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Abstract

Many vision tasks, such as segmentation, grouping, and

recognition can be formulated as graph partition problems.

The recent literature has witnessed two popular graph cut

algorithms: one is the Ncut using spectral graph analysis

and the other is minimum-cut using maximum flow algo-

rithm. This paper presents a third major approach by gen-

eralizing the Swendsen-Wang method– a well celebrated al-

gorithm in statistical mechanics. Our algorithm simulates

ergodic and reversible Markov chain jumps in the space of

all possible graph partitions to search for global optima of a

Bayesian posterior probability. At each step, the algorithm

can split, merge, or re-group a sizable subgraph, and thus

achieve fast mixing at low temperature eliminating the slow

simulated annealing procedure. Our experiments show that

it converges in 15-60 seconds in a PC for image segmen-

tation and curve grouping. This is about 400 times faster

than the classical Gibbs sampler which flips a single ver-

tex each time, and is 20-40 times faster than the DDMCMC

algorithm. The algorithm can optimize over the number of

models and works for general forms of posterior probabil-

ities. Therefore it is more general than the existing graph

cut approaches.

1. Introduction

Computer vision problems, such as image segmenta-

tion, perceptual organization, and object recognition, re-

quire grouping image elements (pixels, edgelets, primitives)

into “coherent” visual patterns (regions, curves, objects) in

a process of optimizing some grouping criteria. The prob-

lem can be represented in an adjacency graph with the ver-

tices being the image elements, the edges being spatial re-

lationships and subgraphs being coherent visual patterns.

Thus it becomes a graph partition problem.

There are two approaches for graph partition in the re-

cent literature. One is the normalized cut[12, 9] using graph

spectral analysis to optimize a discriminative criterion. The

other is the minimum-cut[8, 6] which maps an energy mini-

mization problem to a maximum flow algorithm. The latter

is solved in polynomial time. Despite their reasonable suc-

cess, the two approaches are far from being general solu-

tions. Firstly it was shown[6] that only very limited classes

of energy functions can be mapped to the maximum flow

problem. Secondly the graph spectral analysis, like many

other discriminative clustering algorithms[3, 2], has diffi-

culties in expressing global visual patterns, such as shading

effects, perspective projection effects, contour closure etc.

Furthermore natural images contain very diverse visual pat-

terns which are “coherent” in many different ways. This

requires a generative and Bayesian formulation incorporat-

ing a number of diverse and competing image models[10].

There is no single discriminative criterion that is generally

applicable to all the visual patterns.

In this paper, we present a third major graph partition

approach by generalizing the Swendsen-Wang method– a

well celebrated algorithm in statistical mechanics. Formu-

lated in a Bayesian framework with generative image mod-

els, our algorithm simulates ergodic and reversible Markov

chain jumps in the space of all possible graph partitions to

search for global optima. The basic ideas and contributions

of our method are:

1. Given an adjacency graph, we compute a local prob-

ability at each edge for how likely the two vertices (image

elements) belong to the same pattern. Then by turning on

the edges at random according to their associated probabil-

ities, we form connected components, each being a good

candidate for a coherent pattern.

2. At each step, the algorithm splits, merges, or re-

groups a connected component which often includes a big

number of vertices. The moves are ergodic and observe de-

tailed balance equations. The candidate states are selected

proportional to their posterior probabilities weighted by the

probabilities of “graph cuts”. The acceptance probability

can always be one, and thus our algorithm is also a general-
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ized Gibbs sampler.

3. The algorithm “mixes” rapidly at low temperature.

Unlike most MCMC methods it no longer needs a long sim-

ulated annealing procedure[5]. Thus it can start from good

initial conditions using heuristics to achieve a short “burn-

in” period. As a result, the algorithm is about 400-times

faster than the classical Gibbs sampler[4] which flips a sin-

gle vertex each time, and it is 20-40 times faster than the

previous DDMCMC algorithm[10]. It converges in 15-60

seconds in a 1.5GHz PC for image segmentation and curve

grouping.

