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Introduction

Online Learning

Online Learning

1 In big data learning, we often encounter datasets so large that they

cannot fit in the computer memory.

2 Online learning methods are capable of addressing these issues by

constructing the model sequentially, one example at a time.

3 We assume that the samples are i.i.d / adversary.
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Introduction

The Framework for An Online Learning Algorithm

Assuming w1 = 0, and we only can access data samples

{(xi , yi ) : i = 1, 2, · · · } streaming in one at a time.

for i = 1, 2 · · ·

Receive observation xi ∈ Rn

Predict ŷi

Receive the true value yi ∈ R

Suffer the loss function f (wi ; zi ) in which zi = (xi , yi )

Update wi+1 from wi and zi

end

Target: minimize the cumulative loss 1
n

∑n
i=1 f (wi ; zi ).
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Introduction

Regret

In the theoretical analysis of online learning, it is of interest to bound

the regret:

Rn =
1

n

n∑
i=1

f (wi ; zi )−min
w

1

n

n∑
i=1

f (w; zi ),

which measures what is lost compared to offline learning, in a way

measuring the convergence speed of online algorithms.
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Literature Review

Literature Review: SGD

Stochastic Gradient Descent (SGD)

SGD is the most widely used in traditional online learning area.

The original idea can be traced back to Robbins and Monro

(1951) and Kiefer and Wolfowitz (1952).

However, the SGD algorithm cannot select features.

Lizhe Sun, Adrian Barbu (FSU) Online Learning with Model Selection October 16, 2019 6 / 40



Literature Review

Literature Review: Online Learning with Sparsity

To learn a better model, we need to consider feature selection in

online learning.

Langford et al. (2009) proposed the framework of truncated gradient.

Shalev-Shwartz and Tewari (2011) designed stochastic mirror descent.

Truncated second order methods in Fan et al. (2018); Langford et al.

(2009); Wu et al. (2017).
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Literature Review

Literature Review: OPG and RDA

Two main frameworks for online learning with regularization

1 Online Proximal Gradient Descent (OPG)

2 Regularized Dual Averaging (RDA)

OPG is designed by Duchi and Singer (2009) and Duchi et al. (2010),

and RDA is proposed by Xiao (2010).

Some variants, designed by Suzuki (2013) and Ouyang et al. (2013).

1 OPG-SADMM

2 RDA-SADMM
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Literature Review

Literature Review

Hazan et al. (2007)

An online Newton method

Uses a similar idea with running averages, to update the inverse of

the Hessian matrix

Has O(p2) computational complexity

Did not address the issues of variable standardization and feature

selection.
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Literature Review

Literature Review: Summary

The classical online learning algorithms, such as SGD, cannot select

features.

In recent years, many new online learning algorithms are proposed to

select features.

However, no matter in theory or numerical experiments, the proposed

algorithms cannot recover the true features. This concern motivates

us to develop our running averages framework.
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Online Learning Algorithms by Running Averages

Framework of Running Averages Algorithms

Figure: The running averages are updated as the data is received. The model is
extracted from the running averages only when desired.
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Online Learning Algorithms by Running Averages

Running Averages

We have samples xi = (xi1, xi2, · · · , xip)T ∈ Rp and responses yi ∈ R, we

can compute running averages as follows:

Sx = µx = 1
n

∑n
i=1 xi ,Sy = µy = 1

n

∑n
i=1 yi

Sxx = 1
n

∑n
i=1 xix

T
i

Sxy = 1
n

∑n
i=1 yixi

Syy = 1
n

∑n
i=1 y

2
i

Sample size: n

Can be updated online, e.g.

µ
(n+1)
x =

n

n + 1
µ
(n)
x +

1

n + 1
xn+1.
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Online Learning Algorithms by Running Averages

Standardization of Running Averages

The standardization of data matrix X and vector y.

X̃ = (X− 1nµ
T
x )D

ỹ = (y − µy1n)

D is diagonal matrix with the inverse of the standard deviation of Xi .

The equivalent standardization using running averages:

Sx̃ ỹ = 1
n X̃T ỹ = 1

nDXTy − µyDµx = DSxy − µyDµx

Sx̃ x̃ = 1
n X̃T X̃ = D( XT X

n − µxµ
T
x )D = D(Sxx − µxµ

T
x )D

We will assume data is standardized in all algorithms below
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Online Learning Algorithms by Running Averages

Online Least Squares (OLS)

Normal equations
1

n
XTXβ =

1

n
XTy.

