Graph Partition by Swendsen-Wang Cuts

Adrian Barbu and Song-Chun Zhu

Abstract

Many vision tasks, such as segmentation, grouping, and recognition can be formulated as graph partition problems. The recent literature has witnessed two popular graph cut algorithms: one is the Ncut using spectral graph analysis and the other is minimum-cut using maximum flow algorithm. This paper presents a third major approach by generalizing the Swendsen-Wang method-a well celebrated algorithm in statistical mechanics. Our algorithm simulates ergodic and reversible Markov chain jumps in the space of all possible graph partitions to search for global optima of a Bayesian posterior probability. At each step, the algorithm can split, merge, or re-group a sizable subgraph, and thus achieve fast mixing at low temperature eliminating the slow simulated annealing procedure. Our experiments show that it converges in 15-60 seconds in a PC for image segmentation and curve grouping. This is about 400 times faster than the classical Gibbs sampler which flips a single vertex each time, and is 20-40 times faster than the DDMCMC algorithm. The algorithm can optimize over the number of models and works for general forms of posterior probabilities. Therefore it is more general than the existing graph cut approaches.

1. Introduction

Computer vision problems, such as image segmentation, perceptual organization, and object recognition, require grouping image elements (pixels, edgelets, primitives) into "coherent" visual patterns (regions, curves, objects) in a process of optimizing some grouping criteria. The problem can be represented in an adjacency graph with the vertices being the image elements, the edges being spatial relationships and subgraphs being coherent visual patterns. Thus it becomes a graph partition problem.

There are two approaches for graph partition in the recent literature. One is the normalized cut $[12,9]$ using graph spectral analysis to optimize a discriminative criterion. The
other is the minimum-cut $[8,6]$ which maps an energy minimization problem to a maximum flow algorithm. The latter is solved in polynomial time. Despite their reasonable success, the two approaches are far from being general solutions. Firstly it was shown[6] that only very limited classes of energy functions can be mapped to the maximum flow problem. Secondly the graph spectral analysis, like many other discriminative clustering algorithms[3, 2], has difficulties in expressing global visual patterns, such as shading effects, perspective projection effects, contour closure etc. Furthermore natural images contain very diverse visual patterns which are "coherent" in many different ways. This requires a generative and Bayesian formulation incorporating a number of diverse and competing image models[10]. There is no single discriminative criterion that is generally applicable to all the visual patterns.

In this paper, we present a third major graph partition approach by generalizing the Swendsen-Wang method- a well celebrated algorithm in statistical mechanics. Formulated in a Bayesian framework with generative image models, our algorithm simulates ergodic and reversible Markov chain jumps in the space of all possible graph partitions to search for global optima. The basic ideas and contributions of our method are:

1. Given an adjacency graph, we compute a local probability at each edge for how likely the two vertices (image elements) belong to the same pattern. Then by turning on the edges at random according to their associated probabilities, we form connected components, each being a good candidate for a coherent pattern.
2. At each step, the algorithm splits, merges, or regroups a connected component which often includes a big number of vertices. The moves are ergodic and observe detailed balance equations. The candidate states are selected proportional to their posterior probabilities weighted by the probabilities of "graph cuts". The acceptance probability can always be one, and thus our algorithm is also a general-
ized Gibbs sampler.
3. The algorithm "mixes" rapidly at low temperature. Unlike most MCMC methods it no longer needs a long simulated annealing procedure[5]. Thus it can start from good initial conditions using heuristics to achieve a short "burnin" period. As a result, the algorithm is about 400-times faster than the classical Gibbs sampler[4] which flips a single vertex each time, and it is 20-40 times faster than the previous DDMCMC algorithm[10]. It converges in 15-60 seconds in a 1.5 GHz PC for image segmentation and curve grouping.

The central contribution of the paper is the two mathematical theorems for calculating the acceptance probabilities for the big moves, which observe miraculous cancellations in the calculation. The theorems ensure that our algorithm samples from general posterior probabilities, and provide a foundation for fast simulation and optimization for a broad range of vision problems.

2. Swendsen-Wang: basic ideas

The difficulty of sampling the graph partition space is well reflected in the Ising and Potts models in statistical mechanics,

$$
\begin{equation*}
p(\mathbf{I}) \propto \exp \left\{\beta \sum_{<s, t>} \mathbf{1}\left(\mathbf{I}_{s}=\mathbf{I}_{t}\right)\right\} \quad \beta>0 . \tag{1}
\end{equation*}
$$

where $\mathbf{1}\left(\mathbf{I}_{s}=\mathbf{I}_{t}\right)=1$ if $\mathbf{I}_{s}=\mathbf{I}_{t}$ for adjacent spins s, t otherwise it is zero.

 $1 / 2 \quad 1 / i$

For the string of spins with label $\mathbf{I} \in\{ \pm 1\}^{n}$ shown above, the highest probability is achieved when all vertices have the same label. In a best visiting scheme, the Gibbs sampler flips the -1 spins at the two "cracks" to +1 with probability $p_{o}=1 / 2$. Thus to flip a string of n spins ($n=9$ here) from -1 to +1 , the expected number of steps is $\frac{1}{\left(1 / p_{o}\right)^{n}}=2^{n}$. This is exponential waiting!