The central contribution of the paper is the two mathe-

matical theorems for calculating the acceptance probabili-

ties for the big moves, which observe miraculous cancella-

tions in the calculation. The theorems ensure that our al-

gorithm samples from general posterior probabilities, and

provide a foundation for fast simulation and optimization

for a broad range of vision problems.

2. Swendsen-Wang: basic ideas

The difficulty of sampling the graph partition space is

well reflected in the Ising and Potts models in statistical me-

chanics,

p(I) ∝ exp{β
∑

<s,t>

1(Is = It)} β > 0. (1)

where1(Is = It) = 1 if Is = It for adjacent spinss, t

otherwise it is zero.

For the string of spins with labelI ∈ {±1}n shown

above, the highest probability is achieved when all vertices

have the same label. In a best visiting scheme, the Gibbs

sampler flips the−1 spins at the two “cracks” to+1 with

probability po = 1/2. Thus to flip a string ofn spins

(n = 9 here) from−1 to +1, the expected number of steps

is 1
(1/po)n = 2n. This is exponential waiting!

A major speedup for the Ising model in equation (1)

is achieved by the Swendsen-Wang (1987) algorithm [11].

E.g. Fig. 1 shows an adjacency graph as a 2D lattice with

each edgee connecting two adjacent spinss, t. SW turns

“on” each edgee with a constant probabilityqo = 1− e−β

if s, t have the same label. Fig. 1 shows a componentV0

connected by bold edges which are turned “on” at two states

A andB. The edges betweenV0 and its neighbors –V1 in

stateA andV2 in stateB are cut – turned “off”, see the

crosses in the figure. We denote the two sets of edges by the

respective “cuts”

C(V0, V1), C(V0, V2).

Figure 1: SW algorithm flips a patch of spins in one step.

Then SW flips all spins inV0 in a single step and makes

a reversible jump between statesA andB. The acceptance

probability for the move is shown to be1. So SW can flip

all −1 spins in the 1D string example in one or a few steps.

The SW algorithm achieves fast mixing even at critical

temperature for typical graphs. Unfortunately, it is lim-

ited to simple Ising/Potts models and does not use the im-

age (data) information in forming the componentV0. It

is found to be ineffective in the presence of external field

(data). In the following, we extend SW to simulating

general Bayesian posterior probabilities and make use of

bottom-up information to form the candidate components

V0 to further speed up the computation.

3. Bayesian formulation of graph partition

3.1. Graph Partition

Let Go =< V, Eo > be an adjacency graph where

V = {v1, v2, ..., vN} is the set of vertices for image ele-

ments such as pixels, edgelets, primitives andEo is a set of

edgese =< s, t > for adjacent elementss, t. The objective

is to partition graphGo into unknown number ofn full sub-

graphsGk =< Vk, Ek >, k = 1, 2, ..., n, each keeping all

the edges inGo that connect its vertices:

V = ∪n
k=1Vk, Vk 6= ∅, Vi ∩ Vj = ∅ for i 6= j.

Ek = {e = (u, v) ∈ Eo | u, v ∈ Vk}, k = 1, 2, ..., n.

We denote byπn a partition withn subgraphs.

πn = {V1, V2, ..., Vn} or {G1, G2, ..., Gn}
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Vertices in each subsetVk, k = 1, 2..., n forms a coherent

visual pattern specified by a generative probability.

The space of all possible partition is denoted by

Ωπ = ∪|V |n=1Ωπn

with Ωπn being the space of alln-partitions. The edges

between any two setsVi andVj are denoted by acut

C(Vi, Vj) = {e =< s, t >: e ∈ Eo, s ∈ Vi, t ∈ Vj}, i 6= j.

Figure 2: input image, an over-segmentation with “atomic”

regions being vertices, and a segmentation result.

Fig.2 shows a typical example of image segmentation.