Since 1
nXTX and 1

nXTy can be computed by running averages, we

obtain:

Sxxβ = Sxy .

Thus, online least squares is equivalent to offline least squares.
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Online Learning Algorithms by Running Averages

Online Least Squares with Thresholding (OLSth)

Aimed at solving the following constrained minimization problem:

min
β,‖β‖0≤k

1

2n
‖y − Xβ‖2.

A non-convex and NP-hard problem because of the sparsity

constraint.
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Online Learning Algorithms by Running Averages

Algorithm 1 Online Least Squares with Thresholding (OLSth)

Input: Running averages Sxx ,Sxy , sample size n, sparsity level k .

Output: Trained regression parameter vector β with ‖β‖0 ≤ k.

1: Fit the model by OLS, obtaining β̂

2: Keep only the k variables with largest |β̂j |

3: Fit the model on the selected features by OLS
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Online Learning Algorithms by Running Averages

Online Feature Selection with Annealing (OFSA)

An iterative thresholding algorithm (Barbu et al., 2017).

Can simultaneously estimate coefficients and select features.

Uses the gradient ∂
∂β
‖y−Xβ‖2

N = Sxxβ − Sxy , which can be updated

online.

Uses an annealing schedule Me to gradually remove features

Figure: Different annealing schedules Me vs iteration number e.
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Online Learning Algorithms by Running Averages

Algorithm 2 Online Feature Selection with Annealing (OFSA)

Input: Running averages Sxx ,Sxy , sample size n, sparsity level k , anneal-

ing parameter µ.

Output: Trained regression parameter vector β with ‖β‖0 ≤ k.

Initialize β = 0.

for t = 1 to N iter do

Update β ← β − η(Sxxβ − Sxy )

Keep only the Mt variables with highest |βj | and renumber them

1, ...,Mt .

end for

Fit the model on the selected features by OLS.
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Online Learning Algorithms by Running Averages

Online Lasso and Online Adaptive Lasso

The Lasso estimator, proposed in (Tibshirani, 1996), solves the

optimization problem

arg min
β

1

2n
‖y − Xβ‖2 + λ

p∑
j=1

|βj |,

where λ > 0 is a tuning parameter.

However, because Lasso estimator cannot recover the true features,

Zou (2006) proposed the adaptive Lasso, which solves the weighted

Lasso

arg min
β

1

2
‖y − Xβ‖2 + λn

p∑
j=1

wj |βj |, j = 1, 2, · · · , p,

where wj is the weight for βj . We can use the OLS coefficients as

weights when n > p.
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Online Learning Algorithms by Running Averages

Algorithm 3 Online Adaptive Lasso (OALa)

Input: Running averages Sxx ,Sxy , sample size n, penalty λ.

Output: Trained sparse regression parameter vector β.

1: Compute the OLS estimate β̂
ols

.

2: Define a p × p diagonal weight matrix Σw with the |β̂ols | as diagonal

entries.

3: Denote Sw
xx = ΣwSxxΣw and Sw

xy = ΣwSxy

Initialize β = 0.

for t = 1 to N iter do

Update β ← β − η(Sw
xxβ − Sw

xy )

Update β ← Sηλ(β) (Sηλ(·) is the soft thresholding operator).

end for

Fit the model on the selected features by OLS.
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Online Learning Algorithms by Running Averages

Model Selection

Figure: The solution path for online OLSth (Left) and online Lasso (Right) for the
Year Prediction MSD dataset.
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Online Learning Algorithms by Running Averages

Online MCP

We also can cover non-convex penalties into our running averages

framework, such as MCP (Zhang, 2010).

The MCP solves

arg min
β

1

2n
‖y − Xβ‖2 + P(β, λ), where

P(β, λ) = λ

p∑
j=1

sign(βj)

∫ |βj |
0

(
1− x

λb

)
+
dx ,

where b > 0 is a fixed parameter.

