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ABSTRACT

In this thesis we will develop some tools that can be used to get a better under-

standing of the cohomology of GLn(Fp) with Fp coefficients. First we study the

cohomology of Un(Fp), one of the p-Sylow subgroups of GLn(Fp). We compute all the

relations satisfied by those elements of H∗(Un) of degree two which come from the Z

cohomology.

Then we define elements that generate a subring of the same dimension as the

entire cohomology ring H∗(Un,Fp). After that we concentrate on U4 and compute all

the maximal elementary abelian subgroups and, using them, all relations among the

above elements, modulo nilpotents.

We then look at tools useful in finding what part of H∗(Un,Fp) survives in

H∗(GLn(Fp),Fp). We compute the Hecke algebra H(GLn//Un) and part of its action

on H∗(Un,Fp). We also prove a particular case of a conjecture of Ash concerning

Hecke eigenclasses and Galois representations.

In the last chapter, we define a new class in H∗(GLn(Fp),Fp) of small degree

2p−2. This class has not been discovered until now, and we prove that it is non-zero

if p ≥ n. We conjecture that the Fp cohomology of GLn(Fp) is zero in degrees less

than 2p− 3.
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CHAPTER 1

INTRODUCTION

The numbers have been a fascination for human kind from the earliest ages. The

arabs have developed the system of numeration as we have it today. The natural

numbers are the numbers with which we count objects (1, 2, 3, . . . ). They have no

decimals.

The Egyptians knew several triplets of natural numbers two of which are the sides

of a rectangle and the third is the length of the diagonal. If we suppose that a, b are

the lengths of the sides and c is the length of the diagonal, this can be written as:

a2 + b2 = c2

For example 3, 4, 5 are such natural numbers since

32 + 42 = 52

Then people asked if such numbers a, b, c exist when the power is not 2, but 3 or 4,

or even bigger. This way one of the most famous problems in mathematics was born

(stated by Fermat in 1670):

Theorem 1.1. Let n ≥ 3 be a natural number. There are no non-zero natural

numbers a, b, c such that

an + bn = cn
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Though it seems so simple to state and understand, this problem could not be

solved in its entire generality for more than 300 years. It has been proven to be true

for some numbers n (first 4, then 3 and 5, etc), but it couldn’t be proven to be true

for all n. This was finally done in 1995 by Andrew Wiles.

While mathematicians were trying to solve this problem, they found it necessary

to develop a lot of mathematical tools, which we know today as Number Theory.

Number Theory is perhaps the most complex part of mathematics, because it uses

results from all other fields of mathematics: Algebraic Geometry, Group Cohomology,

Complex Analysis, Algebra, etc.

Nearly unbreakable codes for transactions over the Internet are the result of the

advances in Number Theory.

The development of Number Theory catalyzed spectacular advances in the fields

of mathematics described above.

One of the tools used by Number Theory is Representation Theory. This allows the

mathematicians to see facts about a mathematical object (group, ring) by embedding

it, or part of it, in another, more general object, whose properties can be easier

understood.

The object most commonly used in Number Theory to embed in is GLn(K), the

group of invertible matrices with coefficients in some field K.

A group is an abstract object whith one operation (like the addition or multi-

plication), a neutral element (like 0 and 1, respectively) and an inverse for every

element in the group. An example of group is the set of integers (the natural num-

bers with 0, together with their negatives, like −1,−2, etc.), the operation being the

2



addition. Another example is the set consisting of 1 and −1 with the operation being

multiplication.

There exist groups in which if one multiplies a with b in that order one gets a dif-

ferent result than when multiplying b with a. Such groups ar called non-commutative

groups. GLn(K) is an example of a non-commutative group.

Non-commutative groups are used in the design of VLSI integrated circuits, in

particular in the design of microprocessors.

A matrix is a square array of elements from some set. The set must have addition

and multiplication, in order to be able to make a group out of those matrices. In our

case that set is the field K.

Matrices are used in business, in technology to describe industrial processes, in

computer graphics and computer aided design (CAD) to rotate and move images,

and in quantum mechanics.

The bigger the n (the dimension of the matrix) the more complicated the group

GLn(K). Also, when K is an finite field, GLn(K) is more complicated than when K

is an infinite field like R, the field of real numbers, or C, the field of complex numbers.

An example of a finite field is the set of natural numbers from 0 to 6, with the

usual addition and multiplication, and if the result of addition or multiplication is

bigger than 6, we reduce it modulo 7. This field is called F7, the field with 7 elements.

Similarly, for any prime number p, one can construct the field Fp with p elements.

In finite fields everything is contorted and a lot of irregular things happen, as

opposed to what happens when we work with nice smooth fields like R and C. If we
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knew the properties of all GLn(K) for finite K, then we could make great advances

in Number Theory.

But what properties of GLn(K) are worthy to be known? Usually the properties

are measured by some numbers or some structures associated with our objects, which

describe its behavior when interacting with other objects.

One of the main tools for extracting essential properties of an object is called

Cohomology. Cohomology is like a set of small simple machines, which are useful by

themselves, but they are all interacting with each other, making them more useful as

an ensemble. Like the transistors in a computer, each of them is simple, but together

they make up the complex and much more useful machinery the computer is.

Through cohomology we can associate numbers with geometric objects which help

us distinguish them from each other. Although it seems obvious that a sphere and

a donut are different, cohomology gives a mathematical technique for distinguishing

them, which can then be used for distinguishing much more complicated objects,

perhaps in higher dimensions. The objects in higher dimensions cannot be visualized

by us. Cohomology can also help identify an unknown object when you only are given

certain of its properties, as long as those properties are enough to find its cohomology.

Another byproduct of cohomology is the following interesting theorem:

Theorem. There is always a place on Earth where there is no wind!

This is not just a poetic phrase but a proven mathematical fact. Such a result

could not be proved just by using the cohomological numbers described above. A

finer structure must be obtained.
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As in geometry, cohomology exhibits some essential properties of GLn(K). But

this cohomology is not the cohomology of geometric objects, but the cohomology of

groups.

In this paper we will study the cohomology of GLn(Fp) with Fp coefficients. This

cohomology has not been calculated to date except for n ≤ 3.

The cohomology of GL2(Fp) was computed by Aguadé in [Agu].

The cohomology H∗(GL3(Fp),Z)(p) was computed by Tezuka and Yagita in [TY1].

There are also complete results about GL4(F2) (in [TY2]). I have found out from

Jim Milgram that considerable progress has been done in computing the cohomology

of GL5(F2).

In [Qu], Quillen computed the cohomology of GLn(Fp) with Fl coefficients for

l 6= p and he stated that the case l = p is very difficult.

In general (see [Brn], chapter III, Theorem 10.3), the p-part of the cohomology of a

finite group G can be computed from the cohomology of one of its p-Sylow subgroups

H, by finding the G-invariant elements of H∗(H). One way to prove that an element

is G-invariant is by proving that the Hecke operators act punctually on it (i.e., every

Hecke operator acts as multiplication by its degree). The Fp cohomology of GLn(Fp)

can therefore be computed, at least in principle, from the cohomology of one of its

p-Sylow subgroups, for example Un(Fp), the group of upper triangular matrices of

GLn(Fp) with 1 on the diagonal. Then, also in principle, by finding the action of the

whole Hecke algebra H(GLn(Fp)//Un) on H∗(Un), we can find the GLn(Fp)-invariant

elements.

Lewis computed the integral cohomology of U3(Fp) in [Lew]. Tezuka and Yagita
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used Lewis’s result to find the cohomology of GL3(Fp) by computing the GL3-

invariant elements. We see therefore that it is useful to compute the cohomology

of Un(Fp) with Z or Fp coefficients.

Leary computed H∗(U3(Fp),Fp) in [Lry].

In the Chapter 2 we will compute all the relations satisfied by those elements of

H∗(Un) of degree two that come from the Z cohomology. The main theorem we prove

is the following:

Theorem. Let G = Un+1(Fp) and p ≥ n+ 1. The ring generated by the elements of

H2(G,Z) in H∗(G,Z) is isomorphic to:

Z[X1, . . . , Xn]′/(Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1)

where Z[X1, . . . , Xn]′ = Z[X1, . . . , Xn]/(pX1, . . . , pXn) .

In Chapter 3 we define elements that generate a subring of the same dimension

as the entire cohomology ring H∗(Un,Fp). This has also been done in [TY2], but our

elements have smaller degree.

After that, in Chapter 4, we concentrate on U4 and compute all the maximal

elementary abelian subgroups. Then in Chapter 5, we find all relations among the

elements defined in Chapter 3 for U4, modulo nilpotents. We will give the ideal of

relations as an intersection of 4 ideals, since it has too many generators to list directly.

In [Ya], the author computes the cohomology of U4 after inverting some cohomology

classes.

In Chapter 6 we compute the Hecke algebra H(GLn//Un). In order to get a better

understanding of the Hecke action, in Chapter 8 we will find some extra properties
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of the transfer map and the Hecke operators, which are not in the literature as far as

we know.

Perhaps our most interesting results are in Chapters 7 and 9. In Chapter 7, we

prove that certain cohomology classes that are eigenvalues for the Hecke operators

correspond to Galois representations, verifying in this way a conjecture of Ash relating

cohomology classes to Galois representations. More precisely, we prove:

Theorem 1.2. Let β ∈ H∗(U,Fp) be an eigenclass for Tl,k for all primes l 6= p, and

all 1 ≤ k ≤ n. Then there is an integer d such that the representation

ρ = ωd ⊕ ωd+1 ⊕ ...⊕ ωd+n−1 : GQ → GLn(Fp), (1.1)

where GQ = Gal(Q/Q), has the property that

P (β, l) = det(I − ρ(Frobl)X) for all l 6= p.

Chapter 8 contains some functorial properties that we will use in Chapter 9. It also

contains some interesting new facts about the transfer map and the Hecke operators

that we thought are worth mentioning.

In Chapter 9, we construct a new class in H∗(GLn(Fp),Fp) of degree 2p− 2, not

in the literature as far as we know, and we prove that it is nonzero for p ≥ n. Then

we state the following conjecture:

Conjecture 1.3. If n ≥ 2 and p ≥ 3 then

Hk(GLn(Fp),Fp) = 0 for k < 2p− 3.
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CHAPTER 2

THE RING GENERATED BY THE ELEMENTS OF

DEGREE 2 IN H∗(UN(FP ),Z)

In this chapter we compute all the relations in cohomology satisfied by the elements

of degree two of H∗(Un(Fp),Z), where p ≥ n. That is, we will compute the ring

generated by the elements of degree 2 of H∗(G,Z). We will also see that the relations

between the images of these elements in H∗(Un,Fp) will be the same.

The main theorem we prove in this chapter is the following:

Theorem. Let G = Un+1(Fp) and p ≥ n+ 1. The ring generated by the elements of

H2(G,Z) in H∗(G,Z) is isomorphic to:

Z[X1, . . . , Xn]′/(Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1)

where Z[X1, . . . , Xn]′ = Z[X1, . . . , Xn]/(pX1, . . . , pXn) .

We will also prove that this ring is reduced and if an element of this ring restricts

to zero in all proper subgroups of G then that element is zero.
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Denote

Rn = Z[X1, . . . , Xn]′ = Z[X1, . . . , Xn]/(pX1, . . . , pXn),

In = (Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1) ideal in Rn,

Jk = InRn+1 + (Xn+1 − kXn)Rn+1, k = 0, 1, . . . , p− 1 ideal in Rn+1,

Jp = InRn+1 +XnRn+1 ideal in Rn+1,

where the corresponding n will be clear from the context.

Some facts about the ring Z[X1, . . . , Xn]
′

Observe that Rn = Z[X1, . . . , Xn]′ differs from Fp[X1, . . . , Xn] only in degree zero.

The canonical morphism Z[X1, . . . , Xn]′ → Fp[X1, . . . , Xn], f → f establishes an

inclusion maintaining bijection between proper ideals in Z[X1, . . . , Xn]′ that do not

contain constants and proper ideals in Fp[X1, . . . , Xn]. This map is injective when

restricted to polynomials with no constant term.

Observe also that if f ∈ Z[X1, . . . , Xn]′ is a polynomial with no constant term (in

particular if f is nonconstant homogeneous) we can talk about computing the value

of f(a1, . . . , an) for some ai ∈ Fp just by computing f(a1, . . . , an).

All the results in this section work for both Z[X1, . . . , Xn]′ and Fp[X1, . . . , Xn].

We will only prove them for Z[X1, . . . , Xn]′ since we only need them for this ring.

Proposition 2.1. Let n ≥ 2. Then the following statements hold:

(an) If a1, . . . , al are distinct numbers from the set {0, . . . , p− 1}, then

InRn+1 +Xn

l∏
k=1

(Xn+1 − akXn)Rn+1 = Jp ∩
l
∩

k=1
Jak

.
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(bn) The natural map

Rn+1/In+1 →
p∏

k=0

Rn+1/Jk

is injective.

(cn) The ring Rn/In is reduced.

Proof. First it is clear that (c2) is true, that is Z[X, Y ]′/(XpY − XY p) is reduced

since XpY −XY p is a product of p+ 1 distinct linear factors in Z[X, Y ]′.

We wil prove that (cn) =⇒ (an) =⇒ (bn). We will also prove (cn) + (cn−1) =⇒

(cn+1) for n ≥ 3 and (c2) =⇒ (c3) . This will imply that (an), (bn), (cn) are true for

all n ≥ 2.

(cn) =⇒ (an):

We prove this by induction on l. For l = 0 it is trivially true. Suppose it is true

for l. We prove it for l + 1. It is clear that

InRn+1 +Xn

l+1∏
k=1

(Xn+1 − akXn)Rn+1 ⊂ Jp ∩
l+1
∩

k=1
Jak

since Xn

l+1∏
k=1

(Xn+1 − akXn) is in all the Jak
.

Let now f ∈ Jp ∩
l+1
∩

k=1
Jak

= (Jp ∩
l
∩

k=1
Jak

) ∩ (Jp ∩
l−1
∩

k=1
Jak
∩ Jal+1

).

By the induction hypothesis we get that:

f ∈ Jp ∩
l
∩

k=1
Jak

= InRn+1 +Xn

l∏
k=1

(Xn+1 − akXn)R and

f ∈ Jp ∩
l−1
∩

k=1
Jak
∩ Jal+1

= InRn+1 +Xn(Xn+1 − al+1Xn)
l−1∏
k=1

(Xn+1 − akXn)Rn+1.
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Let Y = Xn+1 − al+1Xn. Let’s work now in

Rn+1/InRn+1 = (Rn/In) [Xn+1]/(pXn+1) = (Rn/In) [Y ]/(pY ).

Then, for each 1 ≤ i ≤ l, we have Xn+1 − aiXn = Y − biXn for some bi ∈ Fp (it

makes sense to multiplyXn with an element of Fp since pXn = 0). Observe that for all

i, bi 6= 0 since ai 6= al+1 for all i ≤ l and are all less then p. Then in (Rn/In)[Y ]/(pY )

we have:

f = xn

l∏
k=1

(Y − bkxn) g = xnY

l−1∏
k=1

(Y − bkxn)h for some g, h ∈ (Rn/In)[Y ],

where xn is the image of Xn in Rn/In. Suppose g = u0 + u1Y + . . . with ui ∈ Rn/In.