We obtain an over-segmentation (middle) by applying a

Canny edge detection followed by edge tracing to form

“atomic” regions with nearly constant intensities. These

atomic regions are the verticesVo and any two adjacent

atomic regions are connected by an edge to form the graph

Go. The right image is a result of our partition algorithm.

3.2. Solution space and Markov chain design

Take image segmentation as an example, we denote by

Iv the observed image attributes (pixel intensity, edge posi-

tion and orientation, etc) for elementv, and byIV the im-

age representation for the setV . Suppose we useL classes

of image models for various patterns, such as color, tex-

ture, shading, curve etc. Each type of model is indexed by

c ∈ {C1, C2, ..., CL} = ΩC , and specified with parameters

θi ∈ Ωci . The model space is the union

Ωθ = ∪c∈ΩC
Ω`.

The inner representation for a segmentation is

W = (n, πn, (c1, θ1), (c2, θ2), ..., (cn, θn)) (2)

Each subgraphVi, i = 1, 2, ..., n in partitionπn is speci-

fied by a modelp(IVi
; ci, θci

) of typeci and parametersθi.

The solution space forW is

Ω = ∪N
n=1 {Ωπn × Ωn

C × Ωc1 × · · · × Ωcn}.

This factorization of the solution space corresponds to

the necessary solution steps:

1. Partition graphGo by findingπn ∈ Ωπ.

2. Select an image modelc ∈ ΩC for each subgraph

Vi ∈ πn.

3. Fit the modelsθci
∈ Ωci

, i = 1, 2, ..., n.

If we assume the patterns are mutually independent, then

the objective is to simulate a Bayesian posterior

W ∼ p(W |I) ∝
n∏

i=1

p(IVi ; ci, θci)p(W ). (3)

The prior and image models can be Markov random field

models or global spline models, and are beyond what can be

minimized by the graph cut algorithms[6, 9].

The Markov chain must be ergodic in spaceΩ and have

p(W |I) as its stationary probability. In short, we need two

types of reversible jumps[1] bridging the subspaces of dif-

ferent dimensions inΩ.

1. Jumps in the model spaceΩn
C ×Ωc1 ×· · ·×Ωcn , such

as model switching, diffusion (fitting) of parametersθc.

2. Jumps in the partition spaceΩπ: split, merge, death,

birth.

The jumps are realized by Metropolis-Hastings

methods[7]. For a pair of statesW = A and W = B,

we need to designproposal probabilitiesq(A → B) and

q(B → A). The recent idea of data-driven Markov chain

Monte Carlo (DDMCMC) in [10] is to calculate them

based on bottom-up discriminative models, summarized by

D(I), so that the proposal probabilities approximate the

posterior

q(B → A) = q(A|B,D(I)) ≈ p(A|I)

q(A → B) = q(B|A,D(I)) ≈ p(B|I)

Then the proposed move fromA to B is accepted with

high probabilityα(A → B)

α(A → B) = min(1,
q(A|B,D(I))
q(B|A,D(I))

· p(B|I)
p(A|I)

). (4)

In this paper we use bottom-up data-driven information

D(I) and go one step further by making big moves. So the

algorithm can reach from a stateA to very differentB in one

step which may need an exponential number of small moves

otherwise, as we discussed in the Ising model example.

We follow the DDMCMC method[10] for the jumps in

model space, and the rest of the paper is focused on design-

ing smart moves in the partition spaceΩπ for fast conver-

gence and mixing.
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4. SamplingΩπ with discriminative models

For an adjacency graphGo =< V, Eo >, we augment

each edgee =< s, t >∈ Eo with a binary random variable

µe ∈ {on, off} representing whether the edge is turned “on”

or “off”. In contrast to a constant probabilityqo for all edges

in the SW algorithm, we compute a discriminative model

for qe = q(µe = on|F (s), F (t)) based on local vector val-

ued features (texture, color, geometry etc.)F (s), F (v) at

the two sites.qe indicates how coherent (or similar) the two

verticess andt are, and can be trained off-line.