Zhang (2010) proved that MCP can recover the support of the true

features with high probability.
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Online Learning Algorithms by Running Averages

First, we define the MCP thresholding operator:

ΘMCP(t;λ) =


0 if 0 ≤ |t| ≤ λ,
t−sign(t)λ
1−1/b if λ < |t| ≤ bλ,

t if |t| > bλ.

Algorithm 4 Online MCP (OMCP)

Input: Running averages Sxx ,Sxy , sample size n, penalty λ.
Output: Trained sparse regression parameter vector β.

Initialize β = 0.
for t = 1 to N iter do

Update β ← β − η(Sxxβ − Sxy )
Update β ← ΘMCP(β; ηλ)

end for
Fit the model on the selected features by OLS.
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Online Learning Algorithms by Running Averages

Online Classification by running averages

Unlike the regression, we cannot use running averages to design

classification algorithms directly.

But we can use the methods above and apply them as is to the

classification problems

There are theoretical guarantees for true feature recovery for some of

them
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Online Learning Algorithms by Running Averages

Memory and Computational Complexity

In general, the memory complexity for the running averages is O(p2)

because Sxx is a p × p matrix.

The computational complexity of maintaining the running averages is

O(np2).

Except OLSth, the computational complexity for obtaining the model

using the running average-based algorithms is O(p2) based on the

limited number of iterations, each taking O(p2) time.

As to OLSth, it is at most O(p3) because we need to solve a system.
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Online Learning Algorithms by Running Averages

Model Adaptation

In online learning, the model that generates the data can change in

time.

We would like the estimated model to adapt as well.

The running averages are updated using

µ
(n+1)
x = (1− αn)µ

(n)
x + αnxn+1

with αn = 1/(n + 1).

For adaptation, use larger αn, e.g. αn = 0.01.

Gives larger weight to recent observations
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Online Learning Algorithms by Running Averages

Model Adaptation

Model update

µ
(n+1)
x = (1− αn)µ

(n)
x + αnxn+1

with αn = 0.01.

Figure: From left to right: true signal, parameters without adaptation, parameter

with adaption, RMSE for prediction.
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Theoretical Analysis

The equivalence between online algorithms by running
averages and offline algorithms

Proposition

Consider the penalized regression problem

min
β

1

2n
‖y − Xβ‖2 + P(β;λ),

where P(β;λ) =
∑p

j=1 P(βj ;λ) is a penalty function. It is equivalent to
the online optimization based on running averages:

min
β

1

2
βTSxxβ − βTSxy + P(β;λ).
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Theoretical Analysis

Feature Selection Property for OLSth

Proposition

Suppose we have the linear model

y = Xβ∗ + ε, ε ∼ N(0, σ2I),

where X = [xT1 , x
T
2 , · · · , xTn ]T is the data matrix, with xi ∈ Rp, i = 1, n.

Let Sβ∗ = {j , β∗j 6= 0}, |Sβ∗ | = k∗ and

min
j∈Sβ∗

|β∗j | >
4σ√
λ

√
log(p)

n
, 0 < λ ≤ λmin(

1

n
XTX).

Then with probability 1− 2p−1, the index set of top k∗ values of |β̂j | is
exactly Sβ∗ .
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Theoretical Analysis

OLS-th

Figure: Comparison of theoretical and experimental bounds.

Experimental bound: smallest β to detect all variables 99% of the time.

Lizhe Sun, Adrian Barbu (FSU) Online Learning with Model Selection October 16, 2019 30 / 40



Theoretical Analysis

Feature Selection Property for OFSA

Theorem

(True feature recovery for OFSA) If the loss function satisfies the RSC
with parameter ms and RSS with parameter Ms , and Ms/ms < 1.26 for
any k∗ ≤ s ≤ p, and β∗ satisfies

βmin := min
j∈Sβ∗

|βj | >
4η(σ + 2‖D∗β∗‖∞)

1− 1.62ρ

√
p log(p)

n
.