The coefficient of Y 0 in the middle product above is

txl+1
n u0 with t = (−1)l

l∏
k=1

bk ∈ F∗p

and on the right hand side is 0. Equating these coefficients we get that xl+1
n u0 = 0,

thus (xnu0)
l+1 = 0 and since Rn/In is reduced (because we supposed (cn) to be true),

we get that xnu0 = 0. Therefore:

f =
l∏

k=1

(Y − bkxn) xng =
l∏

k=1

(Y − bkxn)(xnu0 + xnu1Y + . . . )

= xnY
l∏

k=1

(Y − bkxn)(u1 + u2Y + . . . )

= xn

l+1∏
k=1

(Xn+1 − akxn)(u1 + u2Y + . . . ).

This shows that f ∈ InRn+1 +Xn

l+1∏
k=1

(Xn+1 − akXn)Rn+1 and therefore

InRn+1 +Xn

l+1∏
k=1

(Xn+1 − akXn)Rn+1 = Jp ∩
l+1
∩

k=1
Jak

11



and this proves that (an) holds.

(an) =⇒ (bn):

We have the following embedding:

Rn+1/J0 ∩ · · · ∩ Jp ↪→
p∏

k=0

Rn+1/Jk.

Because (an) holds we get that:

In+1 = InRn+1 +Xn

p−1∏
k=0

(Xn+1 − kXn)Rn+1 = J0 ∩ · · · ∩ Jp

and thus (bn) holds.

(cn) + (cn−1) =⇒ (cn+1) and (c2) =⇒ (c3):

Since (cn) holds, we get from above that (an) and (bn) hold. Therefore we have

that

Rn+1/In+1 ↪→
p∏

k=0

Rn+1/Jk.

Now let’s look at the rings on the right.

Rn+1/Jk ' Rn/In[Xn+1]/(pXn+1, Xn+1 − kXn) ' Rn/In for k < p, n ≥ 2, and

Rn+1/Jp ' Rn/In[Xn+1]/(pXn+1, Xn) ' Rn−1/In−1[Xn+1]/(pXn+1) for n ≥ 3.

For n = 2 we have:

Rn+1/Jp ' Rn/In[Xn+1]/(pXn+1, Xn) ' Z[X,Y ]′[Z]/(pZ, Y ) ' Z[X,Z]′.

Thus all Rn+1/Jk, k = 0, . . . , p − 1 are reduced because we supposed that (cn)

holds, and because of this Rn/In and Rn−1/In−1 are reduced. If a ring A is reduced,

then A[X]/(pX) is also reduced. We see that in case n = 2, if we suppose only (cn)
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true, we still get that all Rn+1/Jk, k = 0, . . . , p are reduced. Since a direct product of

reduced rings is reduced, the direct product of these rings is reduced. Now Rn+1/In+1

is a subring of this direct product, therefore it is reduced.

Corollary 2.2.

In+1 = J0 ∩ · · · ∩ Jp.

Proof. This has been proved while proving Prop.2.1.

Lemma 2.3. Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′ ∩ (In +XlRn) ⊂ In.

Proof. Let f ∈ Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′ ∩ (In +XlRn).

We have f(X1, . . . , Xl−1, Xl+1, . . . , Xn) = a(X1, . . . , Xn) + Xlb(X1, . . . , Xn) with

a ∈ In. But a ∈ In means:

a = (Xp
1X2 −Xp

2X1)a1 + (Xp
2X3 −Xp

3X2)a2 + · · ·+ (Xp
n−1Xn −Xp

nXn−1)an

for some ai ∈ Rn. Write ai = a′i + Xlui where the a′i do not depend on Xl. We get

that

a = (Xp
1X2 −Xp

2X1)a
′
1 + (Xp

2X3 −Xp
3X2)a

′
2 + · · ·+ (Xp

l−2Xl−1 −Xp
l−1Xl−2)a

′
l−2

+ (Xp
l+1Xl+2 −Xp

l+2Xl+1)a
′
l+1 + · · ·+ (Xp

n−1Xn −Xp
nXn−1)a

′
n +Xlu

for some u ∈ Rn. Observe that the terms corresponding to al−1 and al are now

contained in Xlu.

We get in this way that a = a′ + Xlu with a′ ∈ Z[X1, . . . , X̂l, . . . , Xn]′ ∩ In and

u ∈ Rn.

Then f = a′ +Xl(b+ u), and thus f − a′ = Xl(b+ u).
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Since f − a′ ∈ Z[X1, . . . , X̂l, . . . , Xn]′ does not depend on Xl and Xl(b+ u) does,

we get that f − a′ = 0. Remember that a′ ∈ In, therefore f = a′ ∈ In.

Proposition 2.4.
l
∩

i=1
(In +XiRn) = In +X1 . . . XlRn.

Proof. Induction on l. The case l = 1 is trivial.

The general case: It is clear that
l
∩

i=1
(In +XiRn) ⊃ In +X1 . . . XlRn. To show the

other inclusion let f ∈
l
∩

i=1
(In +XiRn). Then f ∈

l−1
∩

i=1
(In +XiRn) and by the induction

hypothesis we get that f ∈ In +X1 . . . Xl−1Rn. Thus f = a+X1 . . . Xl−1u = b+Xlv

(since f ∈ In + XlRn) with a, b ∈ In and u, v ∈ Rn. Write u = u1 + Xlu2 with

u1 ∈ Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′ and u2 ∈ Rn. Then

f = a+X1 . . . Xl−1u1 +X1 . . . Xlu2 = b+Xlv.

This implies that X1 . . . Xl−1u1 ∈ In +XlRn, since all the other terms in the second

equality above are in In +XlRn.

But X1 . . . Xl−1u1 ∈ Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′.

By the above Lemma, we get that X1 . . . Xl−1u1 ∈ In and thus

f = a+X1 . . . Xl−1u1 +X1 . . . Xlu2 ∈ In +X1 . . . XlRn.

This means that
l
∩

i=1
(In +XiRn) ⊂ In +X1 . . . XlRn and therefore

l
∩

i=1
(In +XiRn) = In +X1 . . . XlRn.
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Proposition 2.5. If f ∈ In + X1 . . . XnRn is nonconstant and homogeneous, such

that

f(a1, . . . , an) = 0 ∀ a1, . . . , an ∈ Fp

then f ∈ In.

Proof. Write f = a+X1 . . . Xnu, with a ∈ In, u ∈ Rn. Then, since a vanishes on Fn
p

(because a ∈ In), it is enough to prove that if X1 . . . Xnu vanishes on all Fn
p , then

X1 . . . Xnu ∈ In. Suppose therefore that

f = X1 . . . Xnu with u ∈ Rn.

We will prove by induction on n that f ∈ In.

Case n = 2: Let f ∈ Z[X, Y ]′ be homogeneous, divisible byXY and f(a, b) = 0 for

all a, b ∈ Fp. Since f is homogeneous, then f(X, Y ) = Y dg(X/Y ) for some g ∈ Z[X]′

and d = deg f . This implies that g(a) = 0 for all a ∈ Fp. Therefore g is divisible

by X − a for all a ∈ Fp thus g is divisible by Xp − X. From this we get that f is

divisible by XpY −XY p and case n = 2 is proved.

The general case: Write

u = u1 + (Xn −Xn−1)u2 + (Xn −Xn−1)(Xn − 2Xn−1)u3 + · · ·+

+ (Xn −Xn−1) . . . (Xn − (p− 1)Xn−1)up,

(2.1)

with u1, . . . , up−1 ∈ Rn−1 and up ∈ Rn. We can do that because we can write

u = a1 +Xna2 +X2
na3 + · · ·+Xp−1

n ap with a1, . . . , ap−1 ∈ Rn−1, ap ∈ Rn

(we work now in Rn = Rn−1[Xn]/(pXn)) and 1, Xn, X
2
n, . . . , X

p−1
n are combinations

of 1, (Xn−Xn−1), (Xn−Xn−1)(Xn− 2Xn−1), . . . , (Xn−Xn−1) . . . (Xn− (p− 1)Xn−1)
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with coefficients in Rn−1. This is true because the matrix which takes the ele-

ments {1, Xn, X
2
n, . . . , X

p−1
n } to {1, (Xn−Xn−1), (Xn−Xn−1)(Xn−2Xn−1), . . . , (Xn−

Xn−1) . . . (Xn−(p−1)Xn−1)} is lower triangular with 1 on the diagonal. This implies

that the matrix (which has coefficients in Rn−1) is invertible and the inverse has also

coeficients in Rn−1. The inverse matrix writes 1, Xn, X
2
n, . . . , X

p−1
n as combinations

of 1, (Xn−Xn−1), (Xn−Xn−1)(Xn− 2Xn−1), . . . , (Xn−Xn−1) . . . (Xn− (p− 1)Xn−1)

with coefficients in Rn−1.

Then from (2.1) we get

f = X1 . . . Xnu1 +X1 . . . Xn(Xn −Xn−1)u2 + · · ·+

+X1 . . . Xn(Xn −Xn−1) . . . (Xn − (p− 2)Xn−1)up−1+

+X1 . . . Xn−1(X
p
nXn−1 −XnX

p
n−1)up.

(2.2)

Observe that the last term in the above expression belongs to In and therefore is

zero for all values of the Xi in Fp. Let now X1, . . . , Xn−1 take any non-zero values in

Fp and fix them. Let a be the value of Xn−1. Let Xn take the values a, 2a, . . . , (p−1)a.

Because X1, . . . , Xn−1 take some fixed values in Fp, it follows that u1, . . . , up−1 also

take some fixed values in Fp. From (2.2) we get the following system of p−1 equations:

au1 = 0,

2au1 + 2a2u2 = 0,

. . .

(p− 1)au1 + (p− 1)(p− 2)a2u2 + · · ·+ (p− 1)(p− 2) . . . (1)ap−1up−1 = 0,
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with the p−1 unknowns au1, a
2u2, . . . , a

p−1up−1. Since the determinant of this system

is clearly non-zero, and a 6= 0, we get that

u1(x1, . . . , xn−1) = 0,

u2(x1, . . . , xn−1) = 0,

. . .

up−1(x1, . . . , xn−1) = 0,

for all x1, . . . , xn−1 ∈ F∗p.

Considering now x1, . . . , xn−1 ∈ Fp, we still get that

x1 . . . xn−1u1(x1, . . . , xn−1) = 0,

x1 . . . xn−1u2(x1, . . . , xn−1) = 0,

. . .

x1 . . . xn−1up−1(x1, . . . , xn−1) = 0.

By the induction hypothesis, we obtain

X1 . . . Xn−1u1, . . . , X1 . . . Xn−1up−1 ∈ In−1 ⊂ In.

By formula (2.2), this means that f ∈ In.

The Main Theorem

Let G = Un+1(Fp) be the group of upper triangular matrices with 1 on the diagonal,

with n ≥ 3. Let’s suppose that p ≥ n + 1 so that any matrix A ∈ G has order p,
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since a matrix A from G satisfies (A− I)n+1 = 0 therefore (A− I)p = 0 so Ap− I = 0

since we are in characteristic p. Thus Ap = I for all A ∈ G.

We want to determine the part of the cohomology ring H∗(G,Z) generated by the

elements of degree 2. This part is a subring, let’s denote it by R or R(G). We work

only in the even cohomology.

We know that H2(G,Z) ' Hom(G,Q/Z). Therefore any α ∈ H2(G,Z) corre-

sponds to a map α′ : G → Q/Z, which clearly factors through [G,G], since Q/Z

is abelian. Also, since any element of G has order p, any α′ : G → Q/Z factors

through Z/p in the sense that there is α′′ : G → Z/p such that α′ = u ◦ α′′ with

u : Z/p→ Q/Z, u(x̂) = x/p. Therefore H2(G,Z) ' Hom(G/[G,G],Z/p).

We also have the following group homomorphism:

G
φ−→ (Z/p)n, (2.3)

which takes a matrix to the vector consisting of the elements immediately above the

main diagonal. The kernel of this map is exactly [G,G]. Thus

H2(G,Z) ' Hom(G,Q/Z) ' Hom(G,Z/p) ' Hom((Z/p)n,Z/p).

We see now that H2(G,Z) is a Z/p vector space of dimension n, generated by

α1, . . . , αn, where αi corresponds to the i-th projection from (Z/p)n to Z/p, thus

αl(A) = âl,l+1, where A = (âij) ∈ G. This implies that R(G) = Z[α1, . . . , αn], the

ring generated by α1, . . . , αn.
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Looking at the even cohomology and taking into account that H∗((Z/p)n,Z) con-

tains a subgroup Z[X1, . . . , Xn]′ where the Xi correspond to the projections, we get

from (2.3) the following ring homomorphism:

Z[X1, ..., Xn]′
φ∗−−→ R(G)

and φ∗(Xi) = αi. Therefore φ∗ is surjective. Let J = ker(φ∗). This is an ideal in

Rn = Z[X1, ..., Xn]′.

We will prove

Theorem 2.6. In the above situation, J = In, thus R(G) = Rn/In. This means that

the ring generated by the elements from H2(G,Z) in H∗(G,Z) is isomorphic to:

Z[X1, . . . , Xn]′/(Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1).

To prove this we need the following proposition:

Proposition 2.7. a) In ⊂ J .

b) J is a homogeneous ideal.

c) If f ∈ J is a non-constant homogeneous polynomial, then f(a1, ..., an) = 0 for

all a1, ..., an ∈ Fp.

Proof of the Proposition. a) Let 1 ≤ l ≤ n − 1 be fixed. We need to prove that

Xp
l Xl+1 −XlX

p
l+1 ∈ J . There exists the following group homomorphism:

G
π−→ U3,

(aij)→


1 al,l+1 al,l+2

0 1 al+1,l+2

0 0 1

 .
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In cohomology, this homomorphism becomes the following ring homomorphism:

H∗(U3)
π∗−→ H∗(G).

On H2(·) π∗ is just:

Hom(U3,Q/Z)
π∗−→ Hom(G,Q/Z),

ξ → π ◦ ξ.

We get that:

π∗(α) = αl,

π∗(β) = αl+1,

where

α : U3 → Q/Z, β : U3 → Q/Z,
1 a c

0 1 b

0 0 1

→ a/p,


1 a c

0 1 b

0 0 1

→ b/p.

Restricting π∗ to the ring generated by the elements from H2, we get:

R(U3)
π∗−→ R(G).

Now from [Lew], we know that R(U3) = Z[α, β] = Z[X, Y ]′/(XpY −XY p). Thus

the map π∗ is in fact:

Z[α, β]
π∗−→ Z[α1, . . . , αn],

α→ αl, β → αl+1.
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Since in Z[α, β] there is the relation αpβ − αβp = 0, through π∗ we get the relation

αp
l αl+1−αlα

p
l+1 = 0 in Z[α1, . . . , αn]. This means thatXp

l Xl+1−XlX
p
l+1 ∈ J , therefore

In ⊂ J .

b) We have the map:

Z[X1, . . . , Xn]′
φ∗−→ R(G),

Xi → αi.

This map is a graded ring homomorphism, therefore the kernel J is a homogeneous

ideal.

c) Let f ∈ J ⊂ Z[X1, . . . , Xn]′ be a non-constant homogeneous polynomial.

Clearly f(0, . . . , 0) = 0.

Let (a1, . . . , an) ∈ Fn
p − (0, . . . , 0). We have to prove f(a1, . . . , an) = 0.

Let H be the subgroup generated by the matrix

A =



1 a1 0 . . . 0

0 1 a2 . . . 0

. . .

0 0 . . . 1 an

0 0 . . . 0 1


.