By turning “on” each edgee in Go with probability qe

independently, we obtain a sparse graphG =< V, E >

with E ⊂ Eo being the set of edges which are turned on by

chance. The probability forE or G is

q(E) =
∏
e∈E

qe

∏
e∈Eo−E

(1− qe). (5)

G =< V, E > consisting of a numbern of connected

componentsgk =< Vk, Ek >.

G = ∪n
k=1gk, ∪n

k=1Vk = V, ∪n
k=1Ek = E.

We denote them by

CP = {V1, V2, ..., Vn}. (6)

As the local probabilitiesqe are well trained, the sub-

graphs inCP are often meaningful parts of patterns. This

way,q(E) defines a bottom-up probabilityq(π) on the par-

tition spaceΩπ.

T = 1 T = 2 T = 4

Figure 3: Random samples ofCP atT = 1, 2, 4 according

to q(E).

Figure 3 shows random graph partitionsCP for the

cheetah image whose adjacency graphGo is built on the

atomic regions in Fig. 2 (middle). On each column, we

show aCP sampled according toq(E) in equation (5). The

size of the components ofCP can be controlled by a tem-

peratureT on the edge probabilitiesqT
e . The smaller theT ,

the larger the size of the components. Clearly various parts

of the cheetah are obtained, which will be used as candi-

dates for big and meaningful moves in our MCMC algo-

rithm.

a. Go b. G c. CP
Figure 4: Three stages of graphs: a. adjacency graphGo, b.

current partition stateG, c. a sample from the discrimina-

tive models ofG and its connected componentsCP .

5. Stochastic graph partition by MCMC

Our graph partition algorithm operates three graphs

shown in Figure 4. It starts with an adjacency graphGo =<

V,Eo >. The current Markov chain state is a partition

π : V = ∪n
l=1Vl, represented by a graphG = ∪n

l=1Gl ,

whereGl =< Vl, El >, l = 1, 2, ..., n arefull subgraphsof

Go (Fig.4.b), i.e.G was obtained fromGo by removing the

edges between the subsetsVl.
Then during a move between two partition states, it

generates connected componentsCP (Fig.4.c) by turning
on/off the edges inG. A component inCP is picked up at
random as a candidate for reassignment.

Swendsen-Wang Cuts: SWC-1
Input: Go =< V, Eo >, discriminative probabilitiesqe, ∀e ∈ Eo,

and generative posterior probabilityp(W |I).
Output: SamplesW ∼ p(W |I).
1. Initialize a graph partitionπ: G = ∪n

l=1Gl.

2. Repeat, for current state A

3. Repeat for each subgraphGl =< Vl, El >, l = 1, 2, ..., n

4. Fore ∈ El, turnµe = on with probabilityqe.

5. Vl is divided intonl connected components:

{gli =< Vli, Eli >, i = 1, ..., nl}.

6. Collect connected components from all subgraphs (see Fig.4.c)

CP = {Vli : l = 1, ..., n, i = 1, ..., nl}.

7. Select a componentV0 ∈ CP at random with probability

q(V0|CP ), (usually1/|CP |) (see Fig.5.a).

8. Propose to assignV0 to a subgraphGl′ . l′ follows a probability

q(l′|V0, A, Go) (stateB in Fig.5.b ifV0 is merged to an

existing subgraph, stateC in Fig.5.c ifV0 is a new subgraph).

9. Accept the move with probability

α(A → B) or α(A → C) in theorem 1.

We omit the parallel steps of model switching and fitting
for clarity. The probabilityq(l′|V0, A, Go), l′ = 1, ..., n + 1
can be designed simply as follows:

q(l′|V0, A, Go) =


a if Gl′ is adjacent to V0,

b if l′ = n + 1, new subgraph

c else

such that
∑n+1

l′=1 q(l′|V0, A, Go) = 1.
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The move between statesA andB is a split-merge oper-

ation in canonical cases. Two special cases are the birth and

death moves.

