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Abstract other is the minimum-cut[8, 6] which maps an energy mini-

o _ _ mization problem to a maximum flow algorithm. The latter
Many vision tasks, such as segmentation, grouping, andis sojved in polynomial time. Despite their reasonable suc-

recognition can be formulated as graph partition problems. cess, the two approaches are far from being general solu-

The recent literature has witnessed two popular graph cut ions Firstly it was shown(6] that only very limited classes

algorithms: one is the Ncut using spectral graph analysis ¢ energy functions can be mapped to the maximum flow

a.nd the gther IS minimum-cut ysing -maximum flow algo- hropiem. Secondly the graph spectral analysis, like many
rithm. This paper presents a third major approach by gen- qiher giscriminative clustering algorithms[3, 2], has diffi-

eralizing the Swendsen-Wang method-a well celebrated al-¢ties in expressing global visual patterns, such as shading

gorithm in statistical mechanics. Our algorithm simulates effects, perspective projection effects, contour closure etc.

ergodic.and reversiblg Markov chain jumps in the space of Eurthermore natural images contain very diverse visual pat-
all possible graph partitions to search for global optimaofa arns which are “coherent” in many different ways. This

Bayesi:?m posterior probability. A_t each step, the algorithm \oq,ires a generative and Bayesian formulation incorporat-
can split, merge, or re-group a sizable subgraph, and thus ing a number of diverse and competing image models[10].

achieve fast mixing at low temperature eliminating the slow tpere js no single discriminative criterion that is generally
simulated annealing procedure. Our experiments show that

it converges in 15-60 seconds in a PC for image segmen-
tation and curve grouping. This is about 400 times faster
than the classical Gibbs sampler which flips a single ver-
tex each time, and is 20-40 times faster than the DDMCMC
algorithm. The algorithm can optimize over the number of
models and works for general forms of posterior probabil-
ities. Therefore it is more general than the existing graph
cut approaches.

applicable to all the visual patterns.

In this paper, we present a third major graph partition
approach by generalizing the Swendsen-Wang method- a
well celebrated algorithm in statistical mechanics. Formu-
lated in a Bayesian framework with generative image mod-
els, our algorithm simulates ergodic and reversible Markov
chain jumps in the space of all possible graph partitions to
search for global optima. The basic ideas and contributions
of our method are:

1. Introduction 1. Given an adjacency graph, we compute a local prob-

Computer vision problems, such as image segmenta-abi"ty at each edge for how likely the two vertices (image
tion, perceptual organization, and object recognition, re- €léments) belong to the same pattern. Then by turning on
quire grouping image elements (pixels, edgelets, primitives) the edges at random according to their associated probabil-
into “coherent” visual patterns (regions, curves, objects) in ities, we form connected components, each being a good
a process of optimizing some grouping criteria. The prob- candidate for a coherent pattern.
lem can be represented in an adjacency graph with the ver- 2. At each step, the algorithm splits, merges, or re-
tices being the image elements, the edges being spatial regroups a connected component which often includes a big
lationships and subgraphs being coherent visual patternsnumber of vertices. The moves are ergodic and observe de-
Thus it becomes a graph partition problem. tailed balance equations. The candidate states are selected

There are two approaches for graph partition in the re- proportional to their posterior probabilities weighted by the
cent literature. One is the normalized cut[12, 9] using graph probabilities of “graph cuts”. The acceptance probability
spectral analysis to optimize a discriminative criterion. The can always be one, and thus our algorithm is also a general-



ized Gibbs sampler. stateA and V5 in state B are cut — turned “off”, see the

3. The algorithm “mixes” rapidly at low temperature. crosses in the figure. We denote the two sets of edges by the
Unlike most MCMC methods it no longer needs a long sim- respective “cuts”
ulated annealing procedure[5]. Thus it can start from good
initial conditions using heuristics to achieve a short “burn-
in” period. As a result, the algorithm is about 400-times state A
faster than the classical Gibbs sampler[4] which flips a sin-
gle vertex each time, and it is 20-40 times faster than the ‘ V2
previous DDMCMC algorithm[10]. It converges in 15-60
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matical theorems for calculating the acceptance probabili-
ties for the big moves, which observe miraculous cancella- Figure 1: SW algorithm flips a patch of spins in one step.
tions in the calculation. The theorems ensure that our al-
gorithm samples from general posterior probabilities, and
provide a foundation for fast simulation and optimization
for a broad range of vision problems.

