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Abstract

Markov chain Monte Carlo (MCMC) methods have been used in many fields (physics,
chemistry, biology, and computer science) for simulation, inference, and optimization.
In many applications, Markov chains are simulated for sampling from a target prob-
abilities π(X) defined on graphs G. The graph vertices represent elements of the
system, the edges represent spatial relationships while X is a vector of variables on
the vertices which often take discrete values called labels or colors. Designing efficient
Markov chains is a challenging task when the variables are strongly coupled. Because
of this, methods such as the single-site Gibbs sampler often experience suboptimal
performance. A well-celebrated algorithm, the Swendsen-Wang (1987) (SW) method,
can address the coupling problem. It clusters the vertices as connected components
after turning off some edges probabilistically, and changes the color of one cluster
as a whole. It is known to mix rapidly under certain conditions. Unfortunately, the
SW method has limited applicability and slows down in the presence of ”external
fields” e.g. likelihoods in Bayesian inference. In this paper, we present a general
cluster algorithm which extends the SW algorithm to general Bayesian inference on
graphs. We focus on image analysis problems where the graph sizes are in the order of
103− 106 with small connectivity. The edge probabilities for clustering are computed
using discriminative probabilities from data. We design versions of the algorithm to
work on multi-grid and multi-level graphs, and present applications to two typical
problems in image analysis, namely image segmentation and motion analysis. In our
experiments, the algorithm is at least two orders of magnitude faster (in CPU time)
than the single-site Gibbs sampler.

Keywords: Swendsen-Wang, data augmentation, auxiliary variables, slice sampling,

multi-grid sampling, multi-level sampling.
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1 Introduction

Markov chain Monte Carlo (MCMC) methods are general computing tools for simulation,

inference, and optimization in many fields. The essence of MCMC is to design a Markov

chain whose transition kernel K has a unique invariant (target) probability π(X) predefined

in a task. For example, π(X) could be a Bayesian posterior probability or a probability

governing the states of a physical system. In this paper, we are interested in Markov chains

with finite states X = (x1, x2, ..., xn) defined on the vertices V = {v1, v2, ..., vn} of a graph

G =< V,E >, where the edges E represent spatial relationships and similarity between

the nodes. Such problems are often referred as graph coloring (or labeling) and have very

broad applications in physics, biology and computer science.

Although the method presented in this paper is applicable to general graphs and target

probabilities, we will focus on two examples in image analysis, namely image segmentation

and motion analysis. For such applications, the graph G consists of image elements such

as pixels and is very large, having 103 − 106 vertices. At the same time, G is sparse,

having constant O(1) nearest neighbor connectivity that does not grow with the number of

vertices. The state xi is the color (or label) for image segmentation or discretized motion

velocity for motion analysis.

In the literature, a generally applicable algorithm for Markov chain design is the Gibbs

sampler (Geman and Geman 1984) and its generalizations, such as multi-grid (Goodman

and Sokal 1989), parameter expansion (Liu and Wu 1999), simulated tempering (Geyer

and Thompson 1995), and parallel tempering (Geyer 1991). These methods are sometimes

slow, especially when strong coupling between the variables occurs. The strong coupling is

frequent in image analysis because of strong prior models used to regularize the results.

One method that addresses the coupling problem is the Swendsen-Wang (1987) method

for simulating the Ising/Potts models (Ising 1925, Potts 1953) in statistical physics. At each

iteration, the Swendsen-Wang (SW) method forms a random graph by turning on/off the

edges between vertices with identical labels through sampling Bernoulli variables defined

on edges. Then it changes the color of all vertices of one cluster (connected component) in

a single step.
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The SW method is found to mix rapidly under certain conditions. For example, Cooper

and Frieze (1999) show that SW has polynomial mixing time on the Ising/Potts models

for graphs with O(1) connectivity, even near the critical temperature. Gore and Jerrum

(1997) showed that SW has exponential mixing time when G is a complete graph. Huber

(2002) designed bounding chains for the SW method to diagnose exact sampling for high

and low temperatures of the Potts model. The SW convergence can also be analyzed using

a maximal correlation technique (Liu 2001, chapter 7). Despite its success, the power of

the SW method is limited for two reasons.

1. It is only directly applicable to the Ising/Potts models and cannot be applied easily

to arbitrary probabilities on general graphs (Higdon 1998).

2. It uses a constant probability for the binary variables on edges, and does not make

use of the data information in clustering the vertices. Because of this, it slows down

in the presence of ”external fields” i.e. data (Higdon 1998).

In this paper, we present a general cluster algorithm which extends the SW-method in

the following aspects.

1. Designed from the Metropolis-Hastings perspective, it is applicable to general prob-

abilities on graphs.

2. It utilizes discriminative probabilities on the edges, computed from the input data, to

measure the compatibility of the two adjacent vertices. Therefore the clustering step

is informed by the data (external field) and leads to significant speedup empirically.

3. It is extended to multi-grid and multi-level graphs for hierarchic graph labeling.

In our two sets of experiments on image analysis (segmentation and motion), the algo-

rithm is at least two orders of magnitude faster than the Gibbs sampler (see Figs. 6, 7).

In the literature, there are two famous interpretations of the SW-method, namely the

Random Cluster Model (RCM) interpretation of Edwards and Sokal (1988) and slice sam-

pling intepretation of Higdon (1998). Both interpretations view the SW method as a data

augmentation method (Tanner and Wong 1987). More details are given in Section 2.2.
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In this paper, we take a third route by interpreting SW as a Metropolis-Hastings step

using the auxiliary variables for proposing the moves. Each step is a reversible jump (Green

1995), observing the detailed balance equations. The key observation is that the proposal

probability ratio can be calculated neatly as a ratio of products of probabilities on a small

number of edges on the border of the cluster.