1. If l′ = n + 1, V0 becomes a new subgraph, so the

move is a birth operation.

2. If V0 is equal to a subgraphVl, the whole subgraphGl

is merged toGl′ . The number of subgraphs is reduced by

one, so it is a death operation.

a. state A b. state B c. state C
Figure 5: A move between partition statesπ = A,B,C,

different by a set of verticesV0. The vertices in the same

color belong to a subgraph. The vertices connected by thick

edges form a connected component.

In what follows, we give a simple, explicit expression

for the acceptance probability, which can be made to be1
through a smarter choice ofq(l′|V0, A, Go).

Theorem 1 In the above notation, consider a candidate
componentV0 selected bySWC-1. If the proposed move
to reassignV0 fromGl to Gl′ is accepted with probability

α(A → B) = min(1,

∏
e∈C(V0,Vl′−V0)

(1− qe)∏
e∈C(V0,Vl−V0)

(1− qe)

q(l|V0, B, Go)

q(l′|V0, A, Go)

p(B|I)
p(A|I) )

(7)
then the Markov chain is ergodic and observes the de-

tailed balance equations.

In the special case whenl′ = n + 1, V0 is proposed to

be a new subgraph andVl′ − V0 = ∅. So the cut is empty

C(V0, Vl′ − V0) = ∅,
∏

e∈C(V0,Vl′−V0)
(1 − qe) = 1 and

α(A → B) becomesα(A → C).
Proof. The idea of the proof is that even though the proposal

probabilitiesq(A → B) andq(B → A) are very compli-

cated, their ratioq(B → A)/q(A → B) is extremely sim-

ple through miraculous cancellation. Then the conclusion

follows from the Metropolis-Hastings equation (4).

First, we calculate the proposal probabilityq(A → B) in

SWC-1, assuming stateA hasn subgraphsGl =< Vl, El >

, l = 1, 2, ..., n. In the canonical case whenV0 6= Vl and

Vl′ 6= ∅, it is a conditional probability which consists of

two steps: (1) choosingV0 and (2) choosingl′. For clarity,

we discuss the exception cases later.

In state A, each subgraphGl is broken into connected

componentsCPl by turning on and off the edges inEl at

random. We denote the set of all connected components

CP (A) = ∪lCPl = {Vli : l = 1, ..., n; i = 1, ..., nl}.

For example, Figure 5.a shows6 connected components.

For aCP of stateA, we denote byEon(A,CP ) the edges

that are turned on (the thick edges in Figure 5.a)

Eon(A,CP ) = ∪n
l=1{∪

nl
i=1Eki}.

The rest of the edges, which are turned off, are the “cuts”

between a connected componentVli and other vertices in

the subgraph, i.e.Vl − Vli,

Eoff(A,CP ) = ∪n
l=1{∪

nl
i=1Cli}, Cli = C(Vli, Vl − Vli).

Note that the edges between subgraphs had been turned

off before entering stateA. The probability for choosing a

CP depends on stateA and the discriminative modelsD(I),

q(CP |A,D(I)) =
∏

e∈Eon(A,CP )

qe

∏
e∈Eoff (A,CP )

(1− qe).

We denote byΩCP (A) the set of all possibleCP ’s at

stateA. We are interested in thoseCP ’s which containV0,

Ω0
CP (A) = {CP (A) : V0 ∈ CP}.

Without loss of generality, we assume thatV0 is a com-

ponent from subgraphG1 =< V1, E1 >. We denote the cut

betweenV0 andV1 − V0 by C01 = C(V0, V1 − V0).
All CPs in Ω0

CP (A) have the following two properties:

they all containV0, and all edges betweenV0 andV1 − V0

are turned off (otherwiseV0 is connected to other vertices).

In other words,∀CP ∈ Ω0
CP (A)

V0 ∈ CP and C01 ⊂ Eoff(A,CP )..