Then SW flips all spins i} in a single step and makes
a reversible jump between statésand B. The acceptance
probability for the move is shown to be So SW can flip
all —1 spins in the 1D string example in one or a few steps.
2. Swendsen-Wang: basic ideas The SW algorithm achieves fast mixing even at critical
temperature for typical graphs. Unfortunately, it is lim-

The difficulty of sampling the graph partition space is jieq to simple Ising/Potts models and does not use the im-
well reflected in the Ising and Potts models in statistical me- age (data) information in forming the componérit It

chanics, is found to be ineffective in the presence of external field

p(I) x exp{f Z 1(I,=1,)} B>0. (1) (data). In the following, we extend SW to simulating
<s,t> general Bayesian posterior probabilities and make use of
wherel(I, = I,) = 1if I, = I, for adjacent spins,?  pottom-up information to form the candidate components
otherwise it is zero. V, to further speed up the computation.

3. Bayesian formulation of graph partition
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For the string of spins with labdl € {+1}" shown
above, the highest probability is achieved when all vertices
have the same label. In a best visiting scheme, the Gibbs Let G, =< V,E, > be an adjacency graph where
sampler flips the-1 spins at the two “cracks” te-1 with V = {v1,vs,...,un} is the set of vertices for image ele-
probability p, = 1/2. Thus to flip a string ofn. spins  ments such as pixels, edgelets, primitives &ids a set of
(n = 9 here) from—1 to +1, the expected number of steps edges =< s, ¢ > for adjacent elements ¢. The objective
iS (77,0 = 2" This is exponential waiting! is to partition graphG,, into unknown number of, full sub-

A major speedup for the Ising model in equation (1) graphsG} =< Vi, Ex >,k = 1,2,...,n, each keeping all
is achieved by the Swendsen-Wang (1987) algorithm [11]. the edges i©7, that connect its vertices:
E.g. Fig. 1 shows an adjacency graph as a 2D lattice with
each edge connecting two adjacent spisst. SW turns V=UiaVe, Vie#0, VinV;=0fori#j.
“on” each edge: with a constant probability, = 1 — e~# Ep={e=(u,v) € B, |u,v €V}, k=12,..,n
if s,¢ have the same label. Fig. 1 shows a compongnt We denote by, a partition withn subgraphs.
connected by bold edges which are turned “on” at two states
A andB. The edges betwedr, and its neighbors ¥; in T = {V1, Vo, .., Vu} or {G1,Ga,...,Gp}

3.1. Graph Partition



Vertices in each subséf,, k = 1,2...,n forms a coherent 2. Select an image model € Q¢ for each subgraph

visual pattern specified by a generative probability. Vi € .
The space of all possible patrtition is denoted by 3. Fitthe model9,, € Q.,,i =1,2,...,n.
If we assume the patterns are mutually independent, then
Q. =ul"l a
T T M n=1"Tn

the objective is to simulate a Bayesian posterior

with Q. being the space of al-partitions. The edges
between any two setg andV; are denoted by aut
C(V;,V;) ={e=<s,t>e€ E,secV,teV;}, i#].

W ~ p(W]I) x Hp(IVi;ci,Hci)p(W). 3)
i=1

The prior and image models can be Markov random field
models or global spline models, and are beyond what can be
minimized by the graph cut algorithms[6, 9].

The Markov chain must be ergodic in spdeand have
p(W|I) as its stationary probability. In short, we need two
types of reversible jumps[1] bridging the subspaces of dif-
Figure 2: input image, an over-segmentation with “atomic” ferent dimensions if.
regions being vertices, and a segmentation result. 1. Jumps in the model spaf¥, x Q., x --- x Q. , such

Fig.2 shows a typical example of image segmentation. as model switching, diffusion (fitting) of parametéks
We obtain an over-segmentation (middle) by applying a 2. Jumps in the partition spa€g;: split, merge, death,
Canny edge detection followed by edge tracing to form birth.