The paper is organized as follows. We start with a background introduction on the Potts

model and the Swendsen-Wang algorithm in Section (2). Then we present our generalized

method through the Metropolis-Hastings perspective in Section (3). Section (4) shows the

first application to image segmentation. Then we proceed to the multi-grid and multi-level

cluster algorithm in Section (5). The motion experiments are reported in Section (6). We

will compare the performance of our method with the single site Gibbs sampler. The paper

is concluded in Section (7) with discussions.

2 Background: Potts model, SW and interpretations

In this section, we review the Potts model, the SW method and its two interpretations.

2.1 SW for Potts models

Let G =< V,E > be an adjacency graph, such as a lattice with 4 neighbor connections.

Each vertex vi ∈ V has a state variable xi with a finite number of values (labels, colors),

xi ∈ {1, 2, ...,L}, where the total number of labels L is predefined. The Potts model is

defined as

πPTS(X) ∝ exp{β
∑

<i,j>∈E

1(xi = xj)}. (1)

where 1(xi = xj) is the indicator function, equal to 1 if condition xi = xj is observed, and 0

otherwise. In more general cases, β = βij may be position dependent. We usually consider

the ferro-magnetic system having β > 0, which favors the same color for neighboring

vertices. The Potts model is used as a prior probability in many Bayesian inference tasks.

As Fig.1.(a) illustrates, the SW method introduces a set of auxiliary variables on edges,

U = {µij : µij ∈ {0, 1}, ∀ < i, j >∈ E}. (2)
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The edge < i, j > is turned off if and only if µij = 0. The µij are conditionally

independent given X and each µij follows a Bernoulli distribution conditional on xi, xj.

µij|(xi, xj) ∼ Bernoulli(ρ1(xi = xj)), ρ = 1− e−β. (3)

Thus µij = 1 with probability ρ if xi = xj, and µij = 1 with probability 0 if xi 6= xj.

Figure 1: Illustrating the SW method. (a) An adjacency graph G where each edge < i, j >

is augmented with a binary variable µij ∈ {1, 0}. (b) A labeling of the graph G where

the edges connecting vertices of different colors are removed. (c). A number of connected

components obtained by turning off some edges in (b) probabilistically.

The SW method iterates two steps.

1. The clustering step. Given the current state X, the auxiliary variables in U

are sampled according to eqn. (3). First, all edges < i, j > with xi 6= xj are turned off

deterministically, as Fig. 1.(b) shows. Then, each of the remaining edges is turned off

with probability 1 − ρ. The edges E are divided into the ”on” and ”off” sets respectively

depending on whether µij = 1 or 0.

E = Eon(U) ∪ Eoff(U). (4)

The edges in Eon(U) form a number of connected components {cp1, ..., cpK}, shown in

Fig. 1.(c). We denote the set of connected components by

CP(U) = {cpi : i = 1, 2, ..., K, } with ∪K
i=1 cpi = V. (5)

All vertices in a connected component cpi have the same color.

2. The swapping step. One connected component cp ∈ CP(U) is selected at random

and a color y is assigned to all vertices in cp. The color y follows a uniform probability,
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xi = y ∀ vi ∈ cp, y ∼ unif{1, 2, ...,L}. (6)

In this step, one may choose to repeat the random color swapping for all the connected

components in CP(U) independently.

In a modified version due to Wolff (1989), a vertex v ∈ V is chosen and a connected com-

ponent is grown following the Bernoulli trials on edges around v. This saves computation

in the clustering step, but larger components have a higher chance to be selected.

2.2 SW Interpretations and generalizations

There have been a number of different interpretations and generalizations of the Swendsen-

Wang method, all viewing it as a data augmentation method (Tanner and Wong 1987).

The first interpretation (Edward and Sokal 1988) on the Potts model makes a connection

with the Random Cluster Model. The variables X and U are viewed as jointly being

sampled from

pES(X,U) ∝
∏

<i,j>∈E

[(1− ρ)1(µij = 0) + ρ1(µij = 1) · 1(xi = xj)]

∝ (1− ρ)|Eoff(U)| · ρEon(U) ·
∏

<i,j>∈Eon(U)

1(xi = xj).
(7)

The marginal probability pES(X) is the Potts model, while the marginal pES(U) is

the Random Cluster Model. The Swendsen-Wang algorithm is viewed as sampling from

the joint probability pES(X,U) by alternatively sampling the two conditional probabilities

pES(U|X) and pES(X|U). This interpretation lead to the design of the bounding chain

(Huber 2002) for exact sampling.

Of particular interest is the second interpretation, due to Higdon (1998). This method

works in a more general setup where the probability considered takes the form

π(X) ∝ p0(X)
∏
k∈K

bk(X), (8)

For the Potts model, we have bk(X) = ψ(xi, xj) ∝ eβ1(xi=xj).

The data is augmented with a set U = {uk, k ∈ K} of continuous auxiliary variables

uk ∼ U([0, bk(X)]). Then X and U are being jointly sampled from
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pHGD(X,U) ∝ p0(X)
∏
k∈K

1[0 ≤ uk ≤ bk(X)]. (9)

Again, the marginal distribution pHGD(X) is the posterior probability (8) and the algo-

rithm proceeds by alternatively sampling from the two conditional probabilities pHGD(U|X)

and pHGD(X|U). We have

pHGD(X|U) ∝ p0(X)
∏
k∈K

1[uk ≤ bk(X)], (10)

which means that X|U is distributed according to p0(X) with the constraints uk ≤ bk(X).

In the case of the Potts model, the constraints state that in each connected component

(cluster) all nodes have the same label. The clusters are observed to be independent. In

general however, sampling X with the constraints is a difficult task (Higdon 1998, p.5,

Besag and Green 1993).

Higdon (1998) also introduced a partial decoupling method in which the auxiliary vari-

ables are sampled from U([0, bk(X)δk ]), which for the Potts model implies that the formed

clusters are not independent anymore. Again, in general, obtaining samples from the con-

ditional probability pHGD(X|U) is difficult, and Higdon (1998) presents only applications

with Markov Random Fields based on pairwise priors.

Our method generalizes the partial decoupling in three ways. First, it does not assume

any particular (factorized) form of the probability distribution. Second, it gives an ex-

plicit acceptance probability, which greatly increases the method’s applicability. Third, we

present applications using higher level priors that are not based on pairwise potentials.

In the next section, we will describe our simple and explicit method based on Metropolis-

Hastings, that uses auxiliary variables and samples from an arbitrary probability.

3 Generalizing SW to arbitrary probabilities on graphs

In this section, we generalize the SW to arbitrary probabilities from the perspective of the

Metropolis-Hastings method (Metropolis et al 1953, Hastings 1970). Our method iterates

three steps: (i) a clustering step driven by data, (ii) a label swapping step which can intro-

duce new labels, and (iii) an acceptance step for the proposed labeling. Worth mentioning
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is simplicity of the formula for calculating the acceptance probability.

We describe the three steps in the next three subsections, and then we show how our

method reduces to the original SW when working on the Potts models. Many of the results

in this section have been derived in Barbu and Zhu (2005) and have been mentioned here

just for the sake of completeness. For more details and proofs, the reader is refered to

Barbu and Zhu (2005).

(a) Input image (b) atomic regions (c) segmentation

Figure 2: Example of image segmentation. (a) Input image. (b) Atomic regions by edge

detection followed by edge tracing and contour closing, each being a vertex of the graph G.

(c) Segmentation (labeling) result where each atomic region is assigned a color or label.

We illustrate the algorithm by an image segmentation example, shown in Fig. 2. The

input image I, shown in Fig. 2.(a), is decomposed into a number of ”atomic regions”

(to reduce the graph size), as seen in Fig. 2.(b). They are obtained by edge detection,

edge tracing and contour closing in a preprocessing stage. Each atomic region has nearly

constant intensity and is a vertex of the graph G. Two vertices are connected if their

atomic regions are adjacent (i.e. share a common boundary). Fig. 2.(c) is a result of our

algorithm, optimizing a Bayesian probability π(X) = π(X|I) (see section 4 for details),

where X is a labeling (coloring) of the vertices of G. Note that the number of labels L is

unknown, and we do not distinguish between the different permutations of the labels.

3.1 Step 1: data-driven clustering

We augment the adjacency graph G with a set of binary variables U = {µij :< i, j >∈ E}

on the edges, as in the original SW method. Each µij follows a Bernoulli probability

depending on the current state of the two vertices xi and xj,
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µij|(xi, xj) ∼ Bernoulli(qij1(xi = xj)), ∀ < i, j >∈ E. (11)

The quantity qij is a probability on edge < i, j > telling how likely it is that the vertices

vi and vj have the same label. In Bayesian inference where the target π(X) is a posterior

probability, qij can be informed by the data.

For the image segmentation example, qij is an empirical measure of the similarity be-

tween the intensity statistics at vi and vj (see Section 4 for details).

The design of qij is application specific and is part of the so called discriminative meth-

ods. In Sections 4 and 6 we will show how to define the edge weights for our particular

applications. Our method will work with any qij, but a good choice will inform the clus-

tering step and achieve faster convergence.

Figure 3: Nine examples of the connected components for the horse image computed using

discriminative edge probabilities given that X is a uniform color X = c for all vertices.

Fig. 3 shows nine clustering samples of the horse image. For each example, we initialize

the graph by setting all vertices to the same color (X = c) and then sample the edge

probabilities independently,
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U|X = c ∼
∏

<i,j>∈E

Bernoulli(qij). (12)

The connected components in CP(U) are shown in different gray levels. For Fig. 3,

this procedure is repeated nine times, each time starting from the same state X = c, to

show different realizations of the clustering step. As we can see, the edge probabilities lead

to ”meaningful” clusters which correspond to distinct objects in the image. Such effects

cannot be observed using constant edge probabilities.

3.2 Step 2: swapping of colors

Let X = (V1, V2, ..., Vn) be the current coloring state. The edge variables U, sampled

conditional on X, decompose X into a number of connected components

CP(U|X) = {cpi : i = 1, 2, ..., N(U|X)}. (13)

One connected component R ∈ CP(U|X) is selected at random by sampling from a

probability based only on U, usually uniform over the set of connected components, or

proportional to |R|. Let the current color of R be XR = ` ∈ {1, 2, ..., n}, and select a new

color `′ ∈ {1, 2, ..., n, n+ 1} for R with probability q(l′|R,X) (to be designed) independent

of U, obtaining a new state X′. There are three cases, shown in Fig. 4.

Figure 4: Three labeling states XA,XB,XC which differ only in the color of a cluster R.

1. The canonical case: R is a proper subset of V` and `′ ≤ n. That is, a portion of V` is

re-grouped into an existing color V`′ , and the number of colors remains n in X′. The

moves between XA ↔ XB in Fig. 4 are examples.
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2. The merge case: R = V` in X is the set of all vertices that have color ` and `′ ≤

n, ` 6= `′. That is, color V` is merged to V`′ , and the number of distinct colors reduces

to n− 1 in X′. The moves XC → XA or XC → XB in Fig. 4 are examples.