A major speedup for the Ising model in equation (1) is achieved by the Swendsen-Wang (1987) algorithm [11]. E.g. Fig. 1 shows an adjacency graph as a 2D lattice with each edge e connecting two adjacent spins s, t. SW turns "on" each edge e with a constant probability $q_{o}=1-e^{-\beta}$ if s, t have the same label. Fig. 1 shows a component V_{0} connected by bold edges which are turned "on" at two states A and B. The edges between V_{0} and its neighbors $-V_{1}$ in
state A and V_{2} in state B are cut - turned "off", see the crosses in the figure. We denote the two sets of edges by the respective "cuts"

$$
\mathcal{C}\left(V_{0}, V_{1}\right), \quad \mathcal{C}\left(V_{0}, V_{2}\right) .
$$

Figure 1: SW algorithm flips a patch of spins in one step.
Then SW flips all spins in V_{0} in a single step and makes a reversible jump between states A and B. The acceptance probability for the move is shown to be 1 . So SW can flip all -1 spins in the 1D string example in one or a few steps.

The SW algorithm achieves fast mixing even at critical temperature for typical graphs. Unfortunately, it is limited to simple Ising/Potts models and does not use the image (data) information in forming the component V_{0}. It is found to be ineffective in the presence of external field (data). In the following, we extend SW to simulating general Bayesian posterior probabilities and make use of bottom-up information to form the candidate components V_{0} to further speed up the computation.

3. Bayesian formulation of graph partition

3.1. Graph Partition

Let $G_{o}=<V, E_{o}>$ be an adjacency graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$ is the set of vertices for image elements such as pixels, edgelets, primitives and E_{o} is a set of edges $e=<s, t>$ for adjacent elements s, t. The objective is to partition graph G_{o} into unknown number of n full subgraphs $G_{k}=<V_{k}, E_{k}>, k=1,2, \ldots, n$, each keeping all the edges in G_{o} that connect its vertices:

$$
\begin{gathered}
V=\cup_{k=1}^{n} V_{k}, \quad V_{k} \neq \emptyset, V_{i} \cap V_{j}=\emptyset \text { for } i \neq j \\
E_{k}=\left\{e=(u, v) \in E_{o} \mid u, v \in V_{k}\right\}, \quad k=1,2, \ldots, n
\end{gathered}
$$

We denote by π_{n} a partition with n subgraphs.

$$
\pi_{n}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\} \text { or }\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}
$$

Vertices in each subset $V_{k}, k=1,2 \ldots, n$ forms a coherent visual pattern specified by a generative probability.

The space of all possible partition is denoted by

$$
\Omega_{\pi}=\cup_{n=1}^{|V|} \Omega_{\pi_{n}}
$$

with $\Omega_{\pi_{n}}$ being the space of all n-partitions. The edges between any two sets V_{i} and V_{j} are denoted by a cut
$C\left(V_{i}, V_{j}\right)=\left\{e=<s, t>: e \in E_{o}, s \in V_{i}, t \in V_{j}\right\}, \quad i \neq j$.

Figure 2: input image, an over-segmentation with "atomic" regions being vertices, and a segmentation result.

Fig. 2 shows a typical example of image segmentation. We obtain an over-segmentation (middle) by applying a Canny edge detection followed by edge tracing to form "atomic" regions with nearly constant intensities. These atomic regions are the vertices V_{o} and any two adjacent atomic regions are connected by an edge to form the graph G_{o}. The right image is a result of our partition algorithm.

3.2. Solution space and Markov chain design

Take image segmentation as an example, we denote by \mathbf{I}_{v} the observed image attributes (pixel intensity, edge position and orientation, etc) for element v, and by \mathbf{I}_{V} the image representation for the set V. Suppose we use L classes of image models for various patterns, such as color, texture, shading, curve etc. Each type of model is indexed by $c \in\left\{C_{1}, C_{2}, \ldots, C_{L}\right\}=\Omega_{C}$, and specified with parameters $\theta_{i} \in \Omega_{c_{i}}$. The model space is the union

$$
\Omega_{\theta}=\cup_{c \in \Omega_{C}} \Omega_{\ell}
$$

The inner representation for a segmentation is

$$
\begin{equation*}
W=\left(n, \pi_{n},\left(c_{1}, \theta_{1}\right),\left(c_{2}, \theta_{2}\right), \ldots,\left(c_{n}, \theta_{n}\right)\right) \tag{2}
\end{equation*}
$$

Each subgraph $V_{i}, i=1,2, \ldots, n$ in partition π_{n} is specified by a model $p\left(\mathbf{I}_{V_{i}} ; c_{i}, \theta_{c_{i}}\right)$ of type c_{i} and parameters θ_{i}.

The solution space for W is

$$
\Omega=\cup_{n=1}^{N}\left\{\Omega_{\pi_{n}} \times \Omega_{C}^{n} \times \Omega_{c_{1}} \times \cdots \times \Omega_{c_{n}}\right\} .
$$

This factorization of the solution space corresponds to the necessary solution steps:

1. Partition graph G_{o} by finding $\pi_{n} \in \Omega_{\pi}$.
2. Select an image model $c \in \Omega_{C}$ for each subgraph $V_{i} \in \pi_{n}$.
3. Fit the models $\theta_{c_{i}} \in \Omega_{c_{i}}, i=1,2, \ldots, n$.