For eachCP ∈ Ω0
CP (A), the setV0 is picked with a

probability q(V0|CP ). Now we are ready to compute the
probability for selectingV0 at stateA,

q(V0|A, D(I)) =
∑

CP∈Ω0
CP

(A)

q(V0|CP )q(CP |A, D(I)) (8)

=
∏

e∈C01

(1− qe)[
∑

CP∈Ω0
CP

(A)

q(V0|CP )
∏

e∈Eoff (A,CP )−C01

(1− qe)
∏

e∈Eon(A,CP )

qe].

We were able to factor the product
∏

e∈C01
(1 − qe) out

becauseC01 ⊂ Eoff(A,CP ) for all CP ∈ Ω0
CP (A).

OnceV0 is selected, it is assigned toGl′ with probability

q(l′|V0, A, Go), the same for allCP ∈ Ω0
CP (A). There-

fore, the proposal probability fromA to B is,

q(A → B) = q(V0|A,D(I))q(l′|V0, A, Go). (9)
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Now we calculate the proposal probabilityq(B → A)
in algorithm SWC-1. In the canonical case, the only way

one can get from stateB to stateA is by selectingV0 as a

connected component and re-assigning it toGl.
In stateB, we have the same partition as in stateA ex-

cept thatV0 belongs toGl′ (see Fig. 5.b). Without loss
of generality, we assume thatV0 is a component from the
subgraphG2 =< V2, E2 >. Ω0

CP (B) is the set ofCP ’s
that containV0 as a component and must share the common
cut C02 = C(V0, V2 − V0), illustrated in Figure 5.b by the
crosses. Similarly, the probability for selectingV0 at state
B is,

q(V0|B, D(I)) =
∑

CP∈Ω0
CP

(B)

q(V0|CP )q(CP |B, D(I)) (10)

=
∏

e∈C02

(1− qe)[
∑

CP∈Ω0
CP

(B)

q(V0|CP )
∏

e∈Eoff (B,CP )−C02

(1− qe)
∏

e∈Eon(B,CP )

qe],

and the proposal probability fromB to A is,

q(B → A) = q(V0|B,D(I))q(l|V0, B, Go). (11)

Observation. For eachCP ∈ Ω0
CP (A), thenCP ∈

Ω0
CP (B) and vice versa. Therefore we have

Ω0
CP (A) = Ω0

CP (B) (12)

For anyCP above, the set of edges turned on are the

same,

Eon(A,CP ) = Eon(B,CP ) (13)

and the set of edges turned off are also the same except cut

C01 occurs in stateA and cutC02 occurs in stateB. So

Eoff(A,CP )− C01 = Eoff(B,CP )− C02. (14)

Plug in equations (13) and (14) into equations (9) and

(11), we have the probability ratio by cancellation,

q(V0|B,D(I))
q(V0|A,D(I))

=

∏
e∈C02

(1− qe)∏
e∈C01

(1− qe)
. (15)

Therefore,

q(B → A)
q(A → B)

=

∏
e∈C02

(1− qe)∏
e∈C01

(1− qe)
· q(l|V0, B, Go)
q(l′|V0, A, Go)

.

By equation (4), we obtainα(A → B) as the theorem

states. Thus the move betweenA andB observes the de-

tailed balance equations.

The above proof is for the canonical case when there is

only one way to go from state A to state B, or from state B

to state A, namely by reassigningV0.

There is an exception to the canonical case when there

are two paths between statesA andB. It occurs when a

whole subgraphGl or Gl′ is chosen asV0 in stateA, and

thus two subgraphs are merged in stateB. Without loss of

generality, we only consider two subgraphsV1, V2 in state

A and one subgraphV1 ∪ V2 in stateB, as Fig. 6 displays.

• Path 1. ChooseV0 = V1. In stateA, choosel′ = 2, i.e.

merge it toV2, and reversely in stateB, choosel′ = 1,

i.e. split it fromV2.