3. The split case: R is a proper subset of V` and `′ = n + 1. V` is split into two pieces

and the number of distinct colors increases to n+1 in X′. The moves XA → XC and

XB → XC in Fig. 4 are examples.

Note that this swapping step is also different from the original SW with Potts model as we

allow new colors in each step. The number n of colors is not fixed.

3.3 Step 3: accepting the swap

The previous two steps basically have proposed a move between two states X and X′ which

differ in the coloring of a connected component R. In the third step we accept the move

with probability given by the Metropolis-Hastings method

α(X → X′) = min{1, q(X
′ → X)

q(X → X′)
· π(X′)

π(X)
}. (14)

where q(X′ → X) and q(X → X′) are the proposal probabilities between X and X′. If

the proposal is rejected, the Markov chain remains at state X.

For the canonical case, there is a unique path for moving between X and X′ in one

step – choosing R and changing its color. The proposal probability ratio is the product of

two ratios decided by the clustering and swapping steps respectively: (i) the probability

ratio for selecting R as candidate in the clustering step in states X and X′, and (ii) the

probability ratio for selecting the new label for R in the swapping step.

q(X′ → X)

q(X → X′)
=
q(R|X′)

q(R|X)
· q(XR = `|R,X′)

q(XR = `′|R,X)
. (15)

For the split and merge cases, it can happen that there are two paths between X and

X′. For the merge case, this only happens when R = V` for some ` and at the same time

V`′ is a connected component. Then one path is obtained by choosing R = V` and merging

it to V`′ and the other path is obtained by choosing R = V`′ and merging it with V`. The
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two paths in the split case are the reverse of the merge paths. The conclusion above still

holds if the proposal probability q(XR = `|R,X′) satisfies the following condition:

q(XR = `′|R = V`,X
′)

q(XR = `|R = V`′ ,X)
=
q(XR = `|R = V`′ ,X′)

q(XR = `′|R = V`,X)
(16)

which means that the ratio of the proposal probabilities for split and for merge on each

path is the same.

One commonly used proposal probability satisfying the above condition is:

q(l|R,X) ∝


a if R adjacent to Vl

b if R not adjacent to Vl

c if l 6∈ L (new region)

(17)

where the values a, b, c are positive arbitrary constants (e.g. a = 10, b = 1, c = 0.1).

To obtain an explicit formula for the acceptance probability, we need the following

Definition 1 Let X = (V1, V2, ..., VL) be a coloring state, and R ∈ CP(U |X) a connected

component. Define the ”cut” between R and Vk as the set of edges between R and Vk\R,

C(R, Vk) = {< i, j >: i ∈ R, j ∈ Vk\R}, ∀k. (18)

The crosses in Fig.4.(a) and (b) show the cut C(R, V1) and C(R, V2) respectively. In

Fig.4.(c), R = V3 and thus C(R, V3) = ∅ and
∏

<i,j>∈C(R,V3)(1− qij) = 1.

A key observation by Barbu and Zhu (2005) is that the probability ratio q(R|X′)
q(R|X)

for

proposing R only depends on the cuts between R and the rest of the vertices,

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V`)

(1− qij)∏
<i,j>∈C(R,V`′ )

(1− qij)
. (19)

where qij’s are the edge probabilities.

The acceptance probability is given by the following

Theorem 1 (Barbu and Zhu, 2005) The acceptance probability for the proposed swapping

is

α(X → X′) = min{1,
∏

<i,j>∈C(R,V`′ )
(1− qij)∏

<i,j>∈C(R,V`)
(1− qij)

· q(XR = `|R,X′)

q(XR = `′|R,X)
· π(X′)

π(X)
}. (20)

[Proof] See Theorem 2 in Barbu and Zhu (2005).
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3.4 Interpretation of the SW algorithm from the Metropolis-

Hastings perspective

Now we are ready to derive the original SW method as a special case.

Proposition 1 If we set the edge probability to a constant qij = 1− e−β, then

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V`)

(1− qij)∏
<i,j>∈C(R,V`′ )

(1− qij)
= exp{β(|C(R, V`′)| − |C(R, V`)|)}, (21)

where |C| is the cardinality of the set C.

As X and X′ only differ in the label of R, the potentials for the Potts model only differ at

the cuts between R and V` and V`′ respectively.

Proposition 2 For the Potts model π(X) = po(X) = πPTS(X),

πPTS(XR = `′|X∂R)

πPTS(XR = `|X∂R)
= exp{β(|C(R, V`)| − |C(R, V`′)|)} (22)

Therefore, following eq. (20) (where the proposal probabilities for the labels are uniform),

the acceptance probability for the Potts model is always one, due to cancellation.

α(X → X′) = 1. (23)

Therefore the third acceptance step is always omitted. This interpretation is related to

the Wolff (1989) modification (see also Liu 2001, p.157).

3.5 The multiple swapping scheme

Given a set of connected components CP(U|X) (see eqn. (13)) after the clustering step, in-

stead of swapping a single component R, we can swap (change) all (or a chosen number of)

connected components simultaneously. There is room for designing the proposal probabili-

ties for labeling these connected components, independently or jointly. In what follows, we

assume the labels are chosen independently for each connected component cp ∈ CP(U|X),

by sampling from a proposal probability q(Xcp = l|cp). Suppose we obtain a new state

X′ after swapping. Let Eon(X) ⊂ E and Eon(X
′) ⊂ E be the subsets of edges connecting

vertices of same color in X and X′ respectively. We define two cuts as set differences

C(X → X′) = Eon(X
′)− Eon(X), and C(X′ → X) = Eon(X)− Eon(X

′), (24)
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We denote the set of connected components which have different colors before and after

the swapping by D(X,X′) = {cp : Xcp 6= X′
cp}.

