test images. The 3000 iteration FOE
algorithm was also included for comparison.
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Fig. 14. Histogram of the filter responses over the training set for the one
iteration algorithm forσ = 25. Approximately 8% of the responses fall
outside the interval where the robust functionρ(x) = log(1+x2/2) behaves
like a gaussian, i.e. where the derivativeρ′(x) (displayed as a dashed curve)
is almost linear.

which can be written as
N

∑

f=1

∑

j

αf

1

1 + (JT
f,jx)2/2

Jf,j,kJT
f,jx+2β(x−y) = 0 (19)

By fixing wj,f = αf/(1 + (JT
f,jx)2/2), observe that (19) can

be regarded as solving (minimizing) the weighted least squares

Ew(x) =

N
∑

f=1

∑

j

wjf (JT
f,jx)2 + β(x− y)T (x− y) (20)

This leads to a fixed point solution to the M-estimation
problem by starting with an initialx = x0 and iteratively
minimizing (20) and updating the weightswj,f = αf/(1 +
(JT

f,jx)2/2) based on the newly obtainedx.
Since the weighted sum of squares from eq. (20) is exactly

the energy of a Gaussian Conditional Random Field [33]

EGCRF (x) =
N

∑

f=1

∑

j

wf (y)(j)(Jf ∗ x
(j) − rf (y)(j))2 (21)

we obtain that the FOE energy can be minimized in an iterative
way by alternatively minimizing a GCRF energy (20) and
updating the weights as described above.

In the ARF approach presented in this paper, a simpler
approach to minimizing the FOE energy is taken as a few
iterations of gradient descent. This eliminates the need tosolve
costly least squares problems and it works very well.

G. Comparison to Gaussian MRF

Finally, to see how close the one iteration ARF is to exact
inference on a Gaussian MRF with energy

EGRF (x) = xT Σ−1x + (x− y)T (x− y), (22)

we get the exact minimum at

x̂ = (2Σ−1 + I)−1y = Ay. (23)

By limiting to only short-range interactions, (23) can be seen
as a filtering operation

x̂ = F ∗ y. (24)

Comparing this to the one-iteration ARF equation e.g. (16),
the Gaussian MRF solution above (24) is linear whereas the
one iteration ARF is non-linear.

To see how close the one iteration ARF is to being a linear
operator, we obtained a histogram of the filter responses over
the test set, displayed in Figure 14. Approximately8% of
the filter responses fall outside the interval[−1, 1] where the
Lorentzianρ(x) = log(1 + x2/2) can be well approximated
with a Gaussian, i.e. where the derivativeρ′(x) (overlaid as a
dashed curve in Figure 14) is approximately linear.

To compare how well the GMRF can denoise with the
same model complexity, we trained it on the same 40 images
from the Berkeley dataset. We used the same Marginal Space
Learning approach as for training the ARF, but now there
is only one filter that is started as the1 × 1 identity filter
and is enlarged by placing zeros on the border followed by
3000 iterations of coordinate ascent with the same PSNR
loss function as the ARF. The enlarging and 3000 iteration
optimization were alternated until the filter had size19× 19,
which has slightly more parameters as 13 FOE filters of size
5 × 5. The PSNR on the training and test set are plotted in
Figure 8. One could see that the Fields of Experts has better
modeling power and it is better suited for image denoising,
achieving more than 1.5dB improvement when compared to
the GMRF.

IV. D ISCUSSION ANDCONCLUSIONS

Wainwright [39] predicted that in computationally restricted
applications, models trained using MAP estimation might not
be the best choice and biased models might give better results.
In this paper, we studied what biased models can give us for
real-time image denoising. We defined Active Random Field
as the combination of a MRF/CRF with a fast and suboptimal
inference algorithm and trained this combination using pairs
of input and desired output as well as a benchmark error
measure (loss function). This training approach does not need
to evaluate the MRF normalization constant and can use a
validation set to detect when the training is completed and
whether overfitting occurs.

Applied to image denoising, experiments show that con-
siderable gains in speed and accuracy are obtained when
compared to the standard MRF formulation. Moreover, the
obtained results are comparable in terms of accuracy with the
state of the art while being faster.

A direct practical application of this method is denoising
fluoroscopy (X-ray) sequences, where one could use pairs of
low-dose (noisy) and high-dose (good quality) X-rays obtained
from cadavers or phantoms to train a similar Active Random
Field based real-time image denoising system.

This type of training can be used in other applications where
fast MRF inference is desired on models with a large number
of parameters, for example super-resolution [13], [43]. Ifthe
number of model parameters is small, the model might not be
flexible enough to adapt to the fast inference algorithm.
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