• Path 2. ChooseV0 = V2. In stateA, choosel′ = 1, i.e.

merge it toV1, and reversely in stateB, choosel′ = 2,

i.e. split it fromV1.

Figure 6: There are two ways to merge subgraphsV1, V2

from stateA to get to stateB. One is to chooseV1 and

merge it toV2, the other is to chooseV2 and merge it toV1.

Thus the proposal probabilityq(A → B) is the sum of the
probabilities for the two paths.

q(A → B) = q(l′ = 2|V1, A, Go)q(V1|A, D(I))

+q(l′ = 1|V2, A, Go)q(V2|A, D(I)) (16)

and similarly

q(B → A) = q(l′ = 1|V1, B, Go)q(V0 = V1|B, D(I))

+q(l′ = 2|V2, B, Go)q(V0 = V2|B, D(I)). (17)

In stateA, the cut isC(V0, Vl − V0) = C(V0, ∅) = ∅
for both paths, and in stateB the cut isC(V0, Vl − V0) =
C(V1, V2) = C12 for both paths.

Following previous calculation, we have the proposal
probability ratio for choosingV0 = V1 in path 1,

q(V0 = V1|B, D(I))

q(V0 = V1|A, D(I))
=

∏
e∈C(V1,V2)

(1− qe)∏
e∈C(V1,∅)(1− qe)

=
∏

e∈C12

(1− qe).

(18)
Similarly, we have the probability ratio for choosing

V0 = V2 in path 2,

q(V0 = V2|B, D(I))

q(V0 = V2|A, D(I))
=

∏
e∈C(V2,V1)

(1− qe)∏
e∈C(V2,∅)(1− qe)

=
∏

e∈C12

(1− qe).

(19)
Plug in the above equations, we obtain the ratio,

q(B→A)
q(A→B) =

∏
e∈C12

(1− qe) (20)

· q(l
′=1|V1,B,Go)q(V1|A,D(I))+q(l′=2|V2,B,Go)q(V2|A,D(I))

q(l′=2|V1,A,Go)q(V1|A,D(I))+q(l′=1|V2,A,Go)q(V2|A,D(I))
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The proposal probabilities forl′ must be designed in

such a way that:

q(l′ = 1|V1, B,Go)
q(l′ = 2|V1, A, Go)

=
q(l′ = 2|V2, B, Go)
q(l′ = 1|V2, A, Go)

(21)

This is easily satisfied in general. So we have,

q(B → A)
q(A → B)

=
∏

e∈C(V0,Vl′−V0)

(1−qe) ·
q(l′ = 1|V1, B, Go)
q(l′ = 2|V1, A, Go)

(22)

In general notation, it is

q(B → A)
q(A → B)

=

∏
e∈C(V0,Vl′−V0)

(1− qe)∏
e∈C(V0,Vl−V0)

(1− qe)
· q(l|V0, B, Go)
q(l′|V0, A, Go)

Thus we have proved the exception case.

To prove ergodicity, observe that there is a non-zero

probability that any given node is chosen as a connected

componentV0. Since the node can then be assigned to any

other subgraph with nonzero probability, and this holds for

all nodes independently, we can get from any partition to

any other partition with non-zero probability.End of Proof.

Now we shall constructq(l′|V0, A, Go) in such a way

to obtain acceptance probability1. Then our algorithm be-

comes a generalized Gibbs sampler.

Suppose the Markov chain is at a partition stateA =
(V1, V2, ..., Vn), and a connected componentV0 ⊂ Vl is se-

lected by SWC-1 as a candidate set. We haven + 1 choices

for stateB by assigningV0 to one of the following vertex

sets:

{S1 = V1, S2 = V2, ..., Sl = Vl−V0, ..., Sn = Vn, Sn+1 = ∅}

We denote the states asB1, B2, ..., Bn+1 respectively.