Since A has order p (A 6= I), we get that H ' Z/p. Let i : H ↪→ G be the inclusion

of H into G. In cohomology we get i∗ : H∗(G)→ H∗(H) and on H2(·) it is:

i∗ : Hom(G,Z/p)→ Hom(H,Z/p),

φ→ φ|H
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since we see that any homomorphism from H to Q/Z factors through Z/p. Observe

that Hom(H,Z/p) ' Z/p and is generated by α : H → Z/p, Ai → î. Then

i∗(αj)(A) = αj|H(A) = αj(A) = âj,

therefore i∗(αj) = ajα.

Now restricting i∗ to the ring generated by the αi we get the ring morphism i∗

from the following diagram:

Z[X1, . . . , Xn]′
φ∗−→ Z[α1, . . . , αn]

i∗−→ Z[α] ' Z[X]′.

Let’s call the composition map ψ. We have that ψ(Xi) = aiX; therefore

ψ(f(X1, . . . , Xn)) = f(a1X, . . . , anX) = Xdf(a1, . . . , an)

since f is homogeneous of some degree d > 0. Now if f ∈ J then φ∗(f) = 0, therefore

ψ(f) = 0 so Xdf(a1, . . . , an) = 0, which can only happen when

f(a1, . . . , an) = 0 (remember f(a1, . . . , an) ∈ Fp).

Proof of the Theorem. We will prove this by induction on n. The case n = 2 has

been done by Lewis in [Lew]. Let’s suppose the theorem is true for all l ≤ n− 1 and

prove it for n.

We want first to prove that J ⊂ In + XlRn for all 1 ≤ l ≤ n. Let Hl be the

subgroup of G consisting of the matrices of the formA 0

0 B

 ,
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with A ∈ Ul and B ∈ Un+1−l. It is easy to check now that Hl is a subgroup of G. Let

H ′
l be the subgroup of Hl consisting of matrices of the formA 0

0 I

 ,

with A ∈ Ul. Let also H ′′
l be the subgroup of Hl consisting of matrices of the formI 0

0 B

 ,

with B ∈ Un+1−l. We see that:

Hl ' H ′
l ×H ′′

l ' Ul × Un+1−l.

Now looking at the inclusion map i : Hl ↪→ G in cohomology we get:

H∗(G)
i∗−→ H∗(Hl) ' H∗(H ′

l ×H ′′
l ), (2.4)

which on H2 is

Hom(G,Q/Z)
i∗−→ Hom(Hl,Q/Z) ' Hom(H ′

l ,Q/Z)×Hom(H ′′
l ,Q/Z)

φ −−−−−−−−−−−−−−−−→ (φ|H′
l
, φ|H′′

l
).

Now we have that

i∗(αj) =


0 if j = l

αj if j 6= l.
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Restricting now (2.4) to the ring generated by α1, . . . , αn we get, since R(H ′
l) =

Z[α1, . . . , αl−1] and R(H ′′
l ) = Z[αl+1, . . . , αn], that

Z[X1, . . . , Xn]′/J ' R(G)
i∗−→ R(Hl) ' R(H ′

l)⊗R(H ′′
l ) '

' Z[X1, . . . , Xl−1]
′/Il−1 ⊗ Z[Xl+1, . . . Xn]′/(Xp

l+1Xl+2 −Xl+1X
p
l+2, . . . ) '

' Z[X1, . . . , X̂l, . . . , Xn]′/(Il−1 + (Xp
l+1Xl+2 −Xl+1X

p
l+2, . . . )) =

= Z[X1, . . . , Xn]′/(In +XlRn),

and we see that this composition takes the image of Xj in Z[X1, . . . , Xn]′/J to the

image of Xj in Z[X1, . . . , Xn]′/(In + XlRn) for all j = 1, . . . , n. This shows that

J ⊂ In +XlRn. By prop. 2.4 we get

J ⊂
n
∩

i=1
(In +XiRn) = In +X1 . . . XnRn.

By prop. 2.7 , J is generated by homogeneous elements. Take any f ∈ J , homoge-

neous. Then, by what we proved above, f ∈ In + X1 . . . XnRn and from prop. 2.7,

f(a1, ..., an) = 0 for all a1, ..., an ∈ Fp. Now from Prop.2.5 we see that f ∈ In. This

means that J ⊂ In. But we saw that In ⊂ J , and therefore J = In.

Corollary 2.8. R(G) is reduced.

Proof. It is clear from the above theorem and what was proved in the section “Some

facts about the ring Z[X1, . . . , Xn]′”.

Corollary 2.9. If f(α1, . . . , αn) ∈ H2d(G) is such that its restriction to any proper

subgroup H of G is zero, then f(α1, . . . , αn) = 0.
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Proof. First we restrict f(α1, . . . , αn) to all Hl’s from the proof of the theorem. From

these restrictions we get that f(X1, . . . , Xn) ∈ In +XlRn for all l ≤ n; therefore

f(X1, . . . , Xn) ∈ ∩n
l=1(In +XlRn) = In +X1 . . . XnRn.

But now restricting to the subgroups H that appeared in the proof of c) of prop.

2.7, we get that f(a1, . . . , an) = 0 for all a1, . . . , an ∈ Fp. These two facts imply that

f ∈ In which means f(α1, . . . , αn) = 0.

Corollary 2.10. If G = Un+1, the ring generated by the image of H2(G,Z) via the

reduction mod p map H∗(G,Z)→ H∗(G,Fp) is isomorphic to

Fp[X1, . . . , Xn]/(Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1).

Proof. It is clear that this ring is of the form

Fp[X1, . . . , Xn]/J,

for some homogeneous ideal J . Observe that prop. 2.7 holds for J , as it can be

verified easily.

We then proceed by an induction argument similar to the proof of thm. 2.6.

The initial step n = 2 has been done by Leary in [Lry].

For the general case, we restrict to the same subgroups Hl as in the proof of thm.

2.6. Like there, we have i∗(αj) = δjl αj and then restricting i∗ to the ring generated

by the αj we get J ⊂ In + (Xl) and by using prop. 2.4 and prop. 2.7 we get the

result.
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Remark 2.1. a) For any group G, from the exact sequence:

1 −→ Z ·p−→ Z −→ Z/p −→ 1

we obtain a long exact sequence

... −→ H i(G,Z)
·p−→ H i(G,Z) −→ H i(G,Z/p) β−→ H i+1(G,Z)

·p−→ ...

b) From the exact sequence:

1→ Z/p→ Z/p2 π−→ Z/p→ 1

we obtain a long exact sequence

...→ H i(G,Z/p)→ H i(G,Z/p2)
π−→ H i(G,Z/p) δ−→ H i+1(G,Z/p)→ ...

c) From the exact sequence:

1→ Z→ Q π−→ Q/Z→ 1

we obtain the exact sequence

H1(G,Q)
π−→ H1(G,Q/Z) −→ H2(G,Z)→ H2(G,Q)

and since H i(G,Q) = 0 for i ≥ 1 (Q being divisible group and G being finite) we get

H1(G,Q/Z) ' H2(G,Z).

The maps β, δ above are called Bocksteins. δ is obtained by composing β with

the map induced by projection Z→ Z/p.

Proof. For a) and b) see [Ev], p. 28.

26



Remark 2.2. For a finite group G, one can define elements in H2(G,Fp) in the fol-

lowing ways:

a) a morphism α : G → Fp, α ∈ Hom(G,Fp) = H1(G,Fp) defines an element

δ(α) ∈ H2(G,Fp) via the Bockstein δ.

b) a morphism α : G → Q/Z, α ∈ Hom(G,Q/Z) = H1(G,Q/Z) ' H2(G,Z)

defines canonically an element in H2(G,Z), which in turn maps via the canonical

map H2(G,Z)→ H2(G,Fp) to an element in H2(G,Fp).

Moreover these maps are compatible with each other in the sense that using the

natural embedding Fp → Q/Z, a→ a/p, from a morphism α : G→ Fp, one can define

elements of H2(G,Fp) in the two ways described above, and the resulting elements

will be equal.
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CHAPTER 3

NEW CLASSES IN H∗(UN(FP ),FP )

In this chapter we will define some cohomology classes in H∗(Un(Fp),Fp), which

generate a ring of the same dimension as the entire cohomology ring.

Lemma 3.1. Let G be a group and L ≤ G a subgroup such that there exists a map

f : G→ L such that f is the identity on L. If M is any L-module, then H∗(L,M) is

a direct summand of H∗(G,M).

Proof. Let i be the canonical inclusion L ↪→ G. We have the two maps

L
i−→ G

f−→ L

and f ◦ i = 1. But looking at these maps in cohomology we get

H∗(L,M)
f∗−→ H∗(G,M)

resL−−→ H∗(L,M)

and resL◦f ∗ = 1. This implies that H∗(L,M) is a direct summand of H∗(G,M).

For simplification we will write H∗(G) instead of H∗(G,Fp). From now on let

G = Un(Fp).
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Corollary 3.2. Any Uk(Fp) with k < n can be regarded as a subgroup of Un(Fp) by

identifying it with Ukm described below:

Ukm = {M =


Im−1 0 0

0 A 0

0 0 In−m−k+1

 , such that A ∈ Uk}.

Then H∗(Ukm) ↪→ H∗(Un(Fp)).

Proof. The map G→ Ukm, (aij)1≤i,j≤n → (amn), which picks up exactly the elements

at positions corresponding to nonzero entries in Ukm splits. Applying the previous

lemma, we obtain the result.

Definition 3.1. Define the subgroups Ak ≤ G as follows

Ak = {M ∈ G,M =

Ik ∗

0 In−k

}
and En = A[n/2] ≤ Un.

Remark 3.1. Ak is elementary abelian. In fact:Ik M

0 In−k

 +

Ik N

0 In−k

 =

Ik M +N

0 In−k


Definition 3.2. Define the element γn = NEn→Gδ(x) ∈ H2l(G,Fp), where NH→G() is

the Evens norm map (see [Ev], p. 57), l = n(n−1)
2
−

[
n2

4

]
, and δ is the Bockstein defined

at the end of the previous chapter. The element x ∈ H1(En,Fp) = Hom(En,Fp) is

the morphism

x : En → Fp, A = (aij)→ a1n.

29



Definition 3.3. Define an element γij ∈ H∗(Un) for each position (i, j), 1 ≤ i < j ≤ n

as follows: Form a subgroup Ukm ≤ Un as described in 3.2, such that k = j− i+1 and

m = i. This just means that the “upper right corner” of the nonzero entries of Ukm

is at position (i, j). Then we define γij to be the corresponding γk ∈ H∗(Ukm) ↪→

H∗(Un).

Remark 3.2. We can alternatively define γij as follows:

Form the subgroup:

Hij = {M ∈ Un,M =


Ui−1 ∗ ∗

0 Ej−i+1 ∗

0 0 Un−j

} ≤ Un.

Then there exists the following homomorphism:

ξij : Hij → Fp, ξij((akl)k,l) = aij.

Thus ξij ∈ Hom(Hij,Fp) = H1(Hij,Fp). Define γij = NHij→Unδ(ξij). These two

definitions of γij give the same elements because of the functorial property of the

norm map (N5 p. 58 in [Ev]).

Proposition 3.3. H∗(G) is a ring of dimension
[

n2

4

]
.

Proof. From [Ev] p. 103, we get that this dimension is equal to the maximum rank

of an elementary abelian subgroup of G. But this rank is
[

n2

4

]
, as proved in [MP], p.

298, prop. 5.2. One elementary abelian subgroup with this rank is En.

Proposition 3.4. The ring generated by all γij, 1 ≤ i < j ≤ n in H∗(G) has the

same dimension as H∗(G).

30



Proof. Let R be the ring generated by all γij, 1 ≤ i < j ≤ n in H∗(G). Since R is a

subgroup of H∗(G), its dimension will be at most that of H∗(G), namely
[

n2

4

]
. The

dimension of H∗(G) is the rank of a maximal elementary abelian subgroup. One such

subgroup is H = En. To get the other inequality we use the restriction map

H∗(G)
resH−−−→ H∗(H).

Let’s see the image of the elements γij, where 1 ≤ i ≤ [n/2] and [n/2] < j ≤ n under

this map. Observe that these are exactly the positions corresponding to nonzero

entries of the elements of H.

It is known that the even cohomology of an elementary abelian group E of

cardinality pk contains the polynomial ring Fp[X1, ..., Xk], where each Xi has de-

gree 2 and corresponds to a generator of H2(E,Fp). In our case E = H and let

xij, 1 ≤ i ≤ [n/2], [n/2] < j ≤ n be those generators. Then we have the following

Lemma 3.5. For each i, j, 1 ≤ i ≤ [n/2], [n/2] < j ≤ n, the restriction of γij to H

is of the form

resH(γij) = xpm

ij + l.o.t,

where l.o.t represents terms whose power of xij is less than pm, and only contain

factors xkl with k ≥ i, l ≤ j (i.e., corresponding only to positions down and to the left

of (i, j)).

Proof. Fix a pair (i, j). Then γij is defined as the image of NA→Udi
β(x) under the

canonical injection H∗(Udi)→ H∗(G) where A is an elementary abelian subgroup of

the form Ak ≤ Udi of maximal rank and d = j− i+1. Let U = Udi and K = Udi∩H.
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Then since the elements xkl with k ≥ i, l ≤ j come from H∗(K), we can restrict

ourselves to the problem of computing resKNA→Ux1d in H∗(Udi) = H∗(Ud). (Ud is

the group of upper triangular matrices in GLd(Fp) with 1 on the diagonal) We are

now in the following context:

U = Ud, A = {M ∈ Ud,M =


Ia 0 ∗

0 Ib ∗

0 0 Ic

}, K = {M ∈ Ud,M =


Ia ∗ ∗

0 Ib 0

0 0 Ic

}
or

U = Ud, A = {M ∈ Ud,M =


Ia ∗ ∗

0 Ib 0

0 0 Ic

}, K = {M ∈ Ud,M =


Ia 0 ∗

0 Ib ∗

0 0 Ic

}
for some a, b, c (a+ b = [d/2] in the first case and b+ c = [d/2] in the second case).

Since both K and A are normal in U , KA is normal in U . Then a set of double

coset representatives for K\U/A is

S = {M,M =


B 0 0

0 C 0

0 0 D

}.
Then by the Evens norm formula we have

resKNA→Ux1d =
∏
s∈S

NK∩sAs−1→KresK∩sAs−1(s∗x1d).

Since A is normal in U , sAs−1 = A. It can be easily computed that s∗(x1d) = x1d+o.t.
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where o.t. represents a linear combination of xkl with (k, l) 6= (i, j) corresponding only

to nonzero positions of A ∩K. We thus get

resKNA→Ux1d =
∏
s∈S

NK∩A→KresK∩A(x1d + o.t.).

Since NK∩A→K(x1d+o.t.) = xpr

1d+l.o.t, by multiplication we get the desired result.

To prove the proposition we will also use the following

Lemma 3.6. Let k[X1, ..., Xn] be the ring of polynomials in n indeterminates. Let

bi = Xni
i + fi(X1, ..., Xi) where fi are polynomials such that the maximum degree of

Xi in fi is less than ni. Then k(b1, ..., bn) ⊂ k(X1, ..., Xn) is a finite extension of

fields.

Proof. We proceed by induction on n. Case n = 1 is clear. Suppose it is true for n−1.