If we assume the patterns are mutually independent, then the objective is to simulate a Bayesian posterior

$$
\begin{equation*}
W \sim p(W \mid \mathbf{I}) \propto \prod_{i=1}^{n} p\left(\mathbf{I}_{V_{i}} ; c_{i}, \theta_{c_{i}}\right) p(W) \tag{3}
\end{equation*}
$$

The prior and image models can be Markov random field models or global spline models, and are beyond what can be minimized by the graph cut algorithms[6, 9].

The Markov chain must be ergodic in space Ω and have $p(W \mid \mathbf{I})$ as its stationary probability. In short, we need two types of reversible jumps[1] bridging the subspaces of different dimensions in Ω.

1. Jumps in the model space $\Omega_{C}^{n} \times \Omega_{c_{1}} \times \cdots \times \Omega_{c_{n}}$, such as model switching, diffusion (fitting) of parameters θ_{c}.
2. Jumps in the partition space Ω_{π} : split, merge, death, birth.

The jumps are realized by Metropolis-Hastings methods[7]. For a pair of states $W=A$ and $W=B$, we need to design proposal probabilities $q(A \rightarrow B)$ and $q(B \rightarrow A)$. The recent idea of data-driven Markov chain Monte Carlo (DDMCMC) in [10] is to calculate them based on bottom-up discriminative models, summarized by $D(\mathbf{I})$, so that the proposal probabilities approximate the posterior

$$
\begin{aligned}
& q(B \rightarrow A)=q(A \mid B, D(\mathbf{I})) \approx p(A \mid \mathbf{I}) \\
& q(A \rightarrow B)=q(B \mid A, D(\mathbf{I})) \approx p(B \mid \mathbf{I})
\end{aligned}
$$

Then the proposed move from A to B is accepted with high probability $\alpha(A \rightarrow B)$

$$
\begin{equation*}
\alpha(A \rightarrow B)=\min \left(1, \frac{q(A \mid B, D(\mathbf{I}))}{q(B \mid A, D(\mathbf{I}))} \cdot \frac{p(B \mid \mathbf{I})}{p(A \mid \mathbf{I})}\right) \tag{4}
\end{equation*}
$$

In this paper we use bottom-up data-driven information $D(\mathbf{I})$ and go one step further by making big moves. So the algorithm can reach from a state A to very different B in one step which may need an exponential number of small moves otherwise, as we discussed in the Ising model example.

We follow the DDMCMC method[10] for the jumps in model space, and the rest of the paper is focused on designing smart moves in the partition space Ω_{π} for fast convergence and mixing.

4. Sampling Ω_{π} with discriminative models

For an adjacency graph $G_{o}=<V, E_{o}>$, we augment each edge $e=<s, t>\in E_{o}$ with a binary random variable $\mu_{e} \in\{o n$, off $\}$ representing whether the edge is turned "on" or "off". In contrast to a constant probability q_{o} for all edges in the SW algorithm, we compute a discriminative model for $q_{e}=q\left(\mu_{e}=\right.$ on $\left.\mid F(s), F(t)\right)$ based on local vector valued features (texture, color, geometry etc.) $F(s), F(v)$ at the two sites. q_{e} indicates how coherent (or similar) the two vertices s and t are, and can be trained off-line.

By turning "on" each edge e in G_{o} with probability q_{e} independently, we obtain a sparse graph $G=<V, E>$ with $E \subset E_{o}$ being the set of edges which are turned on by chance. The probability for E or G is

$$
\begin{equation*}
q(E)=\prod_{e \in E} q_{e} \prod_{e \in E_{o}-E}\left(1-q_{e}\right) \tag{5}
\end{equation*}
$$

$G=<V, E>$ consisting of a number n of connected components $g_{k}=<V_{k}, E_{k}>$.

$$
G=\cup_{k=1}^{n} g_{k}, \cup_{k=1}^{n} V_{k}=V, \cup_{k=1}^{n} E_{k}=E .
$$

We denote them by

$$
\begin{equation*}
C P=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\} . \tag{6}
\end{equation*}
$$

As the local probabilities q_{e} are well trained, the subgraphs in $C P$ are often meaningful parts of patterns. This way, $q(E)$ defines a bottom-up probability $q(\pi)$ on the partition space Ω_{π}.

Figure 3: Random samples of $C P$ at $T=1,2,4$ according to $q(E)$.

Figure 3 shows random graph partitions $C P$ for the cheetah image whose adjacency graph G_{o} is built on the atomic regions in Fig. 2 (middle). On each column, we show a $C P$ sampled according to $q(E)$ in equation (5). The size of the components of $C P$ can be controlled by a temperature T on the edge probabilities q_{e}^{T}. The smaller the T, the larger the size of the components. Clearly various parts of the cheetah are obtained, which will be used as candidates for big and meaningful moves in our MCMC algorithm.

Figure 4: Three stages of graphs: a. adjacency graph G_{o}, b. current partition state G, c. a sample from the discriminative models of G and its connected components $C P$.

5. Stochastic graph partition by MCMC

Our graph partition algorithm operates three graphs shown in Figure 4. It starts with an adjacency graph $G_{o}=<$ $V, E_{o}>$. The current Markov chain state is a partition $\pi: V=\cup_{l=1}^{n} V_{l}$, represented by a graph $G=\cup_{l=1}^{n} G_{l}$, where $G_{l}=<V_{l}, E_{l}>, l=1,2, \ldots, n$ are full subgraphs of G_{o} (Fig.4.b), i.e. G was obtained from G_{o} by removing the edges between the subsets V_{l}.