Proposition 3 The acceptance probability of the multiple swapping scheme is

α(X → X′) = min{1,

∏
<i,j>∈C(X→X′)

(1− qij)∏
<i,j>∈C(X′→X)

(1− qij)

∏
cp∈D(X,X′)

q(X′
cp| cp)∏

cp∈D(X,X′)

q(Xcp| cp)
· π(X′)

π(X)
} (25)

[Proof] See Barbu (2005).

Observe that when D = {R} is a single connected component, this reduces to Thm. 1.

It is worth mentioning that if we swap all connected components simultaneously, then

the Markov transition graph of K(X,X′) is fully connected, i.e.

K(X,X′) = q(X → X′)α(X → X′) > 0, ∀ X,X′ ∈ Ω. (26)

This means that the Markov chain can walk between any two partitions in a single step

with nonzero probability.

4 Experiment 1: image segmentation

Our first experiment tests the cluster algorithm in an image segmentation task. The objec-

tive is to partition the image into a number of disjoint regions (as shown in Figs. 2 and 3)

so that each region is coherent in the sense of fitting to some image models. The final re-

sult should optimize a Bayesian posterior probability π(X) ∝ L(I|X)po(X) with likelihood

L(I|X) and prior po(X). In such a problem, G is an adjacency graph whose vertices V are

a set of atomic regions (see Figs. 2 and 3). Usually |V | is in the order of hundreds. The

edge probability should represent a good similarity measure between the intensity models

of the atomic regions. As an approximate model for each atomic region v ∈ V , we choose

a 15-bin intensity histogram h normalized to 1. We choose the edge probability as

qij = exp{−1

2
(KL(hi||hj) +KL(hj||hi))}, (27)

where KL() is the Kullback-Leibler divergence between the two histograms. In our

experiments we observed that this edge probability is a good similarity measure and leads

to good clustering, as Fig. 3 shows.
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Now we briefly define the target probability in this experiment. Let X = (V1, ..., VL)

be a coloring with L labels of the graph, L being an unknown variable. Each set Vk has a

model Θk with parameters θk. Different colors are assumed to be independent. Therefore

we have,

π(X) = π(X|I) ∝
L∏

k=1

[L(I(Vk); θk)po(Θk)]po(X). (28)

(a) input image (b) atomic regions (c) segmentation result

Figure 5: More results for image segmentation.

We selected three types of simple intensity models to account for different image prop-
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erties. The first model is a non-parametric histogram H, which in practice is represented

by a vector of B bins (H1, ...,HB) normalized to 1. It accounts for cluttered objects, such

as vegetation,

I(x, y; θ0) ∼ H iid, ∀(x, y) ∈ Vk,where θ0 = H. (29)

The other two are regression models for the smooth change of intensities in the two-

dimensional image plane (x, y), with the residues following a histogram H

I(x, y; θ1) = β0 + β1x+ β2y +H iid, ∀(x, y) ∈ Vk. (30)

I(x, y; θ2) = β0 + β1x+ β2y + β3x
2 + β4xy + β5y

2 +H iid, ∀(x, y) ∈ Vk. (31)

where θ1 = (β0, β1, β2,H) and θ2 = (β0, β1, β2, β3, β4, β5,H).

In all cases, the likelihood is expressed in terms of the entropy of the histogram H

L(I(Vk); θk) ∝
∏
v∈Vk

H(Iv) =
B∏

j=1

Hnj

j = exp(−|Vk|entropy(H)). (32)

The model complexity is penalized by a prior probability po(Θk), while the parameters

θ in the above likelihoods are computed deterministically at each step as the best least

square fit. The deterministic fitting could be replaced by specialized model fitting steps.

This was done in Tu and Zhu, (2002) and is beyond the scope of our experiments.

The prior model po(X) encourages large and compact regions with a small number of

colors, as it was suggested in Tu and Zhu (2002). Let r1, r2, ..., rm, m ≥ L be the connected

components of all Vk, k = 1, ...,L. Then the prior is

po(X) ∝ exp{−α0L− α1m− α2

m∑
k=1

Area(rk)
0.9}. (33)

Experimentally we choose α0 = 35, α1 = 15 for all experiments. The scale factor α2

controls the size of the segmentation regions and takes values between 5 and 15 and is

chosen for each example by experiment.

The reassignment probability q(`|R,X) is defined in terms of the intensity histogram

H(R) of the region R to be reassigned and the histogram H(V`) of each region V`.

q(`|R,X) ∝


10e−KL(H(R),H(V`)) if R adjacent to V`

e−KL(H(R),H(V`)) if R not adjacent to V`

0.1 if ` 6∈ L (new region)

(34)
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For the image segmentation example (horse) shown in Figs. 2 and 3, we compare the cluster

method with the single-site Gibbs sampler and the results are displayed in Fig. 6. Since

our goal is to maximize the posterior probability π(X), we add an annealing scheme with

a high initial temperature To that decreases to a low temperature (0.5 in our experiments).

We plot − ln π(X) vs. CPU time in seconds on a Pentium IV PC. For the Gibbs sampler,

we needed to start with a high initial temperature (To ∼ 100)) and use a slow annealing

schedule (5000|V | steps, |V | being the graph size) to reach the same energy level as our

algorithm. We experimentally observed that starting the Gibbs sampler with a lower initial

temperature or using a faster annealing schedule will cause it to remain stuck in a local

minimum of higher energy, and not reach the final energy in any reasonable time. The

cluster algorithm can run at low temperature, starting with an initial temperature To = 15

and using a fast annealing scheme (15|V | steps). Fig. 6.(a) plots the two algorithms at the

first 1, 400 seconds, and Fig. 6.(b) is a zoomed-in view of the first 5 seconds.