Since k(b1, ..., bn−1) ⊂ k(X1, ..., Xn−1) is finite, we also have that k(b1, ..., bn−1, bn) ⊂

k(X1, ..., Xn−1, bn) is finite. In the extension k(X1, ..., Xn−1, bn) ⊂ k(X1, ..., Xn−1, Xn)

we have

Xnn
k + fn(X1, ..., Xn−1, Xn)− bn = 0,

which is an equation in Xn with coefficients in k(X1, ..., Xn−1, bn) of degree nn.

Thus k(X1, ..., Xn−1, bn) ⊂ k(X1, ..., Xn−1, Xn) is finite and therefore k(b1, ..., bn) ⊂

k(X1, ..., Xn) is finite.

Back to the proof of our proposition. We can now define the indeterminates Xi

as X1 = xk,k+1 (k = [n/2]), X2 = xk−1,k+1, X3 = xk.k+2 ... (counting parallel to the

diagonal, starting with the lower left corner of the rectangle corresponding to non-zero
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entries of matrices in H) and the bi as the corresponding γij. By the way we defined

the Xi, we are in the context of Lemma 3.6 and thus the extension k(xij) ⊂ k(γij)

is finite. This implies that the Krull dimension of k[γij] is the same as that of k[xij].

But k[xij] is a polynomial ring in [n/2](n − [n/2]) = [n2/4] variables and thus the

dimension of k[γij] is at least [n2/4] and we are done.
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CHAPTER 4

ALL MAXIMAL ELEMENTARY ABELIAN SUBGROUPS

OF U3 AND U4

A maximal elementary abelian subgroup is an elementary abelian subgroup such that

there are no elementary abelian subgroups that properly contain it. In this chapter

we will compute all maximal elementary abelian subgroups of U3(Fp) and U4(Fp).

This is useful when one wants to check whether a cohomology class is nilpotent. For

that we use the following theorem of Quillen ([AM] p. 144):

Theorem 4.1 (Quillen). Let G be a finite p-group and k a field of characteristic

p. A cohomology class β ∈ H∗(G, k) is nilpotent if and only if its restriction to all

elementary abelian subgroups is nilpotent.

From now on we will assume that p ≥ 3. We will do the case of U3 first, since it

is easier. Let Z = Z(U3) be the center of U3. We have

Theorem 4.2. All maximal elementary abelian subgroups of U3 are Hi =< Ai, Z >,

where i = 0, 1, ..., p and

Ai =


1 1 0

0 1 i

0 0 1

 for i = 0, 1, ..., p− 1 and Ap =


1 0 0

0 1 1

0 0 1

 .
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Moreover these subgroups are all different.

Proof. Since p ≥ 3, any nontrivial matrix in U3 has order p. First any maximal ele-

mentary abelian subgroup E must contain the center Z of U3; otherwise the subgroup

ZE is elementary abelian and it strictly contains E, so E is not maximal.

Observe now that U3 has order p3 and is not abelian. So any maximal elementary

abelian subgroup must have order at most p2. But for any matrix A ∈ U3 − Z,

the group generated by A and Z is elementary abelian (because it is abelian and

all elements have order p) and has order p2. Since all maximal elementary abelian

subgroups must contain Z, they must be of this form, generated by a matrix A and

by Z.

Now any matrix A, by multiplying it with a suitable element of Z can be trans-

formed into a matrix of the form

A =


1 a 0

0 1 b

0 0 1

 .

The powers of A are of the form

Ak =


1 ka ∗

0 1 kb

0 0 1

 .

If a 6= 0, for a suitable k we can get ka = 1 so Ak = AiC for some i ≤ p− 1 and some

C ∈ Z. If a = 0 then b 6= 0 (or else A ∈ Z) so for some k we have that Ak = ApC with

C ∈ Z. Because < A,Z >⊃< Ai, Z > and these groups have the same cardinality,
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the group generated by A and Z is the same as the one generated by Ai and Z hence

the first part of the theorem follows.

The fact that the Hi are all different is very easy to see, since Ak 6∈ Hi for

k 6= i.

We now turn to the case of U4. Let Z = Z(U4) be the center of U4. In general, it

is known that the center of Un is isomorphic to Fp and consists of matrices that have

only one nontrivial entry, in the upper right-hand corner. Let C be a generator of Z.

Theorem 4.3. Let E be a maximal elementary abelian subgroup of G = U4(Fp) with

p ≥ 5. Then E has one of the following forms:

1) E =



1 0 ∗ ∗

0 1 ∗ ∗

0 0 1 0

0 0 0 1


;

2) E =< A,B,C > with A =



1 a c 0

0 1 1 d

0 0 1 b

0 0 0 1


, B =



1 0 a 0

0 1 0 b

0 0 1 0

0 0 0 1


,

where (a, b) 6= (0, 0) and d = 0 if b 6= 0 and c = 0 if b = 0, a 6= 0;
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3) E =< A,B,C > with A =



1 1 a 0

0 1 0 b

0 0 1 0

0 0 0 1


, B =



1 0 c 0

0 1 0 −a

0 0 1 1

0 0 0 1


;

4) E =< A,B,C > with A =



1 a c 0

0 1 0 d

0 0 1 b

0 0 0 1


, B =



1 0 a 0

0 1 0 b

0 0 1 0

0 0 0 1


,

where a = 1, c = 0 or a = 0, b = 1, d = 0.

Moreover these subgroups are all different.

Proof. Since we suppose p > 3, every nontrivial element of U4 has order p. Thus a

subgroup is elementary abelian if and only if it is commutative. Let β : U4 → Z/p be

the surjective homomorphism defined by

1 ∗ ∗ ∗

0 1 b ∗

0 0 1 ∗

0 0 0 1


→ b.

Let H = ker β. Then H is an extraspecial p-group of order p5.

We have two cases:

a) The first case is E 6⊂ H. Then β(E) = Z/p. Let A ∈ E be such that β(A) = 1.

Then any matrix X ∈ E can be written as AkY for some k ≤ p − 1 and some Y

such that β(Y ) = 0, i.e., Y ∈ E ∩ H. Thus E is generated by A and E ∩ H. Let
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X ∈ (E ∩H)−Z. By multiplying with elements of Z we can suppose that A and X

have the following forms:

A =



1 a c 0

0 1 1 d

0 0 1 b

0 0 0 1


, X =



1 x z 0

0 1 0 t

0 0 1 y

0 0 0 1


.

We need to have AX = XA that is

1 a+ x c+ z at+ cy

0 1 1 t+ y + d

0 0 1 b+ y

0 0 0 1


= AX = XA =



1 a+ x c+ x+ z dx+ bz

0 1 0 t+ d

0 0 1 b+ y

0 0 0 1


.

From here we obtain that x = 0, y = 0, at = bz.

If (a, b) = (0, 0) then we obtain the subgroup of 1).

If (a, b) 6= (0, 0) then all matrices in H that commute with A have the form:

X =



1 0 z ∗

0 1 0 t

0 0 1 0

0 0 0 1


with at = bz.

It is clear that these matrices form a group of order p2 containing Z, also containing

B =



1 0 a 0

0 1 0 b

0 0 1 0

0 0 0 1


6∈ Z
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Since the group generated by B and Z is also of order p2, it must be equal to the

group of matrices of H commuting with A and we thus get the case 2) of the theorem.

b) The other case is E ⊂ H. Still E ⊃ Z. Let’s consider now the homomorphism

α : H → Z/p, α(aij) = a12 and let K = kerα.

If E 6⊂ K, then there is a matrix A ∈ E such that α(A) = 1. Any matrix X ∈ E

can be written as AkY with k ≤ p − 1 and α(Y ) = 0, i.e., Y ∈ E ∩ K. Thus E is

generated by A and E ∩K. Let X ∈ E ∩K. By multiplying A with an element of

Z, we can suppose that A and X have the following forms:

A =



1 1 a 0

0 1 0 b

0 0 1 c

0 0 0 1


, X =



1 0 x t

0 1 0 y

0 0 1 z

0 0 0 1


.

We need to have X commute with A. By computing AX and XA we see that the

only relation that has to be satisfied is y + az = cx, i.e., y = cx − az. The set of

matrices X ∈ K that commute with A is thus a group S = CH(A) ∩ K with p3

elements.

Since E ∩K is an elementary abelian subgroup of K that commutes with A, we

need to have E ∩K ⊂ S. We see that S is not a commutative group (the matrices

for x = 1, z = 0, t = 0 and x = 0, z = 1, t = 0 don’t commute). Thus E ∩K has at

most p2 elements. Since there are clearly matrices in S − Z, we get that, for each

E, there is one more matrix that together with A and Z generates E. For z = 0 we

get case 4. For z 6= 0 a power of X has z = 1. By dividing A by a suitable power
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of X we can make c = 0. We will then be in case 3, where B is obtained from X by

multiplying by a suitable element of Z to make t = 0.

The last case is E ⊂ K. Then there must be a matrix A = (aij) ∈ E such that

a34 6= 0, otherwise E is a subgroup of the group of case 1 and, being also a subgroup

of H, it is not maximal. Let A = (aij) ∈ E be such that a34 = 1. By multiplying A

by a suitable element of Z, we can make it of the form:

A =



1 0 a 0

0 1 0 b

0 0 1 1

0 0 0 1


.

Since we suppose E ⊂ K, we need to see what matrices of K commute with A. By

an argument we did twice in this proof, we can restrict our attention to matrices

X = (xij) ∈ K − Z which have x34 = 0. By multiplying X by an element of Z we

can make it of the form:

X =



1 0 x 0

0 1 0 y

0 0 1 0

0 0 0 1


.

By equating AX and XA, we must have that x = 0. This implies that y 6= 0, so

by raising X to a power, we can make y = 1. It is easy to see that the X obtained

commutes with A. Then by multiplying A by a suitable power of B = X, we can

have b = 0 and we are in case 4.

The last thing we have to check is that all these subgroups are different. First
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observe that subgroups from different cases are different. The only nontrivial part of

this is to prove that a subgroup of case 3) is different from one of case 4). For that

observe that if E is from case 3) then there are matrices X ∈ E such that the pair

(x12, x34) takes any of the p2 diferent possibilities, whereas in case 4 this pair can only

take p different values (because B and Z don’t affect these entries).

We now have to check that inside each case the described subgroups are all dif-

ferent. In case 1) there is nothing to prove.

In case 2), let E be generated by A,B (and Z) and also by A′, B′(and Z). Then

A′ = AkBlC with C ∈ Z. But AkBlC has the element at position (2, 3) equal to k;

thus k = 1. So A′ = ABlC. Now ABlC has the element at (1, 2) equal to a, so a′ = a

(a′, b′, ... being the corresponding entries of A′). Similarly b′ = b. Thus B′ = B.

Looking at the elements at positions (1, 3) and (2, 4) in A′ and in ABlC, we get

that c′ = c+ la, d′ = d+ lb. If b 6= 0 then d = d′ = 0 (from the description of case 2,

since b = b′ are nonzero), so l = 0 and c′ = c. If b = 0 then a 6= 0 and c′ = c = 0. We

get that l = 0 and thus d′ = d.

Similar arguments work for cases 3) and 4).
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CHAPTER 5

ALL RELATIONS MOD NILPOTENTS OF THE CLASSES

DEFINED IN U4

In this chapter, we will assume that p ≥ 5. To compute all the relations modulo

nilpotents, we will find those classes in the subring R defined in chapter 3 that restrict

to 0 on all maximal elementary abelian subgroups. This will be enough because of

Lemma 5.1. Let R = Fp[{γij}] be the ring defined in chapter 3. Then an element

α ∈ R is nilpotent if and only if it restricts to zero on all maximal elementary abelian

subgroups.

Proof. It is known that the Fp cohomology ring of an elementary abelian p-group Z/pn

is a tensor product of an exterior algebra with a polynomial algebra. The generators

of the polynomial algebra are the elements of degree two.

Let α ∈ R and let E be an elementary abelian subgroup of rank k of G = Un.

Let Fp[x1, ..., xk] be the polynomial part of H∗(E), with x1, ..., xk elements of degree

2. The element γij restricts to an element of Fp[x1, ..., xk] as one can easily see from

the norm formula (since γij is the norm of some element of degree 2). Thus also the

element α, which is a polynomial in the γij, restricts to an element of Fp[x1, ..., xk].

But since Fp[x1, ..., xk] is a reduced ring, the restriction of α to E is nilpotent if and

only if is zero.
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The theorem of Quillen we referred at the beginning of chapter 4 states that

a cohomology class is nilpotent if and only if it is nilpotent when restricted to all

elementary abelian subgroups (or all maximal elementary abelian subgroups). By

this theorem and the above argument, we obtain that α is nilpotent if and only if it

restricts to zero an all maximal elementary abelian subgroups.

First let’s denote by H ≤ G the subgroup of matrices (aij) ∈ U such that a23 = 0.

It is easy to see that H is an extraspecial p-group of order p5. Also let K ≤ G be

the subgroup of matrices (aij) ∈ U such that a34 = 0 and let L be the subgroup of

matrices (aij) ∈ U such that a12 = 0, a34 = 0 .

Now let’s denote by x, y, z, t, u, v the elements γ12, γ23, γ34, γ13, γ24, γ14 respectively.

Define the element t′ ∈ H2(H) corresponding to the morphism H 3 (aij) → a13

and u′ ∈ H2(K) corresponding to the morphism K 3 (aij)→ a24 Then

t = NH→Gt
′, u = NK→Gu

′

easily results from the property N5 p. 58 of [Ev].

For an elementary abelian group E =< A,B,C... > let’s denote by XA, XB, ...

the elements XA = δ(φA), where φA ∈ H1(E,Fp) = Hom(E,Fp) is the morphism

φA(AkBl...) = k, and similar definitions for XB, ... hold. Then it is known that

H∗(E,Fp) = Fp[XA, XB, ...]⊗ E,

where E is an exterior algebra and we can view XA, XB, ... as indeterminates.

Proposition 5.2. The restriction of x, y, z, t, u, v to a maximal elementary abelian

subgroup E is the following, corresponding to the cases from theorem 4.3:
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1) resEx = 0, resEy = X, resEz = 0, resEt = Y p−Y Xp−1, resEu = Zp−ZXp−1,

resEv = T p2
+ l.o.t.

2) resEx = aX, resEy = X, resEz = bX, resEt = a(Y p − Y Xp−1), resEu =

b(Y p − Y Xp−1), resEv = zp2
+ l.o.t.

3) resEx = X, resEy = 0, resEz = Y , resEt = c(Y p − Y Xp−1), resEu =

b(Xp −XY p−1), resEv = zp2
+ l.o.t.

4) resEx = aX, resEy = 0, resEz = bX, resEt = a(Y p − Y Xp−1), resEu =

b(Y p − Y Xp−1), resEv = zp2
+ l.o.t,

where X = XA, Y = XB, Z = XC (and for case 1, T = XC and Z = XD)

and the elementary abelian subgroup at each case can be written E =< A,B,C >

(E =< A,B,C,D > for case 1).

Proof. 1) resEx = 0 is clear since all matrices of E have 0 in the (1, 2) position. Also

resEz = 0 and resEy = X are clear. Since EH = G in this case, by the norm formula

we get:

resEt = resENH→Gt
′ = NE∩H→EresE∩Ht

′ =
∏

q,resE∩Hq=resE∩H t′

q

=

p−1∏
i=0

(Y + iX) = Y p − Y Xp−1.