Then during a move between two partition states, it generates connected components $C P$ (Fig.4.c) by turning on/off the edges in G. A component in $C P$ is picked up at random as a candidate for reassignment.

Swendsen-Wang Cuts: SWC-1

Input: $G_{o}=<V, E_{o}>$, discriminative probabilities $q_{e}, \forall e \in E_{o}$, and generative posterior probability $p(W \mid \mathbf{I})$.
Output: Samples $W \sim p(W \mid \mathbf{I})$.

1. Initialize a graph partition $\pi: G=\cup_{l=1}^{n} G_{l}$.
2. Repeat, for current state A
3. Repeat for each subgraph $G_{l}=<V_{l}, E_{l}>, l=1,2, \ldots, n$
4. For $e \in E_{l}$, turn $\mu_{e}=$ on with probability q_{e}.
5. $\quad V_{l}$ is divided into n_{l} connected components:

$$
\left\{g_{l i}=<V_{l i}, E_{l i}>, i=1, \ldots, n_{l}\right\}
$$

6. Collect connected components from all subgraphs (see Fig.4.c) $C P=\left\{V_{l i}: l=1, \ldots, n, i=1, \ldots, n_{l}\right\}$.
7. Select a component $V_{0} \in C P$ at random with probability $q\left(V_{0} \mid C P\right)$, (usually $1 /|C P|$) (see Fig.5.a).
8. Propose to assign V_{0} to a subgraph $G_{l^{\prime}} . l^{\prime}$ follows a probability $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)$ (state B in Fig.5.b if V_{0} is merged to an existing subgraph, state C in Fig.5.c if V_{0} is a new subgraph).
9. Accept the move with probability

$$
\alpha(A \rightarrow B) \text { or } \alpha(A \rightarrow C) \text { in theorem } 1
$$

We omit the parallel steps of model switching and fitting for clarity. The probability $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right), l^{\prime}=1, \ldots, n+1$ can be designed simply as follows: $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)= \begin{cases}a & \text { if } G_{l^{\prime}} \text { is adjacent to } \mathrm{V}_{0}, \\ b & \text { if } l^{\prime}=n+1, \text { new subgraph } \\ c & \text { else }\end{cases}$
such that $\sum_{l^{\prime}=1}^{n+1} q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)=1$.

The move between states A and B is a split-merge operation in canonical cases. Two special cases are the birth and death moves.

1. If $l^{\prime}=n+1, V_{0}$ becomes a new subgraph, so the move is a birth operation.
2. If V_{0} is equal to a subgraph V_{l}, the whole subgraph G_{l} is merged to $G_{l^{\prime}}$. The number of subgraphs is reduced by one, so it is a death operation.

Figure 5: A move between partition states $\pi=A, B, C$, different by a set of vertices V_{0}. The vertices in the same color belong to a subgraph. The vertices connected by thick edges form a connected component.

In what follows, we give a simple, explicit expression for the acceptance probability, which can be made to be 1 through a smarter choice of $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)$.
Theorem 1 In the above notation, consider a candidate component V_{0} selected by SWC-1. If the proposed move to reassign V_{0} from G_{l} to $G_{l^{\prime}}$ is accepted with probability

$$
\alpha(A \rightarrow B)=\min \left(1, \frac{\prod_{e \in \mathcal{C}\left(V_{0}, V_{l^{\prime}}-V_{0}\right)}\left(1-q_{e}\right)}{\prod_{e \in \mathcal{C}\left(V_{0}, V_{l}-V_{0}\right)}\left(1-q_{e}\right)} \frac{q\left(l \mid V_{0}, B, G_{o}\right)}{q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)} \frac{p(B \mid \mathbf{I})}{p(A \mid \mathbf{I})}\right)
$$

then the Markov chain is ergodic and observes the detailed balance equations.

In the special case when $l^{\prime}=n+1, V_{0}$ is proposed to be a new subgraph and $V_{l^{\prime}}-V_{0}=\emptyset$. So the cut is empty $\mathcal{C}\left(V_{0}, V_{l^{\prime}}-V_{0}\right)=\emptyset, \prod_{e \in \mathcal{C}\left(V_{0}, V_{l^{\prime}}-V_{0}\right)}\left(1-q_{e}\right)=1$ and $\alpha(A \rightarrow B)$ becomes $\alpha(A \rightarrow C)$.
Proof. The idea of the proof is that even though the proposal probabilities $q(A \rightarrow B)$ and $q(B \rightarrow A)$ are very complicated, their ratio $q(B \rightarrow A) / q(A \rightarrow B)$ is extremely simple through miraculous cancellation. Then the conclusion follows from the Metropolis-Hastings equation (4).

First, we calculate the proposal probability $q(A \rightarrow B)$ in SWC-1, assuming state A has n subgraphs $\left.G_{l}=<V_{l}, E_{l}\right\rangle$ $, l=1,2, \ldots, n$. In the canonical case when $V_{0} \neq V_{l}$ and $V_{l^{\prime}} \neq \emptyset$, it is a conditional probability which consists of two steps: (1) choosing V_{0} and (2) choosing l^{\prime}. For clarity, we discuss the exception cases later.