“atomic” regions with nearly constant intensities. These  The jumps are realized by Metropolis-Hastings

atomic regions are the verticds, and any two adjacent methods[7]. For a pair of statd§ = A andW = B,

atomic regions are connected by an edge to form the graphwe need to desigproposal probabilites;(A — B) and

G,. The rightimage is a result of our partition algorithm.  ¢(B — A). The recent idea of data-driven Markov chain
Monte Carlo (DDMCMC) in [10] is to calculate them

3.2. Solution space and Markov chain design based on bottom-up discriminative models, summarized by

Take image segmentation as an example, we denote byD(I), so that the proposal probabilities approximate the
I, the observed image attributes (pixel intensity, edge posi- Posterior
tion and orientation, etc) for element and byI, the im-
age representation for the dét Suppose we usk classes
of image models for various patterns, such as color, tex- ¢(A — B) = ¢(B|A, D(I)) = p(B|I)
ture, shading, curve etc. Each type of model is indexed by
c € {C1,Cy,...,CL} = Q¢, and specified with parameters
0; € Q.,. The model space is the union

q(B — A) = q(A|B, D(I)) ~ p(A[I)

Then the proposed move fror to B is accepted with
high probabilitya:(A — B)

Qo = Uceac Q. q(AlB, D(I)) p(B[T)

"q(B|A, D(T)) " p(AJT)

a(A — B) = min(1 ). (4

The inner representation for a segmentation is
W = (n, n, (c1,01), (c2,02), ..., (Cn, 0)) @) In this paper we use bottom-up data-driven information

D(I) and go one step further by making big moves. So the

algorithm can reach from a stateto very differentB in one

step which may need an exponential number of small moves

otherwise, as we discussed in the Ising model example.

Each subgraphy;,7 = 1,2, ..., n in partition,, is speci-
fied by a modep(Iy;; ¢;, 6.,) of typec; and parameters,.
The solution space fdi” is

Q= U {Qr, X QG X Qo X000 X Qe } We follow the DDMCMC method[10] for the jumps in
This factorization of the solution space corresponds to model space, and the rest of the paper is focused on design-
the necessary solution steps: ing smart moves in the partition spafe for fast conver-
1. Partition grapltz, by findingn,, € Q. gence and mixing.



4. Sampling$2, with discriminative models

For an adjacency grapfi, =< V, E, >, we augment
each edge =< s,t >€ FE, with a binary random variable
e € {on, off } representing whether the edge is turned “on”

or “off”. In contrast to a constant probability, for all edges _ _
in the SW algorithm, we compute a discriminative model Fi9ure 4: Three stages of graphs: a. adjacency géapto.
current partition statés, c. a sample from the discrimina-

tive models ofGG and its connected componeidfs.

for ¢. = q(u. = on|F(s), F(t)) based on local vector val-
ued features (texture, color, geometry etés), F(v) at

the two sitesq, indicates how coherent (or similar) the two
verticess andt are, and can be trained off-line. 5. Stochastic graph partition by MCMC

By turning “on” each edge in G, with probability . Our graph partition algorithm operates three graphs

szpendentlg, .we (r)]btam afszarse gk:.iﬁ:]h=< v Ed> b shown in Figure 4. It starts with an adjacency gréhh=<
with &7 C E, being the set of edges which are turned on by V,E, >. The current Markov chain state is a partition

chance. The probability faF or G is 7 :V = Ur,V, represented by a gragh = U7 G ,

aB)=J]e JI (O-a. (5)  whereG; =< Vi, E; >,1 = 1,2, ..., n arefull subgraphsof
c€E  e€Bo—F G, (Fig.4.b), i.e.G was obtained frond:,, by removing the
G =< V,E > consisting of a number of connected  gdges between the subsets
componentgy, =< Vi, Ej, >. Then during a move between two partition states, it
n n n generates connected componefit® (Fig.4.c) by turning
G = Upmigh, Ve Vi = Vs Upg B = B on/off the edges ir;. A component inC'P is picked up at
We denote them by random as a candidate for reassignment.
CP = {Vl Va, ... Vn}- (6) Swendsen-Wang Cuts: SWC-1
e Input G, =<V, E, >, discriminative probabilitieg., Ve € E,,
As the local probabilitieg. are well trained, the sub- and generative posterior probabilipy'V|I).

graphs inC'P are often meaningful parts of patterns. This ~ Output SamplesiV’ ~ p(W|I).

. ) - g 1. Initialize a graph partitionr: G = U, Gi.
way, ¢(F) defines a bottom-up probabilig{7) on the par 2. Repeat, for current state A

tition space?;. 3. Repeat for each subgragh =< V}, E; >,1=1,2,....n
T =1 4. Fore € Ej, turn ue = on with probability ge.
5. V, is divided inton; connected components:
{g1i =< Vis, Bg >,i = 1,...,m}.
6.  Collect connected components from all subgraphs (see Fig.4.c)
CP=A{V;:l=1,..,n,i=1,...,m}.
7. Select a componeffy € C'P at random with probability
q(Vo|CP), (usuallyl/|C P]) (see Fig.5.a).

. ) . 8.  Propose to assigrp to a subgrapld;,. I’ follows a probability
Figure 3: Random samples 6fP atT = 1, 2,4 according a(l' [V, A, Go) (stateB in Fig.5.b if Vj is merged to an

to q(E) existing subgraph, stat€ in Fig.5.c if Vj is a new subgraph
9.  Accept the move with probability

Figure 3 shows random graph partitionsP for the (A — B) ora(A — C) in theorem 1.

cheetah image whose adjacency graphis built on the

atomic regions in Fig. 2 (middle). On each column, we  We omit the parallel steps of model switching and fitting
show aC'P sampled according tg( ) in equation (5). The  for clarity. The probabilityy(I'|Vo, 4, G,),I" = 1,...,n+1
size of the components &f P can be controlled by a tem-  ¢n be designed simply as follows:

peraturel’ on the edge probabilitieg’ . The smaller the", a if Gy is adjacent to Vo,
the larger the size of the components. Clearly various parts ¢(I'|Vy, A,G,) =< b if I’ = n+ 1, new subgraph
of the cheetah are obtained, which will be used as candi- c else

dates for big and meaningful moves in our MCMC algo-

rithm such thafy ;"] q('|Vo, A, Go) = 1.



The move between statésand B is a split-merge oper- In state A, each subgrapH; is broken into connected
ation in canonical cases. Two special cases are the birth andomponents” P, by turning on and off the edges if; at
death moves. random. We denote the set of all connected components

1. If I/ = n+ 1, V; becomes a new subgraph, so the

move is a birth operation. CPA) =UCP = {Visl=1,m i =1}

2. If V, is equal to a subgrapli, the whole subgrap&; For example, Figure 5.a shoWsonnected components.
is merged toG;,. The number of subgraphs is reduced by For aC'P of state4, we denote by, (A, C'P) the edges
one, so it is a death operation. that are turned on (the thick edges in Figure 5.a)

\ \ /
7\|/\ \p \/\I:\ EOH(A, CP) = U;LZI{UzLilE]“‘}.
N N\ - .
/\q> ;’ ,\ﬁ> | /' The rest of the edges, which are turned off, are the “cuts”
,/>V'// | ’4l \\ < /‘//\\ between a connected componéft and other vertices in

the subgraph, i.éV; — Vj;,
Eog(A,CP) =UL {U",C,}, Cu=CWVii,Vi—Vis).
Note that the edges between subgraphs had been turned

a. state A b. state B c. state C
Figure 5: A move between partition states= A, B, C,
different by a set of vertice®;. The vertices in the same

color belong to a subgraph. The vertices connected by thick®ff before entering statel. The probability for choosing a
edges form a connected component. C'P depends on staté and the discriminative model3(I),