Now since K / G and E ⊂ K, there are p double cosets for E and K (they are also
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single cosets). A set of double coset representatives is

S = {A ∈ U,A =



1 0 0 0

0 1 0 0

0 0 1 i

0 0 0 1


, i ∈ Fp};

thus by the norm formula:

resEu = resENK→Gu
′ =

∏
s∈S

resEs
∗(u′) =

p−1∏
i=0

(Z + iX) = Zp − ZXp−1.

The fact that resEv = T p2
+ l.o.t. has been done in chapter 3).

2) Since resEx and aX both come from the same morphism on E, we get that

resEx = aX. Also resEy = X, resEz = bX.

Since EH = G and H is normal in G we get that

resEt = resENH→Gt
′ = NE∩H→EresE∩Ht

′ =
∏

q,resE∩Hq=resE∩H t′

q

=

p−1∏
i=0

(aY + iX) = a(Y p − Y Xp−1)

since E ∩H =< B,C >.

For resEu, if b = 0, E ⊂ K and using the coset representatives for K from case 1

we get

resEu = resENK→Gu
′ =

∏
s∈S

resEs
∗(u′) =

p−1∏
i=0

(dX + iX) = 0

If b 6= 0 then EK = G and we get

resEu = resENK→Gu
′ = NE∩K→EresE∩Ku

′ = NE∩K→EbY = b(Y p − Y Xp−1)
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since E ∩K =< B,C >.

For resEv we have that L is normal subgroup of G and EL is of index p in G. If

a 6= 0 (case a = 0 is done similarly), the set S from case 1 is a system of representatives

for the E − L double cosets. We get

resEv = resENL→Gv
′ =

∏
s∈S

NE∩L→EresE∩Ls
∗v′ =

∏
s∈S

NE∩L→Es
∗Z

=

p−1∏
i=0

NE∩L→E(Z + iY ) = NE∩L→E(Zp − ZY p−1)

= (NE∩L→EZ)p −NE∩L→EZ(NE∩L→EY )p−1

= (Zp − ZXp−1)p − (Zp − ZXp−1)(Y p − Y Xp−1)p−1

= Zp2

+ l.o.t.

Here we took into account that E ∩ L =< B,C > and that the norm is a ring

homomorphism (see [Ev], p. 64).

3) It is clear that resEx = X, resEy = 0 and resEz = Y .

For resEt observe that E ⊂ H and H is normal in G. A set of E − H double

coset representatives is

T = {A ∈ U,A =



1 0 0 0

0 1 i 0

0 0 1 0

0 0 0 1


, i ∈ Fp}.

Then by the norm formula we get

resEt = resENH→Gt
′ =

∏
s∈T

resEs
∗(t′) =

p−1∏
i=0

(cY − iX) = c(Y p − Y Xp−1).
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For resEu we have that KE = G and K is normal in G. So by the norm formula

we have

resEu = resENK→Gu
′ = NE∩K→EresE∩Ku

′ = NE∩K→EbX = b(Xp −XY p−1)

since E ∩K =< A,C >.

For resEv we have that LE = G and L is normal in G. So by the norm formula

we have

resEv = resENL→Gv
′ = NE∩L→EresE∩Lv

′ = NE∩L→EZ = Zp2

+ l.o.t

since E ∩ L =< C >.

Case 4) is done similarly to case 2)

Corollary 5.3. Let f(X, Y, Z, T, U, V ) ∈ Fp[X, Y, Z, T, U, V ].

Then f(x, y, z, t, u, v) ∈ H∗(G) is nilpotent if and only if the following hold:

1) f(0, X, 0, Y, Z, T ) = 0,

2) f(aX,X, bX, aY, bY, Z) = 0 for all a, b ∈ Fp, (a, b) 6= (0, 0),

3) f(X, 0, Y, a(Y p − Y Xp−1), b(Xp −XY p−1), Z) = 0 for all a, b ∈ Fp,

4) f(aX, 0, bX, aY, bY, Z) = 0 for all a, b ∈ Fp, (a, b) 6= (0, 0).

Proof. We saw from 5.1 that f(x, y, z, t, u, v) is nilpotent if and only if it restricts

to zero on all maximal elementary abelian subgroups of G. But we described all

maximal elementary abelian subgroups of U4 in the previous chapter.

By restricting to the subgroup of case 1 of 4.3, since the restriction map is a ring

homomorphism and by using prop. 5.2 we obtain that:

f(0, X, 0, Y p − Y Xp−1, Zp − ZXp−1, T p2

+ l.o.t.) = 0.
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But observe thatX, Y p−Y Xp−1, Zp−ZXp−1, T p2
+l.o.t. are algebraically independent

so we can replace them by X, Y, Z, T respectively. This way we obtain the first

relation. The second relation is obtained similarly by restricting to subgroups of the

second case of 4.3 and using the second result from 5.2. Here we also use that X and

Y p − Y Xp−1 are algebraically independent. Relations 3) and 4) follow similarly.

Theorem 5.4. Let N be the nilradical of Fp[x, y, z, t, u, v]. Then Fp[x, y, z, t, u, v]/N

is isomorphic to Fp[X, Y, Z, T, U, V ]/I where I is

I = I1 ∩
√
I2 ∩ I3 ∩

√
I4 =

√
I1 ∩ I2 ∩ I3 ∩ I4 and

I1 = (X,Z),

I2 = (UX − TZ,UpT − UT p, Xp −XY p−1, Zp − ZY p−1),

I3 = (Y, T p − T (Zp − ZXp−1)p−1, Up − U(Xp −XZp−1)),

I4 = (UX − TZ,UpT − UT p, Y,XZp −XpZ).

Proof. We have the canonical map Fp[X, Y, Z, T, U, V ] → Fp[x, y, z, t, u, v] defined

by X → x, Y → y, .... This map is obviously surjective. Then the induced map

Fp[X, Y, Z, T, U, V ] → Fp[x, y, z, t, u, v]/N is surjective and we only have to prove

that I is its kernel. In other words, we have to prove that f(x, y, z, t, u, v) ∈ N if and

only if f(X, Y, Z, T, U, V ) ∈ I. So by the previous corollary we have to prove that f

satisfies conditions 1) to 4) of that corollary if and only if f ∈ I.

Observe now that f(0, X, 0, Y, Z, T ) = 0 is equivalent to f ∈ (X,Z). This is

because we can write

f(X, Y, Z, T, U, V ) = g(Y, T, U, V ) +Xh(X, Y, Z, T, U, V ) + Zk(X, Y, Z, T, U, V )
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and f(0, Y, 0, T, U, V ) = 0 = g(Y, T, U, V ). Thus f satisfies 1) if and only if f ∈ I1.

Condition 2) of cor. 5.3 is satisfied by f if and only if

f ∈ Iab = (X − aY, Z − bY, aU − bT ) for all (a, b) 6= (0, 0).

This is because for a 6= 0 we can write

f(X, Y, Z, T, U, V ) = g(Y, Z, T, U, V ) + (X − aY )p(X, Y, Z, T, U, V )

= h(Y, T, U, V ) + (Z − bY )q(X, Y, Z, T, U, V ) + (X − aY )p(X, Y, Z, T, U, V )

= k(Y, T, V ) + (aU − bT )r(X, Y, Z, T, U, V ) + (Z − bY )q(X, Y, Z, T, U, V )+

+ (X − aY )p(X,Y, Z, T, U, V )

and because of condition 2) we get that k(Y, T, V ) ≡ 0. If a = 0 then b 6= 0 and k

will depend on Y, U, V, and we obtain the same thing.

We obtain this way that f satisfies condition 2) if and only if f ∈ ∩(a,b) 6=(0,0)Iab.

So we only need to prove that

∩(a,b) 6=(0,0)Iab =
√
I2. (5.1)

We will now work over the algebraic closure Fp of Fp. The above condition is equiv-

alent to

V (∩(a,b) 6=(0,0)Iab) = V (I2).

where V (I) represents the algebraic set of points Q ∈ P6(Fp) such that g(Q) = 0,∀g ∈

I. But V (∩kIk) = ∪kV (Ik) (see [ZS], p. 160) so we need to prove that

∪(a,b) 6=(0,0)V (Iab) = V (I2).
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If Q ∈ V (I2), Q = (x : y : z : t : u : v) then

ux = tz

xp − xyp−1 = 0 which implies x = ky (for some k ∈ Fp)

zp − zyp−1 = 0 which implies z = ly (for some l ∈ Fp)

upt− utp = 0 which implies u = mt (for some m ∈ Fp) or t = 0.

If t = 0 then from ux = tz we get that x = 0 or u = 0. If x = 0 then Q ∈ I0l, if u = 0

then Q ∈ Ikl.

If t 6= 0 then u = mt and since ux = tz, we obtain that mtky = tly. If y = 0

then x = y = z = 0 and we can find (a, b) 6= (0, 0) such that au = bt, so Q ∈ Iab.

Otherwise y 6= 0 and from mtky = tly we get mk = l, so x = ky, z = mky, u = mt,

so Q ∈ Iab, where a = k, b = mk.

In all cases we obtain that there is (a, b) 6= (0, 0) such that Q ∈ Iab, so V (I2) ⊂

∪Iab. It is easy to verify that if Q ∈ V (Iab) for some (a, b) 6= (0, 0) then Q ∈ V (I2),

so we obtain (5.1).

The fact that f satisfies condition 4) if and only if f ∈
√
I4 is done similarly.

We now need to prove that f satisfies condition 3) if and only if f ∈ I3 and then

we are done.

Let α(X,Z) = Zp − ZXp−1 and β(X,Z) = Xp − XZp−1. We will prove more

generally that if α, β ∈ Fp[X, Y ] and f(X, 0, Z, aα(X,Z), bβ(X,Z), V ) = 0 for all

a, b ∈ Fp then f ∈ (Y, T p − Tαp−1, Up − Uβp−1).
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Define the polynomials

Mi,j(X,Z, T, U) = T (T − α(X,Z))...(T − (i− 1)α(X,Z))U(U − β(X,Z))...

...(U − (j − 1)β(X,Z))

with 0 ≤ i, j ≤ p, where i = 0 (resp. j = 0) means that there are no factors in the T

(resp. U) variable. Observe that Mi,j can be used instead of the monomials T iU j to

write

f(X, Y, Z, T, U, V ) = Y g(X, Y, Z, T, U, V ) +
∑

0≤i,j≤p−1

Mi,jfi,j(X,Z, V )+

+Mp,0h(X, Y, Z, T, U, V ) +M0,pk(X, Y, Z, T, U, V ).

(5.2)

This is because the coefficient of T iU j in Mi,j is 1 and we can recursively write all

T iU j, i, j ≤ p in terms of these Mi,j with coefficients in Fp[X,Z].

Now by looking at f(X, 0, Z, aα(X,Z), bβ(X,Z), V ) = 0 and in (5.2) making

Y = 0, T = aα(X,Z) and U = bβ(X,Z), we see that all Mk,l, with k > a or l > b,

have value 0, because of the way they are defined. Now by giving the following values

to (a, b):

(0, 0), (1, 0), ..., (p− 1, 0), (0, 1), (1, 1), ..., (p− 1, 1), ..., (p− 1, p− 1),

we get succesively that fi,j ≡ 0, 0 ≤ i, j ≤ p− 1. This implies that

f ∈ (Y,M0,p,Mp,0) = (Y, T p − Tαp−1, Up − Uβp−1).

Reciprocally, it is clear that if f ∈ I3 than f satisfies condition 3).

It is impractical to compute this ideal exactly (i.e., obtaining its generators). I

did this using the Macaulay II package for p = 5 and I obtained an ideal with 45

generators!
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CHAPTER 6

THE HECKE ALGEBRAS H(G//B) AND H(G//U)

In this chapter, we will compute the Hecke algebra H(G//B) and H(G//U), where

G = GLn(Fp), B is the Borel subgroup consisting of upper triangular matrices, and

U = Un(Fp) is the unitary subgroup consisting of upper triangular matrices with 1

on the diagonal. We have the Bruhat decomposition:

B\G/B =
∐

w∈W

BwB,

where W is the group of matrices obtained by permuting the lines of the identity

matrix corresponding to each permutation of Sn.

Proposition 6.1. With the above notations, H(G//B) is generated by the double

cosets BsiB = (si) where si ∈ W corresponds to the transposition (i, i + 1). The

relations between the double cosets (si) in H(G//B) are the following:

(si)(sj) = (sj)(si), if |i− j| > 1,

(si)(si+1)(si) = (si+1)(si)(si+1),

(si)(si) = p · (1) + (p− 1)(si).

Proof. See [Ho] p. 3.

We now turn to H(G//U). As in [Ho], for w ∈ Sn define

l(w) = min{k, w = si1 ...sik}.
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Let d(w) = degBwB (regarded as a B-double coset). Recall that degBwB is defined

as the number d of left cosets Bwi such that:

BwB =
∐

1≤i≤d

Bwi.

It is also equal to [B : B ∩ w−1Bw].

We have d(w) = pl(w) since it is enough to check this on si, because d() is mul-

tiplicative on minimal products of si and l() is additive on minimal products of si.

Since U is normal in B, we have B =
∐

t∈T Ut where T is the group of diagonal

matrices. Also observe that W normalizes T . We then have

d(w)∐
t∈T

UtwU = BwB = BwU =

d(w)∐
i=1

Bwui =

d(w)∐
i=1, t∈T

Utwui, (6.1)

where wui is a system of single B-coset representatives for BwB with ui ∈ U . Using

the Bruhat decomposition, we get from here that

U\G/U =
∐

w∈W,t∈T

UtwU. (6.2)

Since

UtwU ⊃
d(w)∐
i=1

Utwui for each t ∈ T

and when we take reunion for all t ∈ T we get equality (see (6.1)), we actually have

UtwU =

d(w)∐
i=1

Utwui for each t ∈ T .

Let’s denote the double coset UxU by (x). We obtain therefore that deg(tw) =

d(w) = deg(w), in H(G//U).
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Proposition 6.2. With the above notations, H(G//U) is generated by the double

cosets (si) and (t) with t ∈ T . The relations between these generators in H(G//U)

are the following:

(tsi) = (t)(si), (sit) = (si)(t), (tt
′) = (t)(t′),

(si)(sj) = (sj)(si), if |i− j| > 1,

(si)(si+1)(si) = (si+1)(si)(si+1),

(si)(si) = p(1) +
∑

kl=−1

(diag(1, .., 1, k, l, 1, ..., 1)si),

where k is at position i in diag(1, .., 1, k, l, 1, ..., 1).

Proof. We saw above (in (6.2)) that H(G//U) is generated by the double cosets (tw)

with t ∈ T,w ∈ W . Let now t, t′ ∈ T and w,w′ ∈ W be such that l(w) + l(w′) =

l(ww′).

Since (tw) · (t′w′) as a set contains (twt′w′) and

deg(tw) deg(t′w′) = deg(w) deg(w′) = deg(ww′) = deg(twt′w′)

(because we know that deg(ww′) = deg(t1ww
′) and twt′w′ can be written as t1ww

′),

we get that

(tw)(t′w′) = (twt′w′). (6.3)

From here, by giving appropriate values to t, t′, w, w′, we get that

(t)(w) = (tw), (w)(t) = (wt) and (tt′) = (t)(t′).

Also from here, since for |i− j| > 1 we have l(si) + l(sj) = l(sisj), we get

(si)(sj) = (sisj) = (sjsi) = (sj)(si).
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If w ∈ W , write w = si1 ...sik , a minimal decomposition in product of transposi-

tions. Then l(w) = l(si1) + l(si2) + ...+ l(sik) and from (6.3) we get

(w) = (si1)...(sik).