In state A , each subgraph G_{l} is broken into connected components $C P_{l}$ by turning on and off the edges in E_{l} at random. We denote the set of all connected components

$$
C P(A)=\cup_{l} C P_{l}=\left\{V_{l i}: l=1, \ldots, n ; i=1, \ldots, n_{l}\right\}
$$

For example, Figure 5.a shows 6 connected components. For a $C P$ of state A, we denote by $E_{\mathrm{on}}(A, C P)$ the edges that are turned on (the thick edges in Figure 5.a)

$$
E_{\text {on }}(A, C P)=\cup_{l=1}^{n}\left\{\cup_{i=1}^{n_{l}} E_{k i}\right\} .
$$

The rest of the edges, which are turned off, are the "cuts" between a connected component $V_{l i}$ and other vertices in the subgraph, i.e. $V_{l}-V_{l i}$,
$E_{\text {off }}(A, C P)=\cup_{l=1}^{n}\left\{\cup_{i=1}^{n_{l}} C_{l i}\right\}, \quad C_{l i}=C\left(V_{l i}, V_{l}-V_{l i}\right)$.
Note that the edges between subgraphs had been turned off before entering state A. The probability for choosing a $C P$ depends on state A and the discriminative models $D(\mathbf{I})$,

$$
q(C P \mid A, D(\mathbf{I}))=\prod_{e \in E_{\text {on }}(A, C P)} q_{e} \prod_{e \in E_{\text {off }}(A, C P)}\left(1-q_{e}\right)
$$

We denote by $\Omega_{C P}(A)$ the set of all possible $C P$'s at state A. We are interested in those $C P$'s which contain V_{0},

$$
\Omega_{C P}^{0}(A)=\left\{C P(A): V_{0} \in C P\right\}
$$

Without loss of generality, we assume that V_{0} is a component from subgraph $G_{1}=<V_{1}, E_{1}>$. We denote the cut between V_{0} and $V_{1}-V_{0}$ by $\mathcal{C}_{01}=C\left(V_{0}, V_{1}-V_{0}\right)$.

All $C P \mathrm{~s}$ in $\Omega_{C P}^{0}(A)$ have the following two properties: they all contain V_{0}, and all edges between V_{0} and $V_{1}-V_{0}$ are turned off (otherwise V_{0} is connected to other vertices). In other words, $\forall C P \in \Omega_{C P}^{0}(A)$

$$
V_{0} \in C P \text { and } C_{01} \subset E_{\text {off }}(A, C P) . .
$$

For each $C P \in \Omega_{C P}^{0}(A)$, the set V_{0} is picked with a probability $q\left(V_{0} \mid C P\right)$. Now we are ready to compute the probability for selecting V_{0} at state A,

$$
\begin{align*}
& q\left(V_{0} \mid A, D(\mathbf{I})\right)=\sum_{C P \in \Omega_{C P}^{0}(A)} q\left(V_{0} \mid C P\right) q(C P \mid A, D(\mathbf{I})) \tag{8}\\
= & \prod_{e \in \mathcal{C}_{01}}\left(1-q_{e}\right)\left[\sum_{C P \in \Omega_{C P}^{0}(A)} q\left(V_{0} \mid C P\right) \prod_{e \in E_{\text {off }}(A, C P)-\mathcal{C}_{01}}\left(1-q_{e}\right) \prod_{e \in E_{\text {on }}(A, C P)} q_{e}\right] .
\end{align*}
$$

We were able to factor the product $\prod_{e \in C_{01}}\left(1-q_{e}\right)$ out because $C_{01} \subset E_{\text {off }}(A, C P)$ for all $C P \in \Omega_{C P}^{0}(A)$.

Once V_{0} is selected, it is assigned to $G_{l^{\prime}}$ with probability $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)$, the same for all $C P \in \Omega_{C P}^{0}(A)$. Therefore, the proposal probability from A to B is,

$$
\begin{equation*}
q(A \rightarrow B)=q\left(V_{0} \mid A, D(\mathbf{I})\right) q\left(l^{\prime} \mid V_{0}, A, G_{o}\right) \tag{9}
\end{equation*}
$$

Now we calculate the proposal probability $q(B \rightarrow A)$ in algorithm SWC-1. In the canonical case, the only way one can get from state B to state A is by selecting V_{0} as a connected component and re-assigning it to G_{l}.

In state B, we have the same partition as in state A except that V_{0} belongs to $G_{l^{\prime}}$ (see Fig. 5.b). Without loss of generality, we assume that V_{0} is a component from the subgraph $G_{2}=<V_{2}, E_{2}>. \Omega_{C P}^{0}(B)$ is the set of $C P$'s that contain V_{0} as a component and must share the common cut $\mathcal{C}_{02}=C\left(V_{0}, V_{2}-V_{0}\right)$, illustrated in Figure 5.b by the crosses. Similarly, the probability for selecting V_{0} at state B is,

$$
\begin{aligned}
& q\left(V_{0} \mid B, D(\mathbf{I})\right)=\sum_{C P \in \Omega_{C P}^{0}(B)} q\left(V_{0} \mid C P\right) q(C P \mid B, D(\mathbf{I}))(10) \\
= & \prod_{e \in \mathcal{C}_{02}}\left(1-q_{e}\right)\left[\sum_{C P \in \Omega_{C P}^{0}(B)} q\left(V_{0} \mid C P\right) \prod_{e \in E_{\text {off }}(B, C P)-\mathcal{C}_{02}}\left(1-q_{e}\right) \prod_{e \in E_{\text {on }}(B, C P)} q_{e}\right]
\end{aligned}
$$

and the proposal probability from B to A is,

$$
\begin{equation*}
q(B \rightarrow A)=q\left(V_{0} \mid B, D(\mathbf{I})\right) q\left(l \mid V_{0}, B, G_{o}\right) \tag{11}
\end{equation*}
$$