Then after t = [ 1
1.62ρ log(10‖D

∗β∗‖
βmin

)] + 1 iterations, the OFSA algorithm

will output β(t) satisfying Sβ(t) = Sβ∗ with probability 1− 4p−1.
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Theoretical Analysis

Regret Analysis

Theorem

(Regret of OLSth) With some mild assumptions for XSβ∗ , if the true β∗

satisfies

min
j∈Sβ∗

|β∗j | >
4σ

λ

√
log(p)√

n
, for

√
λ < 0.9λmin(

√
Σ)−

√
p

n0
. (1)

where n0 = max(p + 1, 400 log(n), 14

(
2 log(n)
log(p) + 1

)2
) > p, then with

probability at least 1− 3/n the regret of OLSth satisfies:

Rn=
1

n

n∑
i=1

(yi − xTi βi )
2− min
‖β‖0≤k

1

n

n∑
i=1

(yi − xTi β)2 ≤ O(
log2(n)

n
).
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Theoretical Analysis

Classification

Theorem

(True support recovery) Consider the special case of a single index

model, y = G{h(Xβ∗) + ε}, in which X ∼ N (0,Σ) and Σ satisfies the

irrepresentable condition. If G , h are known strictly increasing continuous

functions and under the assumptions from Neykov et al. (2016), the least

squares Lasso algorithm can recover the support of true features correctly

for discrete response y.
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Experiments

Simulated Data Experiments

Data with uniformly correlated predictors: given a scalar α, we
generate zi ∼ N (0, 1), then we set

xi = αzi1p×1 + ui , with ui ∼ N (0, Ip).

Finally we obtain the data matrix X = [xT1 , x
T
2 , · · · , xTN ]T .

Correlation between any two variables is α2/(1 + α2), and we set
α = 1 in our experiments.

Given X, the dependent response y is generated from the linear
regression model:

y = Xβ∗ + ε, with ε ∼ N (0, In).

where β∗ is a p-dimensional sparse parameter vector.

The true coefficients β∗j = 0 except β∗10j∗ = β, j∗ = 1, 2, · · · , k, where
β is signal strength value.
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Experiments

Numerical Results - Regression

Variable Detection Rate (%) Test RMSE

n Lasso SGD SIHT SADMM OLSth OFSA OALa OElnet OMCP Lasso SGD SIHT SADMM OLSth OFSA OALa OElnet OMCP

p = 1000, k = 100, strong signal β = 1

103 32.14 - 11.22 18.10 77.40 99.96 81.05 32.12 91.27 11.63 9.424 23.15 95.05 5.592 1.072 5.045 11.61 3.405
3 · 103 46.05 - 11.22 41.23 100 100 100 45.19 99.93 9.464 8.772 13.45 93.50 1.017 1.017 1.017 9.557 1.047

104 72.40 - 11.22 65.78 100 100 100 72.42 100 6.07 7.913 13.34 94.92 1.003 1.003 1.003 6.042 1.003
p = 1000, k = 100, weak signal β = 0.1

103 31.33 - 10.89 17.53 11.92 77.64 13.15 31.33 69.98 1.557 1.387 2.522 9.560 1.728 1.197 1.712 1.555 1.244
3 · 103 44.85 - 10.89 40.11 95.57 98.68 95.77 44.11 95.17 1.389 1.335 1.674 9.392 1.044 1.024 1.042 1.403 1.044

104 70.53 - 10.89 62.48 100 100 100 71.10 100 1.183 1.276 1.663 9.541 1.003 1.003 1.003 1.176 1.003
p = 1000, k = 100, weak signal β = 0.01

103 14.09 - 10.89 13.53 10.11 12.15 11.34 14.08 13.53 1.128 1.022 1.027 1.363 1.069 1.201 1.060 1.124 1.128
104 31.58 - 10.89 19.80 22.48 26.64 23.16 31.54 32.52 1.009 1.007 1.007 1.370 1.025 1.021 1.024 1.006 1.005
105 81.93 - 10.89 11.30 80.55 85.19 80.84 81.80 85.03 1.001 1.005 1.010 1.382 1.003 1.003 1.003 1.003 1.003

3 · 105 98.66 - 10.89 10.80 98.94 99.28 98.96 98.71 99.27 0.999 1.002 1.008 1.383 0.998 0.998 0.998 0.998 0.998
106 - - 10.89 - 100 100 100 100 100 - 0.997 1.005 - 0.996 0.996 0.996 0.996 0.996

p = 10000, k = 1000, strong signal β = 1

104 22.80 - 10.20 24.01 98.09 99.56 98.80 22.76 41.71 40.05 29.38 42.21 913.4 4.606 2.415 3.675 40.72 33.48
3 · 104 26.64 - 10.20 10.22 100 100 100 26.48 69.38 37.11 27.82 42.01 924.6 1.017 1.017 1.017 36.99 20.58