The permutations of positions i, i + 1, i + 2 form a group isomorphic to S3. There

are three transpositions there. Two of them are si and si+1. The third is sisi+1si =

si+1sisi+1. Since this is a minimal decomposition of this transposition (because it

cannot be a product of 2 transpositions and it is not an elementary transposition sj),

we get that

(si)(si+1)(si) = (sisi+1si) = (si+1sisi+1) = (si+1)(si)(si+1).

We now want to prove the relation for (si)(si). We will prove that

UsiUsiU = U1U ∪
∐

kl=−1

Udiag(1, ..., 1, k, l, 1, ..., 1)siU, (6.4)

where k is at position i. Because

si =


Ii−1 0 0

0 s 0

0 0 In−i−1

 with s =

0 1

1 0

,

we get that

UsiUsiU =


Ui−1 ∗ ∗

0 U2sU2sU2 ∗

0 0 Un−i−1
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so we see that without loss of generality we may assume U = U2. In this case an

element of U has the form A =

1 a

0 1

 and thus a nontrivial element of sUs is of

the form0 1

1 0


1 a

0 1


0 1

1 0

 =

1 0

a 1

 =

1 1
a

0 1


0 − 1

a

a 0


1 1

a

0 1

 .

This implies that

UsUsU = U ∪
∐
a 6=0

U

0 − 1
a

a 0

U = U ∪
∐

kl=−1

Udiag(k, l)sU.

We thus obtained the relation (6.4). From here we get that

(si)
2 = m(1) +

∑
kl=−1

mi(diag(1, ..., 1, k, l, 1, ..., 1)si)

for some integers m,mi > 0. Now since for any t ∈ T , deg(tsi) = p, deg(1) = 1 and

deg(si)
2 = p2, we have no other choice than m = p,mi = 1 so we get the following

relation:

(si)
2 = p(1) +

∑
kl=−1

(diag(1, ..., 1, k, l, 1, ..., 1)si).
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CHAPTER 7

ON A CONJECTURE OF ASH

Let U = Un(Fp) and

U∗ = {A ∈ GLn(Fp), A =



1 ∗ ... ∗

0 1 ... ∗

. . . .

0 ... 1 ∗

0 ... 0 ∗


}.

Define

ΓU = {M ∈ SLn(Z), M ∈ U}

SU = {M ∈Mn(Z), detM > 0, (detM, p) = 1, M ∈ U∗}

Γ(N) = {M ∈ SLn(Z),M ≡ In mod N}, Γ(1) = SLn(Z)

SK(N) = {M ∈Mn(Z), detM > 0, (detM,K) = 1,M ≡ diag(1, 1, ..., 1, ∗) mod N}

GSK(N) = {M ∈Mn(Z), detM 6= 0, (detM,K) = 1,M ≡ diag(1, 1, ..., 1, ∗) mod N}

Definition 7.1. A Hecke pair is a pair (Γ, S), where Γ is a subgroup of GLn(Z)

containing Γ(N) for some N , and S is a semigroup of GLn(Q) such that Γ ⊂ S.

Definition 7.2. Two Hecke pairs (Γ, S) and (Γ′, S ′) are said to be compatible if

1) Γ ⊂ Γ′, S ⊂ S ′,
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2) Γ′ ∩ SS−1 = Γ, and

3) Γ′S = S ′.

Lemma 7.1. a) (Γ(p), Sp(p)) and (ΓU , SU) are compatible Hecke pairs.

b) (ΓU , SU) and (Γ(1), Sp(1)) are compatible Hecke pairs.

Proof. a) Clearly Γ(p) ⊂ ΓU and Sp(p) ⊂ SU . Suppose now γ ∈ ΓU ∩ Sp(p)Sp(p)
−1.

Then γ is congruent to diag(1, 1, ..., 1, ∗) mod p and has determinant 1. Thus γ

is congruent to diag(1, 1, ..., 1, 1) mod p, so γ ∈ Γ(p). Since the other inclusion is

trivial, we get that ΓU ∩ Sp(p)Sp(p)
−1 = Γ(p). Since any matrix from U∗ can be

written as a product of a matrix from U and a matrix from diag(1, 1, ..., 1, ∗) we

get that SU ⊂ ΓUSp(p); hence SU = ΓUSp(p). Since the three conditions have been

verified, we have that (Γ(p), Sp(p)) and (ΓU , SU) are compatible Hecke pairs.

b) Clearly ΓU ⊂ Γ(1) and SU ⊂ Sp(1). Suppose now that γ ∈ Γ(1)∩SUS
−1
U . Then

γ ∈ SLn(Z) and γ ∈ U∗. Thus γ ∈ U so γ ∈ ΓU . So Γ(1) ∩ SUS
−1
U = ΓU . The last

thing that we have to prove is that Γ(1)SU = Sp(1). But from [Ash] p.238, Lemma

1.1 a), we have Γ(1)Sp(p) = Sp(1) and since Sp(p) ⊂ SU , we get that Γ(1)SU = Sp(1).

So (ΓU , SU) and (Γ(1), Sp(1)) are compatible Hecke pairs.

Definition 7.3. A Hecke pair (Γ, S) is called a congruence Hecke pair of level N if

the following hold:

a) (Γ(N), SN(N)) and (Γ, S) are compatible Hecke pairs,

b) (Γ, S) and (GLn(Z), GSN(1)) are compatible Hecke pairs.

Corollary 7.2. (ΓU , SU) is a congruence Hecke pair of level p.
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Proof. Point a) of the above definition holds because of point a) of the previous

lemma.

Point b) holds because of point b) of the previous lemma, and the fact that

(Γ(1), Sp(1)) and (GLn(Z), GSp(1)) are compatible Hecke pairs and the relation of

compatibility is transitive (see [Ash], p. 238).

Lemma 7.3. Let (Γ, S)→ (Γ′, S ′) be compatible Hecke pairs. Consider a morphism

(Γ′, S ′)
φ−→ (Γ1, S1) of Hecke pairs (i.e φ : S ′ → S1 is a morphism of semigroups and

Γ1 = φ(Γ)). Define the Hecke pair (Γ, S) = (φ(Γ), φ(S)).

If (Γ, S) and (Γ1, S1) are compatible Hecke pairs then we have the following com-

mutative diagram of Hecke algebras:

H (S ′//Γ′) ↪→ H (S//Γ)

↓ ↓

H (S1//Γ1) ↪→ H (S//Γ)

Proof. We have such a diagram on the Hecke algebras, we only need to prove that it

is commutative.

Since (Γ, S) and (Γ′, S ′) are compatible Hecke pairs, by property 3) of the defi-

nition of compatible Hecke pairs we get that any simple coset Γ′a, a ∈ S ′ is equal

to Γ′s for some s ∈ S. We thus have the following commutative diagram of single

cosets:

Γ′s→ Γs

↓ ↓

Γ1φ(s)→ Γφ(s)
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Since each of these maps on cosets gives rise to a map on double cosets by joining

together the simple cosets that make up the double coset, we obtain a commutative

diagram on the double cosets, and on the corresponding Hecke Algebras.

Corollary 7.4. Let H (p) = H (Sp(1)//Γ(1)). We have the following commutative

diagram of Hecke algebras:

H (p) ↪→ H (SU//ΓU)

↓ ↓

H (GLn(Fp)//SLn(Fp)) ↪→ H (U∗//U).

Proof. We only need to prove that H(U∗//U) and H (GLn(Fp)//SLn(Fp)) are com-

patible Hecke pairs. Then by applying the previous lemma, we get the result.

It is clear that U∗ ⊂ GLn(Fp) and U ⊂ SLn(Fp). We also have U∗SLn(Fp) =

GLn(Fp), since by taking a matrix A of GLn(Fp) and multiplying it with the inverse

of diag(1, 1, ..., 1, detA) we obtain a matrix of SLn(Fp).

We need now to check that SLn(Fp)∩U∗U∗−1 = U . Since U∗ is a group it implies

that U∗U∗−1 = U∗ so we have to prove that SLn(Fp)∩U∗ = U which is obvious.

Definition 7.4. As in [Ash], given a Hecke pair (Γ, S) and a left S-module M , we

define an action of the Hecke algebra H(S//Γ) on H∗(Γ,M). We first define the

action of ΓsΓ for s ∈ S as the Hecke operator Ts defined below:

Ts(β) = trΓ∩sΓs−1→ΓresΓ∩sΓs−1s∗(β) for any β ∈ H∗(Γ,M).

We extend this action to the entire Hecke algebra H(S//Γ) by linearity.

We also define Tl,k to be the Hecke operator corresponding to the double coset

Γdiag(1, ..., 1, l, ..., l)Γ ∈ H(p), where l appears k times and Γ = Γ(1), S = Sp(1).
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This action is compatible with the algebra structure because:

Proposition 7.5. Let (Γ, S) be a Hecke pair and M be a left S-module. Then H∗(Γ)

has a structure of a right H(S//Γ)-module via the Hecke operator action described

above. More precisely for any a, b ∈ H(S//Γ) and any β ∈ H∗(Γ,M):

Tab(β) = Tb(Ta(β)).

Proof. See [RW].

Corollary 7.6. Under the commutative diagram from 7.4, the image of Tl,k ∈ H(p)

in H(U∗//U) is

dl,kTUdiag(1,1,...,1,lk)U where dl,k = deg(Tl,k) =
(ln − 1)...(ln − lk−1)

(lk − 1)...(lk − lk−1)
.

Note 7.1. The last equality has been proved in [Shi], prop. 3.18, p. 58.

Proof. The image of Tl,k in H(GLn(Fp)//SLn(Fp)) is of the form dTl,k where d is such

that the degree is preserved. In H(GLn(Fp)//SLn(Fp)), Tl,k is in the same double

coset as diag(1, 1, ..., 1, lk) ∈ U∗. Furthermore, this double coset splits as only one

single coset since diag(1, 1, ..., 1, lk) normalizes U . So deg Tl,k = 1. Since all maps

from the above commutative diagram maintain the degree, we get that d = dl,k. The

image of Tl,k in H(U∗//U) is diag(1, 1, ..., 1, lk), since Tl,k can be represented by only

one single coset. Therefore the image of Tl,k in H(U∗//U) is dl,kTUdiag(1,1,...,1,lk)U .

Definition 7.5. Let β ∈ H∗(U,Fp) be an eigenclass for Tl,k for all primes l, and all

1 ≤ k ≤ n. Thus Tl,kβ = a(l, k)β for some a(l, k) ∈ Fp. Define

P (β, l) =
∑

(−1)klk(k−1)/2a(l, k)Xk.

62



Theorem 7.7. Let β ∈ H∗(U,Fp) be an eigenclass for Tl,k for all primes l 6= p, and

all 1 ≤ k ≤ n. Then there is an integer d such that the representation

ρ = ωd ⊕ ωd+1 ⊕ ...⊕ ωd+n−1 : GQ → GLn(Fp), (7.1)

where GQ = Gal(Q/Q), has the property that

P (β, l) = det(I − ρ(Frobl)X) for all l 6= p.

Proof. Let Tm = Tdiag(1,1,...,1,m) for any m ∈ F∗p. Then Tl,k = dl,kTlk . There is a prime

q that generates F×p . Since β is an eigenclass then Tq,1β = aβ for some a ∈ F∗p. The

eigenvalue a is nonzero, since ap−1β = Tqp−1β = T1β = β, so ap−1 = 1. But then

a = qd for some d ∈ Z. Then Tq,kβ = dl,k(Tqk)β = dq,k(Tq)
kβ = dq,kq

dkβ. For any

prime l and any k we have Tl,k = dl,kTdiag(1,1,...,1,lk) = dl,kTqm for some m such that

lk = qm (mod p). Then Tl,kβ = dl,kq
mdβ = dl,kl

dkβ. Therefore a(l, k) = dl,kl
dk for all

primes l. Then

P (β, l) =
∑

(−1)klk(k−1)/2a(l, k)Xk =
∑

(−1)klk(k−1)/2dl,kl
kdXk

=
∑

(−1)klk(k−1)/2dl,k(l
dX)k = (see [Shi] p.64)

= (1− ldX)(1− ld+1X)...(1− ld+n−1X) = det(I − ρ(Frobl)X)

for the ρ given in (7.1).

Now we prove that the Conjecture of Ash holds in our particular context:

Corollary 7.8. The conjecture of Ash (see [Ash], p 242, Conjecture B) is true for

Γ = ΓU , S = SU and for eigenclasses β ∈ H∗(ΓU ,Fp), which are pull-backs from

H∗(U,Fp) via the reduction mod p map π : ΓU → U .
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Proof. Recall that Conjecture B from [Ash] states:

Conjecture 7.9. (Ash, 1992) Let (Γ, S) be a congruence Hecke pair of level N and

p be a prime. Let F be a finite field of characteristic p. Let V be an admissible FS

module. Suppose β ∈ H i(Γ, V ) is an eigenclass for the action of the Hecke operators

Tl,k with eigenvalues a(l, k) ∈ F for all primes l not dividing N and all k = 1, ..., n.

Then there exists a continuous semisimple representation ρ : GQ → GLn(F) un-

ramified ouside pN such that

P (β, l) = det(I − ρ(Frobl)X)

for all primes l not dividing pN .

In our context, F = Fp, V = Fp, (Γ, S) = (ΓU , SU) and N = p.

Since β is a pull-back from H∗(U,Fp), β = π∗(β′) with β′ ∈ H∗(U,Fp). Because

the map π∗ is compatible with the Hecke action (see [KPS] thm. 1.3.7), β is a Tl,k-

eigenclass for all primes l 6= p and k ≤ n if and only if β′ is a Tl,k-eigenclass for all

primes l 6= p and k ≤ n and the eigenvalues are the same. Thus P (β, l) = P (β′, l).

Now we apply the previous theorem for β′ and we get the result.
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CHAPTER 8

PROPERTIES OF THE TRANSFER MAP AND OF THE

HECKE OPERATORS

In this chapter we will develop some properties of the transfer map, and of the Hecke

operators. We will use in Chapter 9 the properties that we will develop in the next

section. We will not use the work we do in the other section, but we think that this

work is important, and to our knowledge, has not been done so far.

Theorem 8.1. Let G be a finite group and H be a subgroup of G. The transfer map

trH→G : H∗(H,Fp)→ H∗(G,Fp) maps nilpotents to nilpotents.

Proof. Quillen proved that an element α ∈ H∗(G,Fp) is nilpotent if and only if its

restriction to all elementary abelian subgroups is nilpotent.

Let thus α ∈ H∗(H,Fp) be a nilpotent element. We want to prove that trH→G(α)

is nilpotent. We will prove that the restriction of trH→G(α) to all elementary abelian

subgroups is nilpotent.

Let E be an elementary abelian subgroup of G. Let G = ∪g∈IEgH be a double

coset decomposition of G. Then

resEtrH→G(α) =
∑
g∈I

trE∩gHg−1→EresE∩gHg−1g∗α.

65



Now if for some g ∈ I we have that E ∩ gHg−1 6= E then trE∩gHg−1→E ≡ 0 (see [AM]

p. 72, cor 5.9). We thus get

resEtrH→G(α) =
∑

g∈I,E∩gHg−1=E

resEg
∗α,

but since α is nilpotent, resEg
∗α is also nilpotent so resEtrH→G(α) is nilpotent (being

a sum of nilpotents). Thus trH→G(α) is nilpotent.