Observation. For each $C P \in \Omega_{C P}^{0}(A)$, then $C P \in$ $\Omega_{C P}^{0}(B)$ and vice versa. Therefore we have

$$
\begin{equation*}
\Omega_{C P}^{0}(A)=\Omega_{C P}^{0}(B) \tag{12}
\end{equation*}
$$

For any $C P$ above, the set of edges turned on are the same,

$$
\begin{equation*}
E_{\mathrm{on}}(A, C P)=E_{\mathrm{on}}(B, C P) \tag{13}
\end{equation*}
$$

and the set of edges turned off are also the same except cut C_{01} occurs in state A and cut C_{02} occurs in state B. So

$$
\begin{equation*}
E_{\text {off }}(A, C P)-\mathcal{C}_{01}=E_{\text {off }}(B, C P)-\mathcal{C}_{02} \tag{14}
\end{equation*}
$$

Plug in equations (13) and (14) into equations (9) and (11), we have the probability ratio by cancellation,

$$
\begin{equation*}
\frac{q\left(V_{0} \mid B, D(\mathbf{I})\right)}{q\left(V_{0} \mid A, D(\mathbf{I})\right)}=\frac{\prod_{e \in \mathcal{C}_{02}}\left(1-q_{e}\right)}{\prod_{e \in \mathcal{C}_{01}}\left(1-q_{e}\right)} \tag{15}
\end{equation*}
$$

Therefore,

$$
\frac{q(B \rightarrow A)}{q(A \rightarrow B)}=\frac{\prod_{e \in \mathcal{C}_{02}}\left(1-q_{e}\right)}{\prod_{e \in \mathcal{C}_{01}}\left(1-q_{e}\right)} \cdot \frac{q\left(l \mid V_{0}, B, G_{o}\right)}{q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)}
$$

By equation (4), we obtain $\alpha(A \rightarrow B)$ as the theorem states. Thus the move between A and B observes the detailed balance equations.

The above proof is for the canonical case when there is only one way to go from state A to state B, or from state B to state A , namely by reassigning V_{0}.

There is an exception to the canonical case when there are two paths between states A and B. It occurs when a whole subgraph G_{l} or $G_{l^{\prime}}$ is chosen as V_{0} in state A, and thus two subgraphs are merged in state B. Without loss of generality, we only consider two subgraphs V_{1}, V_{2} in state A and one subgraph $V_{1} \cup V_{2}$ in state B, as Fig. 6 displays.

- Path 1. Choose $V_{0}=V_{1}$. In state A, choose $l^{\prime}=2$, i.e. merge it to V_{2}, and reversely in state B, choose $l^{\prime}=1$, i.e. split it from V_{2}.
- Path 2. Choose $V_{0}=V_{2}$. In state A, choose $l^{\prime}=1$, i.e. merge it to V_{1}, and reversely in state B, choose $l^{\prime}=2$, i.e. split it from V_{1}.

Figure 6: There are two ways to merge subgraphs V_{1}, V_{2} from state A to get to state B. One is to choose V_{1} and merge it to V_{2}, the other is to choose V_{2} and merge it to V_{1}.

Thus the proposal probability $q(A \rightarrow B)$ is the sum of the probabilities for the two paths.

$$
\begin{align*}
q(A \rightarrow B) & =q\left(l^{\prime}=2 \mid V_{1}, A, G_{o}\right) q\left(V_{1} \mid A, D(\mathbf{I})\right) \\
& +q\left(l^{\prime}=1 \mid V_{2}, A, G_{o}\right) q\left(V_{2} \mid A, D(\mathbf{I})\right) \tag{16}
\end{align*}
$$

and similarly

$$
\begin{align*}
q(B \rightarrow A) & =q\left(l^{\prime}=1 \mid V_{1}, B, G_{o}\right) q\left(V_{0}=V_{1} \mid B, D(\mathbf{I})\right) \\
& +q\left(l^{\prime}=2 \mid V_{2}, B, G_{o}\right) q\left(V_{0}=V_{2} \mid B, D(\mathbf{I})\right) \tag{17}
\end{align*}
$$

In state A, the cut is $\mathcal{C}\left(V_{0}, V_{l}-V_{0}\right)=\mathcal{C}\left(V_{0}, \emptyset\right)=\emptyset$ for both paths, and in state B the cut is $\mathcal{C}\left(V_{0}, V_{l}-V_{0}\right)=$ $\mathcal{C}\left(V_{1}, V_{2}\right)=\mathcal{C}_{12}$ for both paths.

Following previous calculation, we have the proposal probability ratio for choosing $V_{0}=V_{1}$ in path 1 ,
$\frac{q\left(V_{0}=V_{1} \mid B, D(\mathbf{I})\right)}{q\left(V_{0}=V_{1} \mid A, D(\mathbf{I})\right)}=\frac{\prod_{e \in \mathcal{C}\left(V_{1}, V_{2}\right)}\left(1-q_{e}\right)}{\prod_{e \in \mathcal{C}\left(V_{1}, \emptyset\right)}\left(1-q_{e}\right)}=\prod_{e \in \mathcal{C}_{12}}\left(1-q_{e}\right)$.
Similarly, we have the probability ratio for choosing $V_{0}=V_{2}$ in path 2 ,
$\frac{q\left(V_{0}=V_{2} \mid B, D(\mathbf{I})\right)}{q\left(V_{0}=V_{2} \mid A, D(\mathbf{I})\right)}=\frac{\prod_{e \in \mathcal{C}\left(V_{2}, V_{1}\right)}\left(1-q_{e}\right)}{\prod_{e \in \mathcal{C}\left(V_{2}, \emptyset\right)}\left(1-q_{e}\right)}=\prod_{e \in \mathcal{C}_{12}}\left(1-q_{e}\right)$.
Plug in the above equations, we obtain the ratio,

$$
\begin{equation*}
\frac{q(B \rightarrow A)}{q(A \rightarrow B)}=\prod_{e \in \mathcal{C}_{12}}\left(1-q_{e}\right) \tag{19}
\end{equation*}
$$

$\cdot \frac{q\left(l^{\prime}=1 \mid V_{1}, B, G_{o}\right) q\left(V_{1} \mid A, D(\mathbf{I})\right)+q\left(l^{\prime}=2 \mid V_{2}, B, G_{o}\right) q\left(V_{2} \mid A, D(\mathbf{I})\right)}{q\left(l^{\prime}=2 \mid V_{1}, A, G_{o}\right) q\left(V_{1} \mid A, D(\mathbf{I})\right)+q\left(l^{\prime}=1 \mid V_{2}, A, G_{o}\right) q\left(V_{2} \mid A, D(\mathbf{I})\right)}$

The proposal probabilities for l^{\prime} must be designed in such a way that:

$$
\begin{equation*}
\frac{q\left(l^{\prime}=1 \mid V_{1}, B, G_{o}\right)}{q\left(l^{\prime}=2 \mid V_{1}, A, G_{o}\right)}=\frac{q\left(l^{\prime}=2 \mid V_{2}, B, G_{o}\right)}{q\left(l^{\prime}=1 \mid V_{2}, A, G_{o}\right)} \tag{21}
\end{equation*}
$$

This is easily satisfied in general. So we have,

$$
\begin{equation*}
\frac{q(B \rightarrow A)}{q(A \rightarrow B)}=\prod_{e \in \mathcal{C}\left(V_{0}, V_{l^{\prime}}-V_{0}\right)}\left(1-q_{e}\right) \cdot \frac{q\left(l^{\prime}=1 \mid V_{1}, B, G_{o}\right)}{q\left(l^{\prime}=2 \mid V_{1}, A, G_{o}\right)} \tag{22}
\end{equation*}
$$

In general notation, it is

$$
\frac{q(B \rightarrow A)}{q(A \rightarrow B)}=\frac{\prod_{e \in \mathcal{C}\left(V_{0}, V_{l^{\prime}}-V_{0}\right)}\left(1-q_{e}\right)}{\prod_{e \in \mathcal{C}\left(V_{0}, V_{l}-V_{0}\right)}\left(1-q_{e}\right)} \cdot \frac{q\left(l \mid V_{0}, B, G_{o}\right)}{q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)}
$$

Thus we have proved the exception case.
To prove ergodicity, observe that there is a non-zero probability that any given node is chosen as a connected component V_{0}. Since the node can then be assigned to any other subgraph with nonzero probability, and this holds for all nodes independently, we can get from any partition to any other partition with non-zero probability. End of Proof.

Now we shall construct $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)$ in such a way to obtain acceptance probability 1 . Then our algorithm becomes a generalized Gibbs sampler.

Suppose the Markov chain is at a partition state $A=$ $\left(V_{1}, V_{2}, \ldots, V_{n}\right)$, and a connected component $V_{0} \subset V_{l}$ is selected by SWC-1 as a candidate set. We have $n+1$ choices for state B by assigning V_{0} to one of the following vertex sets:
$\left\{S_{1}=V_{1}, S_{2}=V_{2}, \ldots, S_{l}=V_{l}-V_{0}, \ldots, S_{n}=V_{n}, S_{n+1}=\emptyset\right\}$
We denote the states as $B_{1}, B_{2}, \ldots, B_{n+1}$ respectively. Clearly $B_{l}=A$ and in state B_{n+1}, V_{0} is a new subgraph. In the exception case $V_{0}=V_{l}$, then the state $B_{n+1}=A$ is redundant, so one of them should be eliminated.

Denote the cuts between V_{0} and S_{j} by $\mathcal{C}_{j}=C\left(V_{0}, S_{j}\right)$ $j=1,2, \ldots, n+1$ with $\mathcal{C}\left(V_{0}, \emptyset\right)=\emptyset$.

Theorem 2 In the above notation, suppose V_{0} is a candidate vertex set selected by $S W C-1$, in partition state A. If the probabilities for merging V_{0} to $V_{l^{\prime}}$ are chosen to be

$$
\begin{equation*}
q\left(l^{\prime} \mid V_{0}, A, G_{o}\right) \propto \prod_{e \in \mathcal{C}_{l^{\prime}}}\left(1-q_{e}\right) \cdot p\left(B_{l^{\prime}} \mid \mathbf{I}\right) \tag{23}
\end{equation*}
$$

then the proposed move is accepted with probability $\alpha\left(A \rightarrow B_{l^{\prime}}\right)=1$.

The proof is straightforward and we omit it. We also omit the proof that $q\left(l^{\prime} \mid V_{0}, A, G_{o}\right)$ satisfies condition (21).

In practice, the posteriors $p(A \mid \mathbf{I})$ and $p\left(B_{l^{\prime}} \mid \mathbf{I}\right)$ only involve local computation and the cuts $\mathcal{C}_{l^{\prime}}$ are small or empty.

Intuitively, our algorithm samples a random set of vertices according to posterior for goodness-of-fit modulated by the cut probability to achieve detailed balance. This is much more general than the original SW-method [11] and the Gibbs sampler [4].

6. Experiments and performance analysis

Figure 7: Image segmentation: input image, atomic regions as image elements and the segmentation result.

The image segmentation experiment was performed on "atomic regions" obtained by edge detection and edge tracing. They form the nodes of our graph. The discriminative probability q_{e} for an edge $e=<v_{i}, v_{j}>$ is

$$
\begin{equation*}
q_{e}=0.1+0.9 e^{-\left(K L\left(p_{i} \| p_{j}\right)+K L\left(p_{j} \| p_{i}\right)\right) / 2} \tag{24}
\end{equation*}
$$

where p_{i}, p_{j} are 15 bin intensity histograms in the atomic regions, and $K L()$ is the Kullback-Leibler divergence. In general, this q_{e} can be learned through supervised learning. We use three simple image models $\left\{C_{1}, C_{2}, C_{3}\right\}$ (constant, linear and quadratic polynomial intensity) with additive noise modeled by a 15 bin histogram \mathcal{H}.

In Fig. 8 we plotted the energy vs time (in seconds) of the algorithm on the cheetah image in Fig.2, starting from a random graph partition. The Gibbs sampler converges in about 6,000 seconds and our algorithm in 40-50s.

Figure 8: Convergence comparison with Gibbs sampler (upper curve) for the cheetah image. The Gibbs sampler must start with a high temperature and anneal slowly to get to the minimum energy level of our algorithm. Right plot shows a zoom-in view of the first 100 seconds.

Figure 9: Convergence comparison with SWC without discriminative models $\left(q_{e}=0.2,0.4,0.6\right)$ (dotted curves). Cheetah image (left), airplane image (right). The original Swendsen-Wang does not apply in this case.

In Fig. 9 we plotted the energy vs time (in seconds) of the algorithm on the cheetah image (left) and airplane image (right), starting from $\pi=\left\{G_{o}\right\}$. Convergence is even faster (15 seconds instead of 40 s) since the initial state has smaller energy. For the cheetah image, we also plotted the Gibbs sampler starting from a random partition (upper curve) and $\pi=\left\{G_{o}\right\}$ (lower curve). Both Gibbs samplers converge in about 6000s, so SWC-1 is 400 times faster!

Figure 10: The curve grouping: input image, edge map and grouping result.

We also plotted in Fig. 8 and 9 the behavior of SWC without discriminative models by fixing the edge weight to constants $q_{e}=0.2,0.4,0.6$ (see dotted curves). It slows down significantly. Sometimes the algorithm cannot reach the same low energy as with discriminative models.

In the perceptual grouping experiment we group a map of edgelets obtained from a Canny edge map into long and smooth curves by adding and removing edgelets. The curve prior is based on 3 point histograms learned from hand segmented examples. The likelihood measures the difference in pixels between the input edge map and the grouping result. The graph nodes are the edgelets, and the discriminative probability q_{e} is based on the 3-point histogram and on the gap that has to be filled between the edgelets.

References

[1] P. J. Green, "Reversible jump MCMC comput. and Bayes. model determination",Biometrika,82, 711-32 1995
[2] T. Hofmann, J.M. Buhmann, "Pairwise data clustering by deterministic annealing", PAMI, 19(1), 1-14, 1997.
[3] A.K. Jain, R. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 1988.
[4] S. Geman, D. Geman, "Stochastic relaxation, Gibbs distrib., Bayesian restoration of img", PAMI, vol. 6, 721-741, 1984.
[5] S. Kirkpatrick, C. Gelatt, M. Vecchi, "Optimization by simulated annealing", Science, 220(4598), 671-680, 1983.
[6] V. Kolmogorov, R. Zabih, "What energy functions can be min. via graph cuts?", $E C C V, 2002$
[7] N. Metropolis, et al. "Eqns of the state calculation by fast computing machines", J. Chem. Phys, 21, 1087-91, 1953.
[8] S. Roy, I. Cox, "A max-flow formulation of the n-camera stereo correspondence problem", ICCV, 1998.
[9] J. Shi, J. Malik, "Normalized cuts and image segmentation", PAMI, 22, no 8, pp. 888-905, 2000.
[10] Z.W. Tu, S. C. Zhu, "Image segmentation by data-driven MCMC", PAMI, 24, no. 5, 2002.
[11] R.H. Swendsen, J.S. Wang, "Nonuniversal critical dynamics in MC simulations", Phys. Rev. Lett., 58 no. 2, pp.86-88, 1987
[12] Z. Wu and R. Leahy, "An optimal graph theoretic approach to data clustering PAMI, vol.15, 1101-1113, 1993.