In what follows, we give a simple, explicit expression ¢(CP|A, D(I)) = H e H (1—qe).
for the acceptance probability, which can be made td be e€Eon(A,CP)  e€Eoi(A,CP)
through a smarter choice ofl’| Vo, A, G,). We denote by2cp(A) the set of all possibl€ P’s at
Theorem 1 In the above notation, consider a candidate StateA. We are interested in thogeéP's which containlp,
componentl, selected bySWC-1 If the proposed move Q% p(A) = {CP(A): V, € CP}.
to reassignly from G, to G is accepted with probability Without loss of generality, we assume thatis a com-
H(l ~ ) ponent from subgrapf; =< V1, 7 >. We denote the cut

ecC(Vo,Vyy—vo)  q(l|Vb, B, Go) p(BI|I)
H(]_ — QE) q(l/|VOa Aa Go) p(A|I)

e€C(Vo,V;—Vo)

a(A — B) = min(1, ) betweenly andVy — Vp by Cor = C(Vp, Vi — Vo).

All CPsinQ2 ,(A) have the following two properties:
@) they all containly, and all edges betwedry andV; — 1}
then the Markov chain is ergodic and observes the de- are turned off (otherwis&j is connected to other vertices).

tailed balance equations. In other wordsyC' P € Q% (A)
In the special case whéh= n + 1, V} is proposed to Vo € CPand Cy; C Eog(A,CP)..

be a new subgraph arid: — V; = (). So the cut is empty For eachCP € Q2 ,(A), the setV; is picked with a
C(Vo,Vir — Vo) = 0, HeeC(Vo,Vlffvo)(l —¢) = 1and probability ¢(V5|C P). Now we are ready to compute the

o(A — B) becomesy(A — C). probability for selecting/, at stateA,
Proof. The idea of the proof is that even though the proposal a(VolA, D(1)) = Z a(Vo|CP)q(CP|A, D(I)) (8)
probabilitiesq(A — B) andq(B — A) are very compli- CPeQy, (A)
cated, their ratigq(B — A)/q(A — B) is extremely sim- H
=[[a-a)} awicr) J[a-a) ][] al

ple through miraculous cancellation. Then the conclusion
follows from the Metropolis-Hastings equation (4).

First, we calculate the proposal probabilityd — B) in
SWC-1, assuming staté hasn subgraph&:; =<V}, E; >
;1 = 1,2,...,n. In the canonical case whédry # V; and
Vi # 0, it is a conditional probability which consists of
two steps: (1) choosiny, and (2) choosing’. For clarity,
we discuss the exception cases later. q(A — B) = q(Vo|lA, D(X)q(I'|Vh, A, Go).  (9)

ecCor CPeNY L (A)  e€Eost(A,CP)~Co1 e€Eon(A,CP)
We were able to factor the produff, .., (1 — ge) out
because€y; C Eox(A,CP)forall CP € Q2 ,(A).
OnceV} is selected, it is assigned € with probability
q(U'|Vo, A, G,), the same for alCP € Q% ,(A). There-
fore, the proposal probability from to B is,



Now we calculate the proposal probabiligyB — A) There is an exception to the canonical case when there
in algorithm SWC-1. In the canonical case, the only way are two paths between statdsand B. It occurs when a
one can get from statB to stateA is by selecting/; as a whole subgrapl; or G, is chosen ad} in stateA, and
connected component and re-assigning i&{o thus two subgraphs are merged in st&teWithout loss of

In state B, we have the same partition as in statex- generality, we only consider two subgraplis V5 in state

cept thatly belongs toG (see Fig. 5.b). Without loss 4 and one subgraph; U V5 in stateB, as Fig. 6 displays.
of generality, we assume th&} is a component from the

subgraphGy =< Vi, By >. Q% ,(B) is the set ofCP’s e Path 1 Choosd/, = V;. In stateA, choosd’ = 2, i.e.

that containly as a component and must share the common merge it tol2, and reversely in statB, choosd’ = 1,

cutCos = C(Vo, Vo — V), illustrated in Figure 5.b by the i.e. split it fromVs.

crosses. Similarly, the probability for selectihg at state

Bis, e Path 2 Chooséd/; = V5. In stateA, choosd’ = 1, i.e.
q(Vo|B, D(I)) = Z 4(Vo|CP)g(CP|B, D(L)) (10) merge it toV1, and reversely in statB, choosd’ = 2,

CPeal, ,(B) i.e. splitit fromV;.

