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Many computer vision problems can be formulated as graph partition problems

that minimize energy functions. Generally applicable algorithms like the Gibbs

sampler can perform the minimization task, but they are very slow to converge,

especially since the graphs in vision tasks are large (105−106 nodes). On the other

hand, computationally effective algorithms like Graph Cuts and Belief Propaga-

tion are specialized to particular forms of energy functions, and they cannot be

applied for complex statistical models using generative models and high-order

priors. In this thesis, a new stochastic algorithm capable of sampling arbitrary

energy functions defined on graph partitions is presented. To increase efficiