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Introduction

Online Learning

e Online Learning
@ In big data learning, we often encounter datasets so large that they
cannot fit in the computer memory.
@ Online learning methods are capable of addressing these issues by
constructing the model sequentially, one example at a time.

© We assume that the samples are i.i.d / adversary.
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The Framework for An Online Learning Algorithm

@ Assuming wi = 0, and we only can access data samples
{(xj,yi) :i=1,2,---} streaming in one at a time.
efori=1,2---
Receive observation x; € R"
Predict y;
Receive the true value y; € R
Suffer the loss function f(wy;;z;) in which z; = (x;, i)
Update w;;1 from w; and z;
e end

o Target: minimize the cumulative loss 1 S°7 | f(w;; z;).
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Regret

@ In the theoretical analysis of online learning, it is of interest to bound

the regret:

1< 5N
Rn = ;Zf(w,-;z,-) —min > F(w;zi),
i=1 i=1

n-

which measures what is lost compared to offline learning, in a way

measuring the convergence speed of online algorithms.
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Literature Review: SGD

e Stochastic Gradient Descent (SGD)

@ SGD is the most widely used in traditional online learning area.

e The original idea can be traced back to Robbins and Monro

(1951) and Kiefer and Wolfowitz (1952).

e However, the SGD algorithm cannot select features.
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Literature Review

Literature Review: Online Learning with Sparsity

To learn a better model, we need to consider feature selection in

online learning.

Langford et al. (2009) proposed the framework of truncated gradient.

Shalev-Shwartz and Tewari (2011) designed stochastic mirror descent.

@ Truncated second order methods in Fan et al. (2018); Langford et al.
(2009); Wu et al. (2017).
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Literature Review: OPG and RDA

@ Two main frameworks for online learning with regularization
@ Online Proximal Gradient Descent (OPG)
@ Regularized Dual Averaging (RDA)
@ OPG is designed by Duchi and Singer (2009) and Duchi et al. (2010),
and RDA is proposed by Xiao (2010).
e Some variants, designed by Suzuki (2013) and Ouyang et al. (2013).

Q@ OPG-SADMM
© RDA-SADMM
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Literature Review

Literature Review

Hazan et al. (2007)
@ An online Newton method

@ Uses a similar idea with running averages, to update the inverse of

the Hessian matrix
@ Has O(p?) computational complexity

@ Did not address the issues of variable standardization and feature

selection.
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Literature Review: Summary

@ The classical online learning algorithms, such as SGD, cannot select

features.

@ In recent years, many new online learning algorithms are proposed to

select features.

@ However, no matter in theory or numerical experiments, the proposed
algorithms cannot recover the true features. This concern motivates

us to develop our running averages framework.
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Online Learning Algorithms by Running Averages

Framework of Running Averages Algorithms

OnlineFSA J6]
Data Stream (x;, yi)
OLS-th B
Running Averages OElnet ,8
Hx, My, SxXx, Sxy, n
omcpP B

Maintaining running averages

Model extraction

Figure: The running averages are updated as the data is received. The model is
extracted from the running averages only when desired.
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Online Learning Algorithms by Running Averages

Running Averages

We have samples x; = (xj1, X2, - - ,x,-p)T € RP and responses y; € R, we
can compute running averages as follows:

o Sx = Hyx = %Z?:lxi’sy = #y = %Z?:lyi

® S =5 iy Xix]

° Sy =7 iy yiXi

°S, = %27:1 %

@ Sample size: n

Can be updated online, e.g.

(n+1) _ N (n)
x _n—|—1”X +n+1

Xn+1-
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Online Learning Algorithms by Running Averages

Standardization of Running Averages

@ The standardization of data matrix X and vector y.
o X=(X-1,u])D
o §=(y—mln)
o D is diagonal matrix with the inverse of the standard deviation of X;.
@ The equivalent standardization using running averages:
o Szy = X7y = 1DX"y — y,Dp, = DS,, — 1, Dps,
o Sz = %)N(T)N( = D(% — 1] )D = D(Sic — 1) )D

@ We will assume data is standardized in all algorithms below
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Online Least Squares (OLS)

@ Normal equations

1 1
=XTX8 = =XTy.
n n

@ Since %XTX and %XTy can be computed by running averages, we
obtain:

SXXIB = Sxy .