(a) convergence CPU time in seconds (b) Zoomed-in view of the first 5 seconds.

Figure 6: The plot of− ln π(X) vs. CPU time for both the Gibbs sampler and our algorithm

for the horse image. The algorithms are compared by measuring the CPU time in seconds

on a Pentium IV PC. (a). Plot of the first 1, 400 seconds. The Gibbs sampler needs a high

initial temperature and slow annealing step to achieve the same energy level. (b). The

zoomed-in view of the first 5 seconds.

Each algorithms was run with two initializations. One is a random labeling of the

atomic regions and thus has higher energy, while the other initialization sets all vertices to
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the same color. The cluster algorithm is run five times in each case. All runs converged

to one solution (see Fig.2.(c)) within 1 second, which is hundreds of times faster than the

Gibbs sampler.

(a) (b)

Figure 7: Convergence comparison between the clustering method and Gibbs sampler in

CPU time (seconds) on the artificial image (circles, triangle and rectangles) in the first row

of Fig.5. (a). The first 12,000 seconds. (Right) Zoomed-in view of the first 30 seconds.

Our algorithm is 1,000 times faster in this case.

Fig.5 shows four more experimental results. Using the same method as in the horse

image, we plot − ln π(X) against CPU time in Fig. 7 for the first image of Fig.5. In

experiments, we also compared the effect of the edge probabilities. The clustering algorithm

is hundreds of times times slower if we use a constant edge probability µij = c ∈ (0, 1) as the

original SW method does. The single-site Gibbs sampler is an example with qij = 0, ∀ i, j.

The reader is also referred to Barbu and Zhu (2005) for more results and an evaluation of

the influence of graph edge weights on the convergence speed.

5 The Multi-level and Multi-grid cluster algorithms

When the graph G is large, for example, |V | ∼ 104 − 106 in image analysis, the clustering

step has to sample many edges and is computationally costly. This section presents two

strategies for improving the speed – the multi-grid and multi-level cluster algorithm. Our

methods are different from the multi-grid and multi-level samplings ideas in the statistical
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literature (see Gilks et al 1996 and Liu 2001)

Figure 8: The cluster algorithm on multiple graph levels for motion segmentation. Con-

nected components are frozen and collapsed into single vertices in the level above.

5.1 Rationale for the multi-level and multi-grid cluster algorithms

The multi-level cluster algorithm is motivated by the problem of hierarchic graph labeling.

Fig. 8 illustrates an example in motion segmentation. Suppose we are given two consecutive

image frames in a video, and our goal consists of three parts: (i) calculate the planar

velocity (i.e. optical flow) of the pixels in the second frame based on their displacement

between the two frames, (ii) segment (group) the pixels into regions of coherent intensities

and motion, and (iii) further group the intensity regions into moving objects, such as the

running cheetah and the grass background where each object should have coherent motion

in the image plane.

This situation can be represented as a three-level labeling X = (X(0),X(1),X(2)), of

three graphs shown in Fig. 8,

{G(s) =< V (s), E(s) > : s = 0, 1, 2}. (35)

G(0) is the image lattice with each vertex being a pixel. The pixels are labeled by X(0)

according to their intensity and planar motion velocity. The range of possible velocities
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is discretized and the pixel label encodes the value of the pixel’s velocity. By the label

X(0), the pixels are grouped into a number of small regions of nearly constant intensity

and constant velocity in G(1). The vertices in G(1) are further labeled by X(1) according to

their intensities and grouped into a smaller graph G(2), which is in turn labeled by X(2).

The vertex size is reduced from ∼ 105 in G(0) to ∼ 102 in G(1) and to ∼ 10 in G(2).

In multi-grid sampling, we introduce an ”attention window” Λ (see Fig. 9) which may

change location and size over time. To save computation, the cluster algorithm is limited

to the attention window at each step, and this is equivalent to sampling a conditional

probability, XΛ ∼ π(XΛ|XΛ̄).

The multi-grid and multi-level methods in the next two subsections are ways for de-

signing sub-kernels that are reversible.

5.2 Multi-grid clustering

Let Λ be an “attention window” on a graph G, and X = (V1, V2, ..., VL) be the current

labeling state. Λ divides the vertices into two parts,

V = VΛ ∪ VΛ̄, and X = (XΛ,Xλ̄). (36)

Figure 9: Multigrid swapping: computation is restricted to different “attention” windows

Λ of various sizes, with the rest of the labels fixed.

For example, Fig. 9 displays a rectangular window Λ (in red dashed) in a lattice G.

The window Λ cuts some edges in each subset Vk, k = 1, 2, ...,L, which we denote by

C(Vk,Λ) = {< s, t >: s ∈ Vk ∩ VΛ, t ∈ Vk ∩ VΛ̄}.
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In Fig. 9 the window Λ intersects with three subsets V1 (white), V2 (black), and V3 (gray),

and all edges crossing the (red) rectangle window are cut.

The multi-grid cluster algorithm

1. Select an attention window Λ ⊂ G.

2. Cluster the vertices within Λ and select a connected component R.

3. Swap the label of R.

4. Accept the swap with probability , using XΛ̄ as boundary condition.

Proposition 4 The acceptance probability for changing the label of the candidate cluster

R from ` in state X to `′ in state X′ within the window Λ is

α(X → X′) = min{1,

∏
<i,j>∈C(R,V`′ )−C(V`′ ,Λ)

(1− qij)∏
<i,j>∈C(R,V`)−C(V`,Λ)

(1− qij)
· q(XR = `|R,X′)

q(XR = `′|R,X)
· π(X′)

π(X)
}. (37)

In Fig. 9, we have X = XA and X′ = XB (` = 1, `′ = 3).