ClearlyBl = A and in stateBn+1, V0 is a new subgraph.

In the exception caseV0 = Vl, then the stateBn+1 = A is

redundant, so one of them should be eliminated.

Denote the cuts betweenV0 andSj by Cj = C(V0, Sj)
j = 1, 2, ..., n + 1 with C(V0, ∅) = ∅.

Theorem 2 In the above notation, supposeV0 is a candi-

date vertex set selected by SWC-1, in partition stateA. If

the probabilities for mergingV0 to Vl′ are chosen to be

q(l′|V0, A, Go) ∝
∏

e∈Cl′

(1− qe) · p(Bl′ | I). (23)

then the proposed move is accepted with probability

α(A → Bl′) = 1.

The proof is straightforward and we omit it. We also

omit the proof thatq(l′|V0, A, Go) satisfies condition (21).

In practice, the posteriorsp(A | I) andp(Bl′ | I) only involve

local computation and the cutsCl′ are small or empty.

Intuitively, our algorithm samples a random set of ver-

tices according to posterior for goodness-of-fit modulated

by the cut probability to achieve detailed balance. This is

much more general than the original SW-method [11] and

the Gibbs sampler [4].

6. Experiments and performance analysis

Figure 7: Image segmentation: input image, atomic regions

as image elements and the segmentation result.

The image segmentation experiment was performed on

”atomic regions” obtained by edge detection and edge trac-

ing. They form the nodes of our graph. The discriminative

probabilityqe for an edgee =< vi, vj > is

qe = 0.1 + 0.9e−(KL(pi||pj)+KL(pj ||pi))/2. (24)

wherepi, pj are 15 bin intensity histograms in the atomic

regions, andKL() is the Kullback-Leibler divergence. In

general, thisqe can be learned through supervised learn-

ing. We use three simple image models{C1, C2, C3} (con-

stant, linear and quadratic polynomial intensity) with addi-

tive noise modeled by a 15 bin histogramH.
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In Fig. 8 we plotted the energy vs time (in seconds) of

the algorithm on the cheetah image in Fig.2, starting from

a random graph partition. The Gibbs sampler converges in

about 6,000 seconds and our algorithm in 40-50s.

Figure 8: Convergence comparison with Gibbs sampler (up-

per curve) for the cheetah image. The Gibbs sampler must

start with a high temperature and anneal slowly to get to the

minimum energy level of our algorithm. Right plot shows a

zoom-in view of the first 100 seconds.

Figure 9: Convergence comparison with SWC without dis-

criminative models (qe = 0.2, 0.4, 0.6) (dotted curves).

Cheetah image (left), airplane image (right). The original

Swendsen-Wang does not apply in this case.

In Fig.9 we plotted the energy vs time (in seconds) of

the algorithm on the cheetah image (left) and airplane image

(right), starting fromπ = {Go}. Convergence is even faster

(15 seconds instead of 40s) since the initial state has smaller

energy. For the cheetah image, we also plotted the Gibbs

sampler starting from a random partition (upper curve) and

π = {Go} (lower curve). Both Gibbs samplers converge in

about6000s, so SWC-1 is 400 times faster!

Figure 10: The curve grouping: input image, edge map and

grouping result.

We also plotted in Fig. 8 and 9 the behavior of SWC

without discriminative models by fixing the edge weight to

constantsqe = 0.2, 0.4, 0.6 (see dotted curves). It slows

down significantly. Sometimes the algorithm cannot reach

the same low energy as with discriminative models.

In the perceptual grouping experiment we group a map

of edgelets obtained from a Canny edge map into long and

smooth curves by adding and removing edgelets. The curve

prior is based on 3 point histograms learned from hand seg-

mented examples. The likelihood measures the difference

in pixels between the input edge map and the grouping re-

sult. The graph nodes are the edgelets, and the discrimina-

tive probabilityqe is based on the 3-point histogram and on

the gap that has to be filled between the edgelets.
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