Corollary 8.2. The Hecke operators take nilpotents to nilpotents.

Proof. Clear since the Hecke operators are a composition of maps (transfer, restriction

and conjugation, as seen in Chapter 7) that take nilpotents to nilpotents.

Functoriality properties of the transfer map

Lemma 8.3. Let G be a finite group and H a normal subgroup of G. Let G′ be

another subgroup of G such that there exists a split exact sequence:

1→ K → G
π−→ G′ → 1

for some subgroup K of G. Let H ′ = H ∩G′. If K ⊂ H then the map G′/H ′ ↪→ G/H

induced by the inclusion is an isomorphism and there exists an induced split exact

sequence:

1→ K → H → H ′ → 1.

Also trH→Gx = trH′→G′x for any x ∈ H∗(H ′) ↪→ H∗(H).

Proof. From the split exact sequence we have that G′K = G since any element of G

can be written as a product π(x) ∈ G′ and an element of K, namely (π(x))−1x. Then
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G′H = G since K ⊂ H. From one of the isomorphism theorems for groups, we have

that G′/H ∩G′ ' G′H/H so we get that G′/H ′ ' G/H, the map being that induced

by the inclusion.

Now if x ∈ H then (π(x))−1x ∈ K ⊂ H, so π(x) ∈ H. But π(x) ∈ G′ so π(x) ∈ H ′.

Reciprocally, any element y ∈ H ′ is in G′ so π(y) = y; therefore π|H : H → H ′ is

surjective. Restricting now the given exact sequence to H, we get a split exact

sequence:

1→ K → H → H ′ → 1.

To prove now the equality of the transfer maps, we can suppose, by dimension shifting,

that x ∈ H0(H ′). Then we can find a system S of representatives for G′/H ′ ' G/H.

Thus S will also be a system of representatives for G/H. Then

trH′→G′x =
∑

s∈G′/H′

s∗x =
∑
s∈S

s∗x ∈ H∗(G′) ⊂ H∗(G)

so trH′→G′x =
∑

s∈S s
∗x =

∑
s∈G/H s

∗x = trH→Gx ∈ H∗(G).

An alternate definition of the transfer map

In this section let G be a finite group. Let Ap(G) be the family of all non-trivial

p-elementary abelian subgroups of G.

Definition 8.1. Define

lim
A∈Ap(G)

H∗(A,Fp)

as the sequences (xA) ∈
∏

A∈Ap(G)H
∗(A,Fp) such that resA

A′(xA) = xA′ and c∗g(xA) =

xg−1Ag, or equivalently g∗(xA) = xgAg−1 .
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Using the restriction we can define a map

φ : H∗(G,Fp)→ lim
A∈Ap(G)

H∗(A,Fp).

Then we have the following theorem due to Quillen:

Theorem 8.4. (Quillen) The map φ has nilpotent kernel and cokernel.

The question is whether given H ≤ G one can transport the transfer map

trH→G : H∗(H,Fp)→ H∗(G,Fp)

to a “transfer map”

trH→G : lim
A∈Ap(H)

H∗(A,Fp)→ lim
A∈Ap(G)

H∗(A,Fp).

Since limA∈Ap(G)H
∗(A,Fp) can in theory be computed explicitly by knowing the lat-

tice of all the p-elementary abelian subgroups of G, we can get an explicit description

of the transfer map and thus of the Hecke operators, at least modulo nilpotents.

We’ll treat the simpler case H / G. Let A ∈ Ap(G). If A 6⊂ H let S be a system

of A − H double coset representatives. Then A ∩ H is a proper subgroup of A and

by the double coset formula we have, for x ∈ H∗(H):

resAtrH→Gx =
∑
s∈S

trA∩sHs−1→A(ressHs−1

A∩sHs−1s∗x) =
∑
s∈S

trA∩H→A(resH
A∩Hs

∗x) = 0

because it is known ([AM], p. 72, Corollary 5.9) that trE′→E ≡ 0 if E ′ is a proper

subgroup of the elementary abelian group E.
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If A ⊂ H, let S be a system of representatives for G/H. Then S is also a system

of A − H double coset representatives so by the double coset formula we have, for

x ∈ H∗(H):

resAtrH→Gx =
∑
s∈S

trA∩sHs−1→A(ressHs−1

A∩sHs−1s∗x) =
∑
s∈S

resH
A s

∗x =
∑
s∈S

s∗resH
s−1Asx,

since sHs−1 = H, A ∩ sHs−1 = A and trA→A is the identity map. We see from here

that we can give the following

Definition 8.2. If H / G define

trH→G : lim
A∈Ap(H)

H∗(A,Fp)→ lim
A∈Ap(G)

H∗(A,Fp)

as follows

(trH→Gx)A =


0 if A 6⊂ H∑

g∈G/H g
∗(xg−1Ag) if A ⊂ H

.

Observe that if A ⊂ H then g−1Ag ⊂ g−1Hg = H so we xg−1Ag is defined. Also

observe that in general xA 6= g∗(xg−1Ag) since xA = h∗(xh−1Ah) only for h ∈ H.

Proposition 8.5. The map trH→G defined above is well defined.

Proof. We need to check that if A′ ⊂ A then resA
A′(trH→Gx)A = (trH→Gx)A′ and

g∗(trH→Gx)A = (trH→Gx)gAg−1 for all g ∈ G. For the first equality, if A′ 6⊂ H then

clearly A 6⊂ H and the equality is trivially satisfied by the definition. If A ⊂ H then

A′ ⊂ H and we have:

resA
A′(trH→Gx)A = resA

A′

∑
g∈G/H

g∗(xg−1Ag) =
∑

g∈G/H

g∗resg−1Ag
g−1A′g(xg−1Ag)

=
∑

g∈G/H

g∗(xg−1A′g) = (trH→Gx)A′ .
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The last case is A′ ⊂ H, A 6⊂ H. Then we have to prove that

(trH→Gx)A′ = 0.

For that we need the following

Lemma 8.6. If E ′ / E are p-groups such that there is a map π : E → E ′ such that

π(g) = g for all g ∈ E ′ then

∑
g∈E/E′

g∗x = 0 for all x ∈ H∗(E ′).

Proof. If x ∈ H∗(E ′) then resE′π∗x = x and therefore

g∗x = g∗(resE′π∗x) = resE′g∗(π∗x) = resE′(π∗x) = x,

since g∗ acts trivially on H∗(E). Thus

∑
g∈E/E′

g∗x =
∑

g∈E/E′

x = pkx = 0.

Back now to the proof of our proposition. We can assume without loss of generality

that A′ = A ∩H since A′ ⊂ A ∩H and the restriction from A ∩H to A′ has already

been taken into consideration in the previous case.

Let S be a system of representatives for G/AH and T ⊂ A be a system of

representatives for A/A′ thus also for AH/H ' A/A ∩ H = A/A′. Then {ts, s ∈

S, t ∈ T} is a system of representatives for G/H. We have

(trH→Gx)A′ =
∑

s∈S,t∈T

(ts)∗(x(ts)−1A′ts).
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Observe that for all t ∈ T , tA′t−1 ⊂ tAt−1 = A (since t ∈ A) and tA′t−1 ⊂ H so

tA′t−1 ⊂ A ∩H = A′ and by cardinality tA′t−1 = A′. Thus

(trH→Gx)A′ =
∑

s∈S,t∈T

(ts)∗(xs−1A′s)

but t ∈ A/A′ if and only if u = s−1ts ∈ s−1As/s−1A′s. Then ts = su and

(trH→Gx)A′ =
∑
s∈S

∑
u∈s−1As/s−1A′s

(su)∗(xs−1A′s) =
∑
s∈S

∑
u∈s−1As/s−1A′s

s∗u∗(xs−1A′s)

=
∑
s∈S

s∗(
∑

u∈s−1As/s−1A′s

u∗(xs−1A′s)).

Now applying the previous lemma for the interior sum, and for E = s−1As,E ′ =

s−1A′s (since they are elementary abelian subgroups so E’ is a direct summand) we

get that ∑
u∈s−1As/s−1A′s

u∗(xs−1A′s) = 0

and thus (trH→Gx)A′ = 0. We are done with the first equality.

We still have to prove the second equality, i.e., g∗(trH→Gx)A = (trH→Gx)gAg−1 for

all g ∈ G. Let g ∈ G be fixed.

Since H is normal in G, A ⊂ H is equivalent to gAg−1 ⊂ H. So if A 6⊂ H, the

equality becomes trivially satisfied.

If A ⊂ H, then gAg−1 ⊂ H and

g∗(trH→Gx)A = g∗(
∑

s∈G/H

s∗(xs−1As)) =
∑

s∈G/H

g∗s∗(xs−1As)

=
∑

s∈G/H

(gs)∗(xs−1As) =
∑

t∈G/H

t∗(xt−1gAg−1t) = (trH→Gx)g−1Ag,

where we made the substitution t = gs, which gives another system of representatives

for G/H.
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If H is not normal in G, the problem is much harder. We can still derive a

definition for the transfer map as follows:

Let A be an elementary abelian subgroup and S be a system of A − H double

coset representatives. Then for x ∈ H∗(H):

resAtrH→Gx =
∑
s∈S

trA∩sHs−1→A(ressHs−1

A∩sHs−1s∗x) =
∑
s∈S

trA∩sHs−1→A(s∗resH
s−1As∩Hx).

If s−1As 6⊂ H then A 6⊂ sHs−1 so A∩ sHs−1 is a proper subgroup of A and thus the

transfer map trA∩sHs−1→A is identically 0 ([AM], p. 72, Corollary 5.9). Therefore in

the above sum, only the terms for which s−1As ⊂ H remain, and for those we have

A ∩ sHs−1 = A so the transfer map trA∩sHs−1→A is the identity. Thus we get

resAtrH→Gx =
∑

s∈S,s−1As⊂H

s∗resH
s−1Asx.

From here we can state the following:

Conjecture 8.7. Define the transfer map:

trH→G : lim
A∈Ap(H)

H∗(A,Fp)→ lim
A∈Ap(G)

H∗(A,Fp) by

(trH→Gx)A =
∑

s∈SA,s−1As⊂H

s∗(xs−1As),

where SA is a system of A−H double coset representatives.

Then this map is well defined.
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CHAPTER 9

A NEW CLASS IN H∗(GLN(FP ),FP )

As we saw in Chapter 6, the Hecke algebra H(GLn(Fp)//Un) is generated by the

double cosets of the diagonal matrices and the double cosets of the si, where si is the

matrix corresponding to the transposition (i, i+ 1).

Given a finite group G and a p-Sylow subgroup H, we know from p. 84 of [Brn]

that resG
H is a monomorphism between H∗(G,Fp) and H∗(H,Fp). We want to give a

necessary and sufficient condition in terms of Hecke operators for a class in H∗(H,Fp)

to be in H∗(G,Fp). The following lemma is Ex.2, p. 85 from [Brn].

Lemma 9.1. Let G be a finite group and H be a p-Sylow subgroup. A cohomology

class β ∈ H∗(H,Fp) is in H∗(G,Fp) if and only if the action of all the Hecke operators

is punctual, i.e., Tx(β) = deg(x)β for all x ∈ H(G//H).

Proof. If β ∈ H∗(H,Fp) is the restriction of a class in H∗(G,Fp) by Theorem 10.3

p.84 of [Brn], β is G-invariant, i.e., resH
H∩gHg−1β = resgHg−1

H∩gHg−1g
∗β for any g ∈ G. But

then

Tg(β) = trH∩gHg−1→Hres
gHg−1

H∩gHg−1g
∗β = trH∩gHg−1→Hres

H
H∩gHg−1β

= (H : H ∩ gHg−1)β = deg Tgβ.

By linearity we get that the action of all the Hecke operators is punctual.
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We now prove the other implication. Suppose that all the Hecke operators act

punctually on β. Let w = trH→Gβ. Let S be a system of representatives for the

H −H double cosets of G. Then

resHw = resHtrH→Gβ =
∑
s∈S

trH∩sHs−1→Hres
sHs−1

H∩sHs−1s∗β =
∑
s∈S

Ts(β)

=
∑
s∈S

(deg Ts)β =
∑
s∈S

(H : H ∩ sHs−1)β = (G : H)β.

The last equality holds because (H : H ∩ sHs−1) is exactly the number of simple

right cosets that compose HsH. So by taking the union of all double cosets HsH

and decomposing each into simple cosets, we get all the simple cosets of G/H.

Since (G : H) is prime to p, we have that β = resH
1

(G:H)
w.

Lemma 9.2. A class β ∈ H∗(Un,Fp) is in H∗(GLn(Fp),Fp) if and only if:

Tt(β) = β for any t ∈ Tn and

Tsi
(β) = 0 for 1 ≤ i ≤ n− 1.

Proof. By applying the previous lemma, β ∈ H∗(Un,Fp) is in H∗(GLn(Fp),Fp) if and

only if all the Hecke operators act punctually on β.

Because the Hecke action is compatible with the multiplication in the Hecke alge-

bra, it is enough to check that the elements of Tn (the subgroup of diagonal matrices)

and the si act punctually on our class β. This is because these elements generate the

Hecke algebra.

This ends our proof since the degree of the torus elements is 1 (the double coset

is also a single coset since Tn normalizes Un) and the degree of the si is p.

Let’s see now what is the action of Tn on the classes defined in chapter 3.
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Proposition 9.3. Let t = diag(t1, ..., tn) ∈ Tn. Then

Tt(γij) =
tj
ti
γij.

Proof. Since tUnt
−1 = Un, we have that

Tt(γij) = trUn→Unt
∗(γij) = t∗(γij);

observe that γij = NHij→Unζij where Hij are defined in remark 3.2. Let H = Hij.

Then tHt−1 = H as can be checked easily. Looking at the following morphism

φ : Un → Un, φ(x) = t−1xt

and using the functoriality property of the norm map (N5, p. 58 in [Ev]), we get

t∗(γij) = φ∗(NH→Unζij) = NH→Unφ
∗(ζij) = NH→Un(

tj
ti
ζij)

=
(tj
ti

)pk

NH→Un(ζij) =
tj
ti
γij.

For U2 = Z/p we see that Hev(U2) (even cohomology) is a polynomial ring in one

indeterminate generated by the element α ∈ H2(U2) corresponding to the canonical

morphism U2 → Fp. From the above proposition, we see that αk is invariant to the

action of T2 if and only if (p − 1)|k. It is easy to see that Ts1 ≡ 0, so αk(p−1) ∈

H∗(GL2(Fp)). Let χ2 = αp−1.

For each Un we embed Uk with k < n as the Uk1 using the notation of chapter 3.

We saw that this way we have H∗(Uk) ↪→ H∗(Un).
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For U3, let χ3 = χ2 + Ts2(χ2). It is easy to see that

U3 ∩ s2U3s
−1
2 = {A ∈ U3, A =


1 ∗ ∗

0 1 0

0 0 1

}
and let’s denote this subgroup by H. Then we can write

χ3 = αp−1 + trH→U3s
∗
2(α

p−1).

Observe that s∗2(α) = γ where γ ∈ H2(H) comes from the morphism

γ : H → Fp,


1 a b

0 1 0

0 0 1

→ b,

thus we get that

χ3 = αp−1 + trH→U3γ
p−1.

Let us now define χ′3 = βp−1 +Ts1(β
p−1) = βp−1 + trHp→U3γ

p−1
1 , where β ∈ H2(U3)

resp. γ1 ∈ H2(Hp) come from the morphisms

β : U3 → Fp,


1 ∗ ∗

0 1 b

0 0 1

→ b, γ1 : Hp → Fp,


1 0 c

0 1 b

0 0 1

→ c.