The difference between this equation and equation (20) is that some edges in C(V`,Λ)∪

C(V`′ ,Λ) no longer participate in the computation.

Proposition 5 The Markov chain simulated by the multi-grid scheme has invariant prob-

ability π(XΛ|XΛ̄) and its kernel K observes the detailed balance equation,

π(XΛ|XΛ̄)K(XΛ,YΛ) = π(YΛ|XΛ̄)K(YΛ,XΛ). (38)

It is easy to prove that the multi-grid method is also invariant to the full posterior proba-

bility. The proof relies of the fact that if p(x, y) is a two dimensional probability, and K is

a Markov kernel reversible with respect to the conditional probability p(x|y)

p(x|y)K(x, x′) = p(x′|y)K1(x
′, x), ∀x, x′. (39)

then K observes the detailed balance equation after augmenting y

p(x, y)K((x, y), (x′, y′)) = p(x′, y′)K((x′, y′), (x, y)). (40)

In practice, the attention window Λ is randomly chosen in such a way that its position

probability is uniform and its size probability is inversely proportional to the size.
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5.3 The multi-level cluster algorithm

Following the notations in Section (5.1), the problem is hierarchical labeling with G =

(G(0),G(1),G(2)) and X = (X(0),X(1),X(2)). Each level of labeling X(s) is a partition of

the lattice

X(s) = {V (s)
1 , V

(s)
2 , ..., V

(s)

m(s)}, s = 0, 1, 2. (41)

Level 1 Level 2

Figure 10: The multi-level cluster algorithm. Computation is performed at different levels

of granularity, where the connected components from the lower level collapse into vertices

in the higher level.

Definition 2 The hierarchical labels X = (X(0),X(1),X(2)) are said to be ”nested” if

∀ V (s) ∈ X(s), ∃V (s+1) ∈ X(s+1) so that V (s) ⊂ V (s+1), s = 0, 1.

A nested X has a tree structure for the levels of labels. A vertex in level s+1 has a number

of child vertices in level s.

The multi-level cluster algorithm

1. Select a level s, usually in an increasing order.

2. Cluster the vertices in G(s) and select a connected component R.

3. Swap the label of R.

4. Accept the swap with probability (20), using the lower levels, denoted by X(<s), as

boundary conditions.
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Proposition 6 Let π(X) be a probability on the nested labeling X = (X(0),X(1),X(2)), and

let the kernels of the cluster algorithm on the three levels of graphs be K(0), K(1) and K(2)

respectively. Then they observe the detailed balance equations with respect to the conditional

probabilities,

π(X(s)|X(<s))K(s)(X(s),Y(s)) = π(Y(s)|X(<s))K(s)(Y(s),X(s)), s = 0, 1, 2. (42)

where X(<s) = (X0, ...,Xs−1). Therefore the multi-level cluster algorithm is reversible.

6 Experiment 2: hierarchical motion segmentation

Now we report the experiments on motion analysis using the multi-grid and multi-level

cluster algorithm.

image frame I1 image frame I2

Figure 11: Two consecutive image frames in which the foreground and background are

moving. The pixels in area φ1 are not seen in I2 and similarly the pixels in φ2 are not

seen in image I1, and they are called ”half-occluded” pixels. The rest of the pixels can be

mapped between the two frames.

Let I1, I2 be two consecutive image frames in a video as Fig. 11 illustrates. Due to

occlusion, some points are visible in only one image, e.g. the white areas φ1 in I1 and φ2

in I2, and are called ”half-occluded” points. All other points can be mapped between the

two image frames I1, I2. The mapping function is called the ”optical flow” field,

(u, v) : I2\φ2 7→ I1\φ1. (43)
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For any point (x, y) in the first frame, let (u(x, y), v(x, y)) be the pixel displacement, i.e.

planar motion velocity. Usually one can assume that the intensity of a point will be constant

between two frames (with stable illumination and Lambertian surfaces), and the residue

is modeled by Gaussian noise n ∼ N (0, σ2
o). Let’s take the second image as the reference

frame,

I2(x, y) = I1(x− u(x, y), y − v(x, y)) + n(x, y), ∀ (x, y) ∈ I2\φ2. (44)

We discretize the images I1 and I2 into lattices Λ1 and Λ2 respectively. In our motion

analysis problem, we consider the pixels in the second image frame as the lattice G(0) = Λ2,

and each pixel has three labels x = (x(0), x(1), x(2)).

1. The velocity x(0) = (u, v) is discretized into 21 × 9 = 189 different planar velocities,

since we assume the range of displacements between two consecutive frames to be

−5 ≤ u ≤ 5,−2 ≤ v ≤ 2 with 1/2 pixel precision. For pixels that have no correspon-

dent in the first frame, i.e. pixels in φ2, their velocities cannot be decided and are

denoted by nil. They are labeled based on the context information on their intensity

through image segmentation. By this convention, we can consider x(0) as a velocity

label x(0) ∈ {nil, 1, 2, ..., 189}.

2. The intensity label x(1) ∈ {1, 2, ...,L(1)} for image segmentation. That is, the image

lattice is partitioned into a number of regions with coherent intensities in terms of

fitting to the three families of image models from section 4.

3. The object label x(2) ∈ {1, 2, ...,L(2)}. That is, the image lattice is partitioned into a

number of L(2) objects which have coherent motion.

To fix notation, we divide the image frames into two parts, namely occluded and non-

occluded, I1 = (I1,φ1 , I1,φ̄1
), I2 = (I2,φ2 , I2,φ̄2

).