105 - - 10.20 8.89 100 100 100 34.65 95.48 - 24.73 41.75 860.8 1.006 1.006 1.006 33.35 6.972

p = 10000, k = 1000, weak signal β = 0.1

104 22.69 - 10.22 21.03 14.51 98.64 14.9 22.91 41.63 4.219 3.097 4.326 92.51 4.351 1.128 4.337 4.194 3.502
3 · 104 26.69 - 10.22 8.76 100 100 100 26.46 68.84 3.819 2.957 4.321 93.51 1.017 1.017 1.017 3.838 2.314

105 - - 10.22 8.87 100 100 100 34.60 95.25 - 2.666 4.291 86.09 1.006 1.006 1.006 3.485 1.230

p = 10000, k = 1000, weak signal β = 0.01

104 21.89 - 10.21 17.03 10.07 31.23 10.48 21.83 26.92 1.113 1.058 1.089 9.118 1.144 1.076 1.143 1.105 1.090
3 · 104 25.87 - 10.21 9.30 35.02 52.45 35.14 26.12 43.86 1.070 1.043 1.086 9.228 1.108 1.046 1.108 1.079 1.056

105 - - 10.21 10.19 77.32 83.78 77.35 33.37 74.11 - 1.035 1.083 8.368 1.025 1.016 1.024 1.061 1.022
3 · 105 - - 10.21 9.92 98.53 98.96 98.53 45.66 96.08 - 1.026 1.082 7.482 1.002 1.001 1.002 1.043 1.003

106 - - 10.21 - 100 100 100 72.54 100 - 1.009 1.079 - 1.000 1.000 1.000 1.017 1.000
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Experiments

Computation Times - Regression

ComputationTime (s) for Regression

n Lasso SGD SIHT SADMM OLSth OFSA OALa OElnet OMCP RAVE

p = 1000, k = 100, strong signal β = 1

103 4.332 0.003 0.007 5.326 0.052 0.267 7.566 9.648 15.66 0.026
3 · 103 26.91 0.010 0.019 15.73 0.051 0.267 2.972 7.113 10.21 0.076

104 47.32 0.032 0.065 51.80 0.051 0.266 2.404 5.885 7.123 0.246

p = 1000, k = 100, weak signal β = 0.1

103 3.989 0.003 0.006 5.387 0.051 0.266 7.258 7.706 16.30 0.027
3 · 103 27.82 0.010 0.018 15.98 0.052 0.266 6.407 6.332 15.91 0.076

104 54.50 0.030 0.066 53.01 0.051 0.266 2.692 5.814 9.843 0.251

p = 1000, k = 100, weak signal β = 0.01

103 5.353 0.004 0.006 6.703 0.052 0.266 7.453 9.741 13.41 0.026
104 48.13 0.031 0.067 67.82 0.051 0.267 7.735 4.961 14.94 0.249
105 452.2 0.315 0.672 679.7 0.051 0.266 7.657 5.120 17.26 2.458

3 · 105 1172 0.951 2.001 2044 0.051 0.267 5.977 3.749 13.10 7.326
106 - 3.158 6.651 - 0.051 0.267 3.602 1.726 7.866 24.36

p = 10000, k = 1000, strong signal β = 1

104 759.8 0.472 0.773 563.5 18.88 25.52 1129 1451 473.5 12.54
3 · 104 2049 1.421 2.319 1687 18.81 26.07 484.0 1092 501.7 37.62

105 - 4.748 7.739 5633 19.00 26.01 415.7 983.9 462.5 124.8

p = 10000, k = 1000, weak signal β = 0.1

104 788.1 0.474 0.770 564.3 18.89 25.78 1284 1241 479.4 12.48
3 · 104 1887 1.428 2.320 1689 18.92 25.96 696.5 859.1 434.2 37.41

105 - 4.747 7.747 5632 18.91 25.96 627.3 884.1 466.2 124.5

p = 10000, k = 1000, weak signal β = 0.01

104 827.4 0.473 0.773 564.6 18.91 25.95 1391 965.3 468.4 12.49
3 · 104 1973 1.426 2.327 1693 18.89 26.12 1646 759.9 503.0 37.32

105 - 4.770 7.742 5662 18.81 25.99 1577 681.9 482.6 124.8
3 · 105 - 14.29 23.21 16989 18.98 26.10 1521 741.6 481.4 373.0

106 - 47.72 77.40 - 19.02 26.11 1014 686.2 228.3 1242

Lizhe Sun, Adrian Barbu (FSU) Online Learning with Model Selection October 16, 2019 36 / 40



Experiments

Numerical Results - Classification

Variable Detection Rate (%) AUC

FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP

p = 1000, k = 100, strong signal β = 1

104 10.64 10.19 10.46 10.97 38.89 30.30 34.70 41.54 0.995 0.992 0.992 0.990 0.995 0.990 0.996 0.996
3× 104 10.64 9.95 10.42 10.34 67.67 59.32 56.18 67.52 0.994 0.992 0.992 0.989 0.998 0.996 0.997 0.998

105 10.64 9.95 10.43 11.08 94.95 93.21 86.90 94.77 0.994 0.992 0.992 0.990 1.000 1.000 0.999 1.000
p = 1000, k = 100, weak signal β = 0.01

104 13.40 10.19 10.00 10.37 19.41 15.93 22.55 23.81 0.827 0.829 0.828 0.828 0.824 0.815 0.829 0.830
3× 104 15.86 9.95 10.23 10.34 34.46 27.35 35.14 37.70 0.827 0.829 0.829 0.829 0.831 0.827 0.832 0.832

105 17.36 9.95 10.32 10.91 64.84 56.42 61.07 64.95 0.830 0.831 0.831 0.830 0.834 0.833 0.834 0.834
3× 105 17.13 9.23 10.32 10.37 91.55 88.91 88.69 91.58 0.826 0.828 0.828 0.827 0.833 0.833 0.833 0.833

106 17.72 9.91 - - 99.97 99.94 99.88 99.97 0.828 0.829 - - 0.834 0.834 0.834 0.834

Time (s)

FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP RAVE

p = 1000, k = 100, strong signal β = 1

104 0.001 0.001 0.490 0.848 0.005 0.001 0.080 0.160 0.247
3× 104 0.003 0.004 1.471 2.210 0.005 0.001 0.083 0.158 0.742

105 0.010 0.015 4.900 6.118 0.005 0.001 0.079 0.159 2.478

p = 1000, k = 100, weak signal β = 0.01

104 0.001 0.001 0.494 0.815 0.005 0.001 0.073 0.148 0.249
3× 104 0.003 0.004 1.481 2.093 0.005 0.001 0.074 0.152 0.743

105 0.010 0.015 4.935 5.827 0.005 0.001 0.078 0.161 2.472
3× 105 0.030 0.044 14.81 17.31 0.005 0.001 0.073 0.164 7.446

106 0.100 0.146 - - 0.005 0.001 0.039 0.110 24.85
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Experiments

Regret Analysis

Figure: Regret vs n for online algorithms, averaged from 20 runs. Left: strong
signal, middle: medium signal, right: weak signal
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Real Data Analysis

Table: The average R2 for regression and AUC for classification.

Dataset n p OLSth OFSA Lasso TSGD SADMM

Regression data

WIKIFace 53040 4096 0.547 0.545 0.503 0.400 0.487
Year Pred. MSD (nonlin.) 463715 4185 0.303 0.298 - 0 0
Year Prediction MSD 463715 90 0.237 0.237 0.237 0.157 0.183

n p OLSth OFSA Lasso FOFS SOFS

Classification data

Gisette 7000 5000 0.990 0.997 0.993 0.566 0.502
Dexter 600 20000 0.936 0.971 0.940 0.499 0.499

Average of 20 random splits.

For each method, multiple models are trained using various values of
the tuning parameters and sparsity levels k .
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Experiments

Conclusion and Summary

A framework based on running averages

Data standardization and feature selection

Online versions of many current feature selection methods

Good performance in experiments w.r.t. other online or offline
methods

Advantages

Can recover the support of the true signal with high probability
Good convergence rate and low computation complexity

Disadvantages

A very large p will run out of memory

Possible application: federated learning
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