=TIa-a)>_ avwicr) JJ-a) ] e« A BN
e€Co2 CPeNY, ,(B)  e€Eos(B,CP)=Co2 e€Eon(B,CP) /’ /1
v,=V, \l: v \:":H

\ \

and the proposal probability fro to A is,

State A State A

q¢(B — A) = q(Vo|B,D(I))q(l|Vh, B, G,). (11) Figure 6: There are two ways to merge subgraphs/s
from state A to get to stateB. One is to choosé; and

i 0
Observation. For eachCP € Q¢ p(A), thenCP ¢ merge it tol, the other is to choosE, and merge it td/; .

Q% »(B) and vice versa. Therefore we have N )
Thus the proposal probabilig A — B) is the sum of the

Qe p(A) = Qp(B) (12)  probabilities for the two paths.
For anyC P above, the set of edges turned on are the ¢(A— B) =q(l' =2|Vi,A,Go,)q(Vi|A, D(I))
same, +q(I' = 1|V2, A, Go)q(V2|A, D(I))  (16)
Eon(A,CP) = Eon(B,CP) (13) and similarly
and the set of edges turned off are also the same except cut ¢(B — A) = (I’ = 1|V4, B, Go)q(Vo = V4| B, D(I))
Co1 occurs in stated and cutCy, occurs in staté3. So +q(I' = 2|Va, B, Go)q(Vo = Va| B, D(I)). (17)
EOH(A,CP) —Co1 = EOH(B, CP) — Copa.- (14) In state A, the cut iSC(Vo,‘/l — VO) = C(‘/o,@) =10

for both paths, and in statg the cut isC(Vy,V, — Vo) =

Plug in equations (13) and (14) into equations (9) and C(Vh,Va) = Cis for both paths.

(11), we have the probability ratio by cancellation, Following previous calculation, we have the proposal
q(Vo|B,D(M)) _ leec,,(1 — qe). s probability ratio for choosing, = V; in path 1,
a(VolA, D) Tleec,, (1 —ae) aVo =Vi|B, D) _ Tlecevy(—4) _ Ma-w.
Therefore, qVo=Wi[A, D) Tlcow, 0 —a) cCrs
q(B— A) [leceo,(1 =) q(l|Vo, B,G,) Similarly, we have the probability ratio for ché})i,)ing
9(A=B)  Tlec,(1—¢) alVo,A,G,)’ Vo = Vz in path 2,

states. Thus the move betwednand B observes the de- 9(Vo = V2|4, D(I)) Heecwz,m(l ~4e) e€C1a

- i : : : e
tailed balance equations. Plug in the above equations, we obtain the ratio,
The above proof is for the canonical case when there is J(B—A)
W(ASB) — He€C12(1 — qe) (20)

only one way to go from state A to state B, or from state B
- a(U=1|V1,B,Go)q(V1|A,D(X))+q(!'=2|V2,B,Go)q(V2|A,D(I))
to state A, namely by reassignifg. (=2, 4G (Vi [ A D) +a(T=1Va, A.G.)a(Val A, D(D)

By equation (4), we obtain(A — B) as the theorem  ¢(Vo = V2|B, D(I)) _ Heceqyn)@ ~ a0 =] t-a).




The proposal probabilities fof must be designed in
such a way that:

q(l' =1|V1, B,G,) _ q(I' =2|V3, B,G,)

= 21
W =2V, A,G)  al =1Va,A,G,) 2D
This is easily satisfied in general. So we have, by
q(B — A) q(! =11, B,G,)
—— (1—ge)- (22)
q(A— B) eeC(Vg/VO) q(' =2|V1, A, G,)
In general notation, itis 6.
¢(B—A)  eecnvi-v)1 — %) q(|Vo, B,G,)
q(A — B) HeeC(VO,Vlfvo)(l —qe) q('Vo, A, Go)

Thus we have proved the exception case.
To prove ergodicity, observe that there is a non-zero

probability that any given node is chosen as a connectec§-,

component. Since the node can then be assigned to any &
other subgraph with nonzero probability, and this holds for &=

all nodes independently, we can get from any partition to Ee*

any other partition with non-zero probabilitignd of Proof

Now we shall construct(l'|Vy, A, G,) in such a way
to obtain acceptance probability Then our algorithm be-
comes a generalized Gibbs sampler.