@ Thus, online least squares is equivalent to offline least squares.
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Online Least Squares with Thresholding (OLSth)

@ Aimed at solving the following constrained minimization problem:

_ 2
sBin< 2n||y XBI-

@ A non-convex and NP-hard problem because of the sparsity

constraint.
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Online Learning Algorithms by Running Averages

Algorithm 1 Online Least Squares with Thresholding (OLSth)
Input: Running averages S,x, S,,, sample size n, sparsity level k.

Output: Trained regression parameter vector 8 with ||3|lo < k.

1: Fit the model by OLS, obtaining 3
2: Keep only the k variables with largest |BJ|

3: Fit the model on the selected features by OLS
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Online Feature Selection with Annealing (OFSA)

@ An iterative thresholding algorithm (Barbu et al., 2017).

@ Can simultaneously estimate coefficients and select features.

@ Uses the gradient %W = S,«B — Sxy, which can be updated

online.

@ Uses an annealing sch
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Figure: Different annealing schedules M, vs iteration number e.
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Online Learning Algorithms by Running Averages

Algorithm 2 Online Feature Selection with Annealing (OFSA)

Input: Running averages Sy, Sx,, sample size n, sparsity level k, anneal-
ing parameter L.
Output: Trained regression parameter vector 3 with ||3|lo < k.
Initialize 3 = 0.
for t =1 to N do
Update 8 = B — n(Sxx/3 — Sxy)
Keep only the M, variables with highest |3;| and renumber them
1,..., M,.
end for
Fit the model on the selected features by OLS.
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Online Learning Algorithms by Running Averages

Online Lasso and Online Adaptive Lasso

@ The Lasso estimator, proposed in (Tibshirani, 1996), solves the
optimization problem

1 2
arg min 5 ly — XBII° + AJ; 18j1;
where A > 0 is a tuning parameter.
@ However, because Lasso estimator cannot recover the true features,
Zou (2006) proposed the adaptive Lasso, which solves the weighted
Lasso

1 - .
argmﬁlln EHy - X18||2 + AHZ VVJ|BJ|)J = 1727 Py
j=1
where w; is the weight for 3;. We can use the OLS coefficients as
weights when n > p.
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Online Learning Algorithms by Running Averages

Algorithm 3 Online Adaptive Lasso (OALa)

Input: Running averages S,x, Sy, sample size n, penalty \.
Output: Trained sparse regression parameter vector 3.
1: Compute the OLS estimate BOIS
2: Define a p x p diagonal weight matrix X,, with the |,(A30IS] as diagonal
entries.
3: Denote SY, = X,,S,X,, and S =X,S,
Initialize B8 = 0.
for t =1 to N do
Update B <+ B — n(S¥.08 — Sy,)
Update B < 5,)\(8B) (Sya(:) is the soft thresholding operator).
end for
Fit the model on the selected features by OLS.
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Model Selection

beta
beta

. . 3 .
0 10 20 30 40 50 60 70 80 90 10 102 102 107" 10° 10"
Feature lambda

Figure: The solution path for online OLSth (Left) and online Lasso (Right) for the
Year Prediction MSD dataset.
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Online MCP

@ We also can cover non-convex penalties into our running averages

framework, such as MCP (Zhang, 2010).

@ The MCP solves

1
argmin 7 ly = XB|I* + P(8,3), where

d 151 x
P(3,\) = /\Zsign(ﬁj)/o (1-35) 4%,

j=1
where b > 0 is a fixed parameter.
@ Zhang (2010) proved that MCP can recover the support of the true
features with high probability.
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Online Learning Algorithms by Running Averages

First, we define the MCP thresholding operator:

0 if 0 < [t[ <A,
Oumcp(tiA) = ¢ SPBA if A <[] < bA,
t if [t > bA.