Proposition 9.4. With the above notations we have:

χ3 = χ′3.
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Proof. First we have that χ3 and χ′3 actually come from H2(p−1)(U3,Z) via reduc-

tion mod p. This is easy to see, since we can define similar elements χ3 and χ′3 in

H2(p−1)(U3,Z) and the transfer map trH→U3 commmutes with reduction mod p.

Now we will prove that χ3 = χ′3 in H∗(U3,Z) and this will give us the result, since

then their images in H∗(U3,Fp) will be equal. In this proof from now on, we will be

working with Z coefficients.

Now we will prove that the restriction of χ3 and χ′3 to all the subgroups Hi defined

in thm. 4.2 is the same mod p (i.e., their difference is a multiple of p).

We first compute the restriction of χ3 to all Hi from 4.2. Since the subgroup H

from the definition of χ3 is actually H0, we have that HHi = U3 for i = 1, 2, ..., p

(since H is of index p in U3 and HHi is a subgroup strictly larger than H). Thus by

the double coset fromula ([Ev], Thm.4.2.6, p. 41) we have

resHi
trH→U3γ

p−1 = trH∩Hi→Hi
resH∩Hi

γp−1 = 0 mod p for i=1,2,...,p

since it is known (Cor. 5.9, p 72 in [AM]) that the transfer map from a proper sub-

group to an elementary abelian group is zero when we are working with Fp coefficients,

and the transfer map commutes with reduction mod p. So the image in H∗(U3,Fp)

of resHi
trH→U3γ

p−1 is 0, so resHi
trH→U3γ

p−1 = 0 mod p in H∗(U3,Z). We thus have

that

resHi
χ3 = resHi

αp−1 mod p for i = 1, 2, ..., p.

Let αi ∈ H2(Hi) be defined by the morphism αi : Hi =< Ai, Z >→ Q/Z given by
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αi(A
k
iB

l)→ k/p (B being a generator of Z = Z(U3)). Then resHi
α = αi if i < p and

resHpα = 0 so we can rewrite the above equation as follows

resHi
χ3 = αp−1

i for i = 1, 2, ..., p− 1 and resHpχ3 = 0,

everything being mod p. Now for H = H0 the matrices Ci =


1 0 0

0 1 i

0 0 1

 with

i = 0, 1, ..., p−1 are a complete system of double (and single) H coset representatives

so we have

resHχ3 = αp−1
0 + resHtrH→U3γ

p−1 = αp−1
0 +

p−1∑
i=0

resHC
∗
i (γ)p−1

= αp−1
0 +

p−1∑
i=0

(resHγ + iα0)
p−1 = αp−1

0 + (p− 1)αp−1
0 = 0,

also mod p. Here we used the binomial formula for each (resHγ+iα0)
p−1 and we kept

into account that
∑p−1

i=0 i
k = 0 mod p for 1 ≤ k < p−1 and

∑p−1
i=0 i

p−1 = p−1 mod p.

In conclusion, we have that resH0χ3 = resHpχ3 = 0 mod p and resHi
χ3 = αp−1

i

mod p for i = 1, 2, ..., p− 1.

Similarly to what we did above, we check that resHi
trHp→U3γ

p−1
1 = 0 mod p for

i = 0, 1, ..., p − 1 and resHptrHp→U3γ
p−1
1 = −resHpβ

p−1 mod p. We also see that

resHi
β = iαi for i = 0, 1, ..., p − 1 so resH0β

p−1 = 0 and resHi
βp−1 = αp−1

i for

i = 1, ..., p− 1.

Putting these all together, we get that resH0χ
′
3 = resHpχ

′
3 = 0 mod p and

resHi
χ′3 = αp−1

i mod p for i = 1, 2, ..., p − 1. This implies that resHi
χ3 = resHi

χ′3

mod p for i = 0, 1, ..., p i.e. χ3 and χ′3 have the same restriction mod p on all Hi.
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Looking in [Lew], p. 523, Thm. 6.26, we see that H2(p−1)(U3,Z) is generated

by αiβp−1−i (i = 0, 1, ..., p − 1) and χp−2 (using the notation from [Lew]). Actually

the α and the β have the same meaning, while χp−2 is our χ′3. These are all the

generators for H2(p−1)(U3,Z) because the other potential generators are zero. We can

get other potential generators by multiplying a χi for i < p−2 with one of α, β, µ, ν, χj

(j < p− 2), but this product is zero. We could also get other potential generators for

p > 3 by multiplying µν with something, but µν = χ2/d, d ∈ F∗p so we have already

taken this potential generator into consideration.

Because of this we can write

χ3 − χ′3 = f(α, β) + aχ′3,

where f(X, Y ) ∈ Fp[X, Y ] (since pα = pβ = 0) is a homogeneous polynomial of

degree p− 1 and a ∈ Fp (since pχ′3 = 0). Restricting to all Hi we get

f(X, 0) = f(0, X) = 0, f(X, iX) + aXp−1 = 0 for i=1,2,...,p-1.

From here, by considering the homogeneous polynomial g(X,Y ) = f(X, Y ) + aXp−1

we get that g(X, iX) = 0 for i = 1, ..., p− 1 and g(0, X) = 0. By making the change

of variable X ← iX for i 6= 0, we get that g(iX,X) = 0 for i = 0, ..., p − 1 so the

polynomial h(X) = g(X, 1) has the property h(i) = 0 for i = 0, ..., p− 1, but it is of

degree p− 1 so it must be identically 0. So g(X,Y ) ≡ 0 and f(X, Y ) = −aXp−1 and

from f(X, 0) = 0 we get that a = 0 so f(X, Y ) ≡ 0. This implies that χ3−χ′3 = 0.

Proposition 9.5. χ3 ∈ H∗(GL3(Fp),Fp).
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Proof. Because of Lemma 9.2, we just have to check that Tt(χ3) = χ3 for all t ∈ T3

and Tsi
(χ3) = 0.

We have, for t = diag(t1, t2, t3):

Tt(χ3) = Tt(α
p−1) + Tt(Ts2α

p−1) = (t2/t1)
p−1αp−1 + Ts2t(α

p−1)

= αp−1 + Ts2Tt′(α
p−1) = αp−1 + Ts2(α

p−1) = χ3,

since we saw that (si)(t) = (sit) = (t′si) = (t′)(si) for some t′ ∈ T3.

For Ts1 we have

Ts1(χ3) = Ts1(β
p−1) + T(s1)(s1)(β

p−1) = Ts1(β
p−1) + Tp(1)+

∑p−1
i=1 (tis1)(β

p−1)

= Ts1(β
p−1) +

p−1∑
i=1

T(tis1)(β
p−1) = pTs1(β

p−1) = 0.

The fact that Ts2(χ3) = 0 is done similarly, but using the other definition of χ3,

namely χ3 = αp−1 + Ts2(α
p−1).

Definition 9.1. Define iteratively χn = χn−1 + Tsn−1(χn−1) ∈ H∗(Un,Fp), where χ2

and χ3 have already been defined. Here we used the embedding of Un−1 in Un that

has been described earlier in this chapter.

Definition 9.2. Define Hk ≤ Un, k = 1, ..., n− 1 to be the subgroups

Hk = {A ∈ Un, A = (aij)i,j, ak,k+1 = 0}.

Remark 9.1. It is easy to check that Hi = Un ∩ siUns
−1
i .

Theorem 9.6. χn ∈ H∗(GLn(Fp),Fp).
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Proof. We first prove that

Tt(χn) = χn for all t ∈ Tn.

We do that by proving that Tt(χk) = χk in Un, for k = 2, ..., , n. We proceed by

induction on k.

Case k = 2 is trivial: Tt(χ2) = Tt(α
p−1) = (t2/t1)

p−1αp−1 = αp−1.

Suppose case k is proved; let’s prove it for k + 1:

Tt(χk+1) = Tt(χk + Tsk
(χk)) = χk + Tsk

Tt′(χk) = χk + Tsk
(χk) = χk+1,

where t′ ∈ T is such that skt = t′sk.

We are left to prove that:

Tsi
(χn) = 0 for i = 1, 2, ..., n− 1.

We proceed by induction on n. We already saw that for n = 2 and n = 3 the theorem

is true, so the above relation is verified.

Suppose now that the above relation is true for n and n− 1 and let’s prove it for

n+ 1, n ≥ 3. We have

Tsi
(χn+1) = Tsi

(χn) + Tsi
Tsn(χn).

If i < n− 1 we have (sn)(si) = (si)(sn) so

Tsi
(χn+1) = Tsi

(χn) + TsnTsi
(χn) = 0 + 0 = 0,

because lemma 8.3 says that Tsi
x, x ∈ H∗(Un−1) is the same when regarded in Un−1

and in Un. The induction hypothesis implies that Tsi
(χn) = 0.
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For i = n− 1 we have

Tsn−1(χn+1) = Tsn−1(χn) + Tsn−1Tsn(χn) = 0 + Tsn−1Tsn(χn−1 + Tsn−1(χn−1))

= Tsn−1Tsn(χn−1) + Tsn−1TsnTsn−1(χn−1) = Tsn−1Tsn(χn−1)+

+ TsnTsn−1Tsn(χn−1) = 0 + 0 = 0.

We used here

Tsn(χn−1) = trHn→GresHn(s∗nχn−1) = trHn→G(resHnχn−1) = pχn−1 = 0

and the relation (sn−1)(sn)(sn−1) = (sn)(sn−1)(sn).

For i = n we have

Tsn(χn+1) = Tsn(χn) + Tsnsn(χn) = Tsn(χn) +

p−1∑
i=1

Ttisn(χn)

= Tsn(χn) +

p−1∑
i=1

Tsn(χn) = pTsn(χn) = 0,

since we saw that (si)
2 = p(1)+

∑p−1
j=1(tj)(si) where tj are some elements of the torus

Tn+1 and we already saw that the elements of Tn+1 act trivially on χn.

Now that we proved that this class is invariant to the whole Hecke algebra, we

ask ourselves: Is this class non-zero? This class is of degree 2(p− 1) and it is known

that Hk(GLn(Fp),Fp) = 0 for k < n by a theorem of Maazen (see [MP]).

So if 2(p− 1) < n our class will be zero. But we can prove

Theorem 9.7. If p ≥ n then χn 6= 0.
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Proof. Let

U =



0 1 0 ... 0

0 0 1 ... 0

. . . . .

0 0 0 ... 1

0 0 0 ... 0


∈Mn(Fp).

Then the subgroup E =< In + U >≤ Un is elementary abelian, because In + U has

order p. Actually (In + U)p = Ip
n + Up = In since Up = 0 (Un = 0 and p ≥ n).

We have EHi = Un for all i = 1, ..., n− 1 since Hi is a subgroup of index p in Un

and E 6⊂ Hi. Because of this, the E −Hi double coset decomposition of Un has only

one coset and we have

resEχn = resEχn−1 + resEtrHn−1→UnresHn−1(s
∗
n−1(χn−1))

= resEχn−1 + tr0→Eres0(s
∗
n−1(χn−1)) = resEχn−1 + 0 = resEχn−1.

We can repeat the computation and we successively get that

resEχn = resEχn−1 = ... = resEχ3 = resEχ2 = resEα
p−1 = αp−1

E 6= 0,

where αE ∈ H2(E) is the generator of the polynomial part of H∗(E).

Remark 9.2. Observe that for n = 2, 3, the class we defined is an important generator

of H∗(GLn(Fp),Fp):

The class χ2 is the generator αp−1 of H∗(GL2(Fp),Fp). Note that H∗(GL2(Fp),Fp)

has only two generators, one being αp−1 while the other is nilpotent of degree 2p− 3

(see [Agu]).
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The class χ3 is the image of the generator

bp−2 ∈ H∗(GL3(Fp),Z)(p).

of H∗(GL3(Fp),Z)(p)( from [TY1]) via the reduction mod p map.

Remark 9.3. The only classes defined for general H∗(GLn(Fp),Fp) that we know of

have been found by Milgram and Priddy in [MP]. These classes are detected on

certain maximal p-tori of block form. Our class is not one of those since our class is

zero when restricted to all maximal p-tori of block form:

Proposition 9.8. If E is an elementary abelian subgroup (p-torus) of GLn(Fp) of

block form, i.e., Ak from definition 3.1 for some k and n > 2, then resEχn = 0.

Proof. We do this by induction on n.

For n = 3 this has been done already in the proof of Proposition 9.4, since there

are only two maximal p-tori of block form in U3, namely H0 and Hp so E must be

one of them.

Supose now that we proved that resEχn = 0 for all p tori E of block form of Un,

and let’s prove that resEχn+1 = 0. We have

resEχn+1 = resEχn + resEtrHn→Un+1s
∗
nχn.

But actually χn ∈ H∗(Un) where the embedding of Un in Un+1 has been defined earlier

in this chapter. We have the commutative diagram

E → E ∩ Un

↓ ↓

Un+1 → Un,
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where the horizontal maps are obtained by truncating a (n+ 1)× (n+ 1) matrix to

the n× n matrix from the upper left-hand corner. From here we get a commutative

diagram in cohomology

H∗(Un) ↪→ H∗(Un+1)

↓ res ↓ res

H∗(E ∩ Un) ↪→ H∗(E),

so we get that resEχn = resE∩Unχn. Since E ∩ Un is a p-torus of block form in Un,

we get by the induction hypothesis that resE∩Unχn = 0 so resEχn = 0.

To compute resEtrHn→Un+1s
∗
nχn we have two cases.

The first case is E 6⊂ Hn. Then EHn = Un+1, so by the double coset formula

resEtrHn→Un+1s
∗
nχn = trE∩Hn→EresE∩Hns

∗
nχn = 0,

since the transfer map trE′→E is identically zero if E ′ is a proper subgroup of the

elementary abelian subgroup E. From here we get resEχn+1 = 0 + 0 = 0.

The second case is E ⊂ Hn. Then the matrices

ti =


In−1 0 0

0 1 i

0 0 1

 i = 0, ..., p− 1

form a system of representatives for the E−Hn double cosets of Un+1. By the double

coset formula

resEtrHn→Un+1s
∗
nχn =

p−1∑
i=0

resEt
∗
i s
∗
nχn =

p−1∑
i=0

t∗i s
∗
nresEχn = 0,

since ti and sn normalize E. Thus resEχn+1 = 0 + 0 = 0.
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Looking again at the classes defined by Milgram and Priddy, we see that the only

classes that they defined explicitly for p > 2 and n > 2 are of degree bigger than

2p− 2. So our class is not even in the ring generated by these classes.

It is likely that our class is the Bockstein of a class in H2p−3(GLn(Fp),Fp).

The question is now: Can there be non-zero classes in H∗(GLn(Fp),Fp) of degree

less than 2p− 3?

As referred by Milgram and Priddy in [MP], work of Quillen and of Maazen shows

that for p > 2:

Hk(GLn(Fp),Fp) = 0 for k < n.

So the classes cannot have very low degree, but if p ≥ n there is still a gap between

n and 2p− 3 where there might still be some non-zero classes.

For n = 2 from [Agu] we get that the smallest degree of a class is 2p − 3. So we

dare to state the following

Conjecture 9.9. If n ≥ 2 and p ≥ 3 then

Hk(GLn(Fp),Fp) = 0 for k < 2p− 3.
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