Suppose the Markov chain is at a partition state=
(1, Va, ..., V,,), and a connected componérit C V; is se-
lected by SWC-1 as a candidate set. We havel choices
for state B by assigning/;, to one of the following vertex
sets:

{S1ZV1, 52:‘/27~- S = V07~-~7 Sn:anSn+1:®}
We denote the states d3%, Bs, ..., B, 11 respectively.
Clearly B, = A and in stateB,, 1, Vj is a new subgraph.

In the exception cask, = V;, then the staté3,,,; = A is
redundant, so one of them should be eliminated.

Denote the cuts betwedry and.S; by C; = C(Vy, S;)
i=1,2,..,n+ 1with C(V,,0) = 0.

as

"at
Theorem 2 In the above notation, supposg is a candi-

date vertex set selected by SWC-1, in partition sthtdf
the probabilities for mergind/, to V; are chosen to be

qg('|Vo, A,Go) o T] (1-ge)-

eecl/
then the proposed move is accepted with probability
a(A — Bl/) =1.

p(Br |T).  (23)

ge

In practice, the posteriofg A | I) andp(B;/| I) only involve
local computation and the cufs are small or empty.

Intuitively, our algorithm samples a random set of ver-

tices according to posterior for goodness-of-fit modulated

the cut probability to achieve detailed balance. This is

much more general than the original SW-method [11] and
the Gibbs sampler [4].

Experiments and performance analysis

-

=12

,
d

Figure 7: Image segmentation: input image, atomic regions

image elements and the segmentation result.

The image segmentation experiment was performed on
omic regions” obtained by edge detection and edge trac-

ing. They form the nodes of our graph. The discriminative
probability g. for an edge: =< v;,v; > is

ge = 0.1 + 0.9¢~ EL(pillpi)+KL(p;lp)) /2 (24)

wherep;, p; are 15 bin intensity histograms in the atomic

regions, andk’ L() is the Kullback-Leibler divergence. In

neral, thisg. can be learned through supervised learn-

ing. We use three simple image modéfs,, C-, C3} (con-
The proof is straightforward and we omit it. We also stant, linear and quadratic polynomial intensity) with addi-

omit the proof thay(!'|Vy, A, G,) satisfies condition (21).

tive noise modeled by a 15 bin histogréin



In Fig. 8 we plotted the energy vs time (in seconds) of  We also plotted in Fig. 8 and 9 the behavior of SWC
the algorithm on the cheetah image in Fig.2, starting from without discriminative models by fixing the edge weight to
a random graph partition. The Gibbs sampler converges inconstantsy. = 0.2,0.4,0.6 (see dotted curves). It slows
about 6,000 seconds and our algorithm in 40-50s. down significantly. Sometimes the algorithm cannot reach
the same low energy as with discriminative models.

‘W A In the perceptual grouping experiment we group a map
Y . of edgelets obtained from a Canny edge map into long and
' | smooth curves by adding and removing edgelets. The curve
N " TONRL prior is based on 3 point histograms learned from hand seg-
l e s W - mented examples. The likelihood measures the difference
Figure 8: Convergence comparison with Gibbs sampler (up-in Pixels between the input edge map and the grouping re-
per curve) for the cheetah image. The Gibbs sampler mustSult. The graph nodes are the edgelets, and the discrimina-
start with a high temperature and anneal slowly to get to thetive probabilityq. is based on the 3-point histogram and on
minimum energy level of our algorithm. Right plot shows a the gap that has to be filled between the edgelets.

zoome-in view of the first 100 seconds.
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