Algorithm 4 Online MCP (OMCP)

Input: Running averages S,x,S,,, sample size n, penalty \.
Output: Trained sparse regression parameter vector 3.
Initialize 3 = 0.
for t =1 to Nt do

Update 16 — :6 - n(sxxﬁ - Sxy)

Update B < Omcp(8; 1))
end for
Fit the model on the selected features by OLS.
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Online Learning Algorithms by Running Averages

Online Classification by running averages

@ Unlike the regression, we cannot use running averages to design
classification algorithms directly.

@ But we can use the methods above and apply them as is to the
classification problems

@ There are theoretical guarantees for true feature recovery for some of

them
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Online Learning Algorithms by Running Averages

Memory and Computational Complexity

o In general, the memory complexity for the running averages is O(p?)
because S, is a p X p matrix.

@ The computational complexity of maintaining the running averages is
O(np?).

@ Except OLSth, the computational complexity for obtaining the model
using the running average-based algorithms is O(p?) based on the

limited number of iterations, each taking O(p?) time.

@ As to OLSth, it is at most O(p®) because we need to solve a system.
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Model Adaptation

@ In online learning, the model that generates the data can change in

time.

We would like the estimated model to adapt as well.

@ The running averages are updated using
1
pd = (1= 4wl + anxata

with a, = 1/(n+1).

For adaptation, use larger o, e.g. o, = 0.01.

Gives larger weight to recent observations
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Model Adaptation

@ Model update

“S(n+1) = (1 - Oln)lllin) + apXpt1

with o, = 0.01.

RMSE

Coeficients

Sample size n Sample size n w ‘Sample size n ‘Sample size n

Figure: From left to right: true signal, parameters without adaptation, parameter

with adaption, RMSE for prediction.
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Theoretical Analysis

The equivalence between online algorithms by running
averages and offline algorithms

Proposition

Consider the penalized regression problem
min o ly — X8| + P(8: )
in —||y — T A),
B 2n y

where P(3; \) = JI'J=1 P(Bj; ) is a penalty function. It is equivalent to
the online optimization based on running averages:

mﬁin %BTSXX,B - ,BTsxy + P(ﬁr )‘)
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Feature Selection Property for OLSth

Proposition
Suppose we have the linear model
y = XB* + €, €~ N(0,d5°),

where X = [x{ ,xJ -+ ,x[]" is the data matrix, with x; € RP, j =1
Let Sg+ = {j, B} | = k* and

. 40 [log(p) 1 xT
> — ,0 < A < Amin X
i 571> 25—, (- X7X).

Then with probability 1 — 2p~1, the index set of top k* values of |,@J| is
exactly Sg+.
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OLS-th

——Theorem 4 bound
~—Prop. 2 bound
——Experimental bound

e o \

—— Theorem 4 bound
~—Prop. 2 bound
—— Experimental bound

102 102
102 10° 10° 10*

number of variables p sample size n
Figure: Comparison of theoretical and experimental bounds.

Experimental bound: smallest 3 to detect all variables 99% of the time.
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Feature Selection Property for OFSA

Theorem

(True feature recovery for OFSA) If the loss function satisfies the RSC
with parameter ms and RSS with parameter Ms, and Ms/ms < 1.26 for
any k* < s < p, and 3* satisfies

o Ao+ 2D B |s0) [ plog(p)
Bmin := min 15> ——=—15> N

Then after t = 14 5% Iog(10||D A ||)] + 1 iterations, the OFSA algorithm
will output (3 (1) satisfying SB = Sg» with probability 1 — 4p~t.
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Theoretical Analysis

Regret Analysis

Theorem

(Regret of OLSth) With some mild assumptions for Xs,., if the true 3*

satisfies

. |
min 15]] > O\g/(_p) for VX < 0.9Amin(VE) — n%.

2
where ng = max(p + 1,400 log(n), & <2I(')‘;g(g;) + 1) ) > p, then with

probability at least 1 — 3/n the regret of OLSth satisfies:
1« 1

Rn:; Z( TIB )

<kn n
) Hﬁ”o 1

(i —x B < 025y,

(1)
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Classification

Theorem

(True support recovery) Consider the special case of a single index
model, y = G{h(X3*) + €}, in which X ~ N(0,X) and X satisfies the
irrepresentable condition. If G, h are known strictly increasing continuous
functions and under the assumptions from Neykov et al. (2016), the least

squares Lasso algorithm can recover the support of true features correctly
for discrete response y.
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Simulated Data Experiments

o Data with uniformly correlated predictors: given a scalar «, we
generate z; ~ N(0,1), then we set

xj = azjlpy1 + u;, with u; ~ N(0,1,).

Finally we obtain the data matrix X = [x{ ,xJ,--- ,x}]".
o Correlation between any two variables is a?/(1 + a?), and we set
a =1 in our experiments.

@ Given X, the dependent response y is generated from the linear
regression model:

y = XB* + ¢, with e ~ N(0,1,).

where 3" is a p-dimensional sparse parameter vector.
@ The true coefficients 3 = 0 except 3j;. = 3, j* = 1,2, k, where
5 is signal strength value.
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Experi ts

Numerical Results - Regression

Variable Detection Rate (%)

Test RMSE

n ‘Lasso SGD SIHT SADMM OLSth OFSA OALa OElnet OMCP‘ Lasso SGD SIHT SADMM OLSth OFSA OALa OElnet OMCP

p = 1000, k = 100, strong signal 5 =1

10° |32.14 11.22 18.10 77.40 99.96 81.05 32.12 91.27 |11.63 9.424 23.15 95.05 5.592 1.072 5.045 11.61 3.405
3-10%|46.05 11.22 4123 100 100 100 4519 99.93 |9.464 8.772 13.45 93.50 1.017 1.017 1.017 9.557 1.047
10* |72.40 1122 6578 100 100 100 72.42 100 | 6.07 7.913 13.34 94.92 1.003 1.003 1.003 6.042 1.003
p = 1000, k = 100, weak signal § = 0.1
10° [31.33 10.89 17.53 11.92 77.64 13.15 31.33 69.98 |1.557 1.387 2.522 9.560 1.728 1.197 1.712 1555 1.244
3.10%44.85 10.89 40.11 95.57 98.68 95.77 44.11 95.17 |1.389 1.335 1.674 9.392 1.044 1.024 1.042 1.403 1.044
10* |70.53 1089 6248 100 100 100 71.10 100 |1.183 1.276 1.663 9.541 1.003 1.003 1.003 1.176 1.003
p = 1000, k = 100, weak signal 5 = 0.01
10° (14.09 10.89 1353 10.11 12.15 11.34 14.08 13.53 |1.128 1.022 1.027 1.363 1.069 1.201 1.060 1.124 1.128
10* |31.58 10.89 19.80 2248 26.64 23.16 31.54 32.52 |1.009 1.007 1.007 1.370 1.025 1.021 1.024 1.006 1.005
10° |81.93 10.89 11.30 80.55 85.19 80.84 81.80 85.03 |1.001 1.005 1.010 1.382 1.003 1.003 1.003 1.003 1.003
3-10°)98.66 10.89 10.80 98.94 99.28 98.96 98.71 99.27 |0.999 1.002 1.008 1.383 0.998 0.998 0.998 0.998 0.998
100 - 10.89 - 100 100 100 100 100 - 0.997 1.005 - 0.996 0.996 0.996 0.996 0.996
p = 10000, k = 1000, strong signal 3 =1
10% [22.80 10.20 24.01 98.09 99.56 98.80 22.76 41.71 |40.05 29.38 4221 913.4 4.606 2.415 3.675 40.72 33.48
3.10%26.64 1020 10.22 100 100 100 26.48 69.38 |37.11 27.82 42.01 9246 1.017 1.017 1.017 36.99 20.58
10° - 1020 8.89 100 100 100 3465 9548 | - 2473 4175 860.8 1.006 1.006 1.006 33.35 6.972
p = 10000, k = 1000, weak signal 3 = 0.1
10* [22.69 10.22 21.03 14.51 98.64 149 2291 41.63 |4.219 3.097 4.326 9251 4.351 1.128 4.337 4.194 3.502
3-10%)26.69 1022 876 100 100 100 26.46 68.84 |3.819 2.957 4.321 93.51 1.017 1.017 1.017 3.838 2.314
10° - 1022 8.87 100 100 100 3460 9525| - 2.666 4291 86.09 1.006 1.006 1.006 3.485 1.230
p = 10000, k = 1000, weak signal 5 = 0.01
10% [21.89 10.21 17.03 10.07 31.23 10.48 21.83 26.92 |1.113 1.058 1.089 9.118 1.144 1.076 1.143 1.105 1.090
3.10%25.87 1021 9.30 35.02 52.45 35.14 26.12 43.86 |1.070 1.043 1.086 9.228 1.108 1.046 1.108 1.079 1.056
10° - 10.21 10.19 77.32 83.78 77.35 3337 74.11 - 1.0351.083 8368 1.025 1.016 1.024 1.061 1.022
3-10% - 1021 9.92 9853 98.96 98.53 45.66 96.08 | - 1.026 1.082 7.482 1.002 1.001 1.002 1.043 1.003
100 - 10.21 - 100 100 100 7254 100 - 1.009 1.079 - 1.000 1.000 1.000 1.017 1.000
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Computation Times - Regression

ComputationTime (s) for Regression

n

‘Lasso SGD SIHT SADMM OLSth OFSA OALa OElnet OMCP RAVE

p = 1000, k = 100, strong signal 5 =1

10
3-10%
10*

4.332 0.003 0.007 5.326
26.91 0.010 0.019 15.73
47.32 0.032 0.065 51.80

0.052 0.267 7.566 9.648
0.051 0.267 2.972 7.113
0.051 0.266 2.404 5.885

15.66
10.21
7.123

0.026
0.076
0.246

p = 1000, k = 100, weak signal 3 = 0.1

10
3-10%
10*

3.989 0.003 0.006 5.387
27.82 0.010 0.018 15.98
54.50 0.030 0.066 53.01

0.051 0.266 7.258 7.706
0.052 0.266 6.407 6.332
0.051 0.266 2.692 5.814

16.30
15.91
9.843

0.027
0.076
0.251

p = 1000, k = 100, weak signal 5 = 0.01

10
10*
10°
3-10°
100

5.353 0.004 0.006 6.703
48.13 0.031 0.067 67.82
4522 0.315 0.672  679.7
1172 0.951 2.001

0.052 0.266 7.453 9.741
0.051 0.267 7.735 4.961
0.051 0.266 7.657 5.120
2044  0.051 0.267 5.977 3.749
3.158 6.651 - 0.051 0.267 3.602 1.726

13.41
14.94
17.26
13.10
7.866

0.026
0.249
2.458
7.326
24.36

p = 10000, k = 1000, strong signal 3 =1

107
3.10*
10°

759.8 0.472 0.773  563.5
2049 1.421 2.319

18.88 25.52 1129 1451
1687 18.81 26.07 484.0 1092
4.748 7.739 5633 19.00 26.01 415.7 983.9

4735
501.7
462.5

12.54
37.62
124.8

p = 10000, k = 1000, weak signal 5 = 0.1

107
3-10*
10°

788.1 0.474 0.770  564.3
1887 1.428 2.320

18.89 25.78 1284 1241
1689 18.92 25.96 696.5 859.1
4.747 7.747 5632 18.91 25.96 627.3 884.1

479.4
434.2
466.2

12.48
37.41
1245

p = 10000, k = 1000, weak signal 5 = 0.01

10%
3.10*
10°
3-10°
109

Lizhe Sun, Adrian Barbu (FSU)

827.4 0.473 0.773  564.6
1973 1.426 2.327

18.91 25.95 1391
18.89 26.12 1646
18.81 25.99 1577
18.98 26.10 1521
19.02 26.11 1014