The target probability is the Bayesian posterior,

π(X) = π(X(0),X(1),X(2)|I1, I2) ∝ L(I1,φ̄1
|I2,φ̄2

,X(0))L(I2|X(1))πo(X). (45)
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The first likelihood is specified by the optical flow model,

L(I1,φ̄1
|I2,φ̄2

,X(0)) =
∏

(x,y)∈Λ2\φ2

1√
2πσo

exp{− 1

2σ2
o

(I2(x, y)− I1(x− u(x, y), y − v(x, y)))2}.

(46)

where σ2
0 = 1

|Λ2\φ2|
∑

(x,y)∈Λ2\φ2
(I2(x, y)− I1(x− u(x, y), y − v(x, y)))2.

The second likelihood is the same as the image segmentation likelihood in Section (4).

The prior probability assumes piecewise coherent motion. That is, each moving object

o = 1, 2, ...,L(2) has a constant planar velocity co ∈ {1, 2, ..., 189} plus a Markov model for

the adjacent velocities. Also each object (and region) has a compact boundary prior.

πo(X) ∝
L(2)∏
o=1

exp{−α
∑

v,x(2)(v)=o

|x(0)(v)− co|2 − β
∑

v′∈∂v

|x(0)(v′)− x(0)(v)|}

L(1)∏
l=1

exp{−γ|∂V
(1)
l |}

L(0)∏
i=1

exp{−δ|∂V
(0)
i |} exp{−λ0L(0) − λ1L(1) − λ2L(2)} (47)

where we experimentally set α = 1, β = 0.5, γ = 1, δ = 1, λ0 = 10 while λ1, λ2 are scale

parameter for the intensity and motion segmentation respectively (usually λ1 = 10, λ2 = 5).

Now we define the edge probabilities and the reassignment probabilities at the three

levels of the graph.

At level X(0), let s = (x, y) and s′ = (x′, y′) be two adjacent pixels, and (u, v) the

common motion velocity of both pixels, The edge probability is defined as

q(0)(s, s′) = min(u,v) exp{−[|I2(x, y)− I1(x− u, y − v)|+ |I2(x
′, y′)− I1(x

′ − u, y′ − v)|]/7

−|I2(x, y)− I2(x
′, y′)|/10}.

The reassignment probability q(l|R,X(0)) is chosen as in eqn. (17).

At the region level X(1), the edge weight between two adjacent nodes v, v′ (each being

a set of pixels) is based on the KL divergence between their intensity histograms hu, hv, as

in Section 4. The reassignment probability q(l|R,X(1)) is also defined in terms of intensity

histograms, following (34).

q(2)(v, v′) = exp{−1

2
(KL(hm(v)||hm(v′)) +KL(hm(v′)||hm(v))}. (48)

The reassignment probability q(l|R,X(2)) is defined in terms of the motion histograms for

each object, similar to (34).
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frame I1 frame I2 image segmentation motion segmentation

Figure 12: Hierarchical motion analysis. From left to right: first frame I1, second frame I2,

image segmentation, motion segmentation. The image segmentation is the result at level

s = 1 and the motion segmentation is the result at level s = 2. For the color images (the

3rd and 4th rows) we treated the three R,G, B color bands each as a gray image.

At the object level X(2), the edge weight between two adjacent nodes v, v′ (each being a

set of pixels) is based on the KL divergence between their motion histograms hm(v), hm(v′).

We maintain the histogram of the motion velocities of each object.

We run the multi-grid and multi-level SW-cut on a number of synthetic and real world

motion images. The multi-grid method was only performed on the pixel level, with the

window probability inversely proportional to its size. We show four results in Fig. 12.

The first image shows two moving rectangles where only the 8 corners provide reliable

local velocity (aperture problem) and the image segmentation is instrumental in deriving

the right result. For the other three sequences, the algorithm obtains satisfactory results

despite large motion and complex background. The cheetah image in Fig. 8 is a fifth
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example.

We choose the segmentation example – the cheetah image in Fig. 5 for comparison of the

different cluster algorithm methods. In section (4), the pixels are grouped deterministically

into atomic regions in a preprocessing stage. Now we perform the cluster algorithm in two

levels and the atomic regions are generated by one level of the cluster algorithm process.

Figure 13: Convergence comparison of multigrid and multi-level cluster algorithm (right)

and the Gibbs sampler (left) for the cheetah image in Fig. 5. (see text for explanation)

For the cheetah image, we plot in Fig. 13 the − ln π(X) vs the CPU time for the various

methods (right), and of the Gibbs sampler and our algorithm on atomic regions (left). The

multi-level cluster algorithm was run in two initializations.

We observe that the two level cluster algorithm is much slower than the one level

clustering. The latter assumed deterministic atomic regions. But the two level algorithm

can reach a deeper minimum as it has more flexibility in forming the atomic regions.

Another point to mention is that the multi-grid method is the fastest among the methods

that work directly on pixels.

The Gibbs sampler plotted in Fig. 13(left) was run on the deterministic atomic regions

not the pixels. If it is run on the pixels, we cannot get it to converge to the minimum in

any reasonable time.
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7 Discussion

In this paper, we only report the empirical speed of the cluster algorithm methods. In the

literature, there are no analytic results for even the original Swendsen-Wang method in

the presence of external fields, for it is difficult to quantify the external fields. In our case,

it is impractical to quantify the natural images with a reasonable model. These problems

remain open for further investigation.

It is known (Boykov, Veksler and Zabih 2001) that even finding the minimum energy of

a Potts model is NP-hard. This suggests that one should not expect to find polynomial time

algorithms for solving image analysis applications, but one should look for good suboptimal

solutions instead. In this view, one should expect the algorithm presented in this paper to

be a good suboptimal solution for graphs with a large number of nodes.
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