965.3
759.9
681.9
741.6
686.2

1693
4.770 7.742 5662
14.29 23.21 16989
47.72 77.40 -
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503.0
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12.49
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Numerical Results - Classification

Variable Detection Rate (%)

AUC

|[FOFS SOFS

OPG RDA OFSA OLSth OLasso OMCP‘FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP

p = 1000, k = 100,

strong signal f =1

10*
3 x 10*
10°

10.64
10.64
10.64

10.19
9.95
9.95

10.46 10.97 38.89 30.30 34.70
10.42 10.34 67.67 59.32 56.18
10.43 11.08 94.95 93.21 86.90

41.54
67.52
94.77

0.995 0.992 0.992 0.990 0.995
0.994 0.992 0.992 0.989 0.998
0.994 0.992 0.992 0.990 1.000

0.990
0.996
1.000

0.996
0.997
0.999

0.996
0.998
1.000

p = 1000, kK = 100, weak signal 5 = 0.01

10*
3 x10*

10°
3x10°

10°

13.40
15.86
17.36
17.13
17.72

10.19
9.95
9.95
9.23
9.91

10.00 10.37 19.41
10.23 10.34 34.46
10.32 10.91 64.84
10.32 10.37 91.55

- - 99.97

15.93
27.35
56.42
88.91
99.94

22.55
35.14
61.07
88.69
99.88

23.81
37.70
64.95
91.58
99.97

0.827 0.829 0.828 0.828 0.824
0.827 0.829 0.829 0.829 0.831
0.830 0.831 0.831 0.830 0.834
0.826 0.828 0.828 0.827 0.833
0.828 0.829 - - 0.834

0.815
0.827
0.833
0.833
0.834

0.829
0.832
0.834
0.833
0.834

0.830
0.832
0.834
0.833
0.834

Time (s)

FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP RAVE

p = 1000, k = 100, strong signal 5 =1

10*
3 x 10*
10°

0.001 0.001 0.490 0.848 0.005 0.001 0.080
0.003 0.004 1.471 2.210 0.005 0.001 0.083
0.010 0.015 4.900 6.118 0.005 0.001 0.079

0.160
0.158
0.159

0.247
0.742
2.478

p = 1000, kK = 100, weak signal g = 0.01

107

3 x 10*
10°

3 x 10°
10°

0.001 0.001 0.494 0.815 0.005
0.003 0.004 1.481 2.093 0.005
0.010 0.015 4.935 5.827 0.005
0.030 0.044 14.81 17.31 0.005
0.100 0.146 - - 0.005

0.001
0.001
0.001
0.001
0.001

0.073
0.074
0.078
0.073
0.039

0.148
0.152
0.161
0.164
0.110

0.249
0.743
2.472
7.446
24.85
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Regret Analysis

Figure: Regret vs n for online algorithms, averaged from 20 runs. Left: strong
signal, middle: medium signal, right: weak signal
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Real Data Analysis

Table: The average R? for regression and AUC for classification.

Dataset n p  OLSth OFSA Lasso TSGD SADMM
Regression data

WIKIFace 53040 4096 0.547 0.545 0.503 0.400 0.487
Year Pred. MSD (nonlin.) 463715 4185 0.303 0.298 - 0 0

Year Prediction MSD 463715 90 0.237 0.237 0.237 0.157 0.183
n p OLSth OFSA Lasso FOFS SOFS

Classification data
Gisette 7000 5000 0.990 0.997 0.993 0.566 0.502
Dexter 600 20000 0.936 0.971 0.940 0.499 0.499

@ Average of 20 random splits.

@ For each method, multiple models are trained using various values of
the tuning parameters and sparsity levels k.
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Conclusion and Summary

A framework based on running averages
Data standardization and feature selection
Online versions of many current feature selection methods

Good performance in experiments w.r.t. other online or offline
methods
@ Advantages

o Can recover the support of the true signal with high probability
e Good convergence rate and low computation complexity

@ Disadvantages
o A very large p will run out of memory

@ Possible application: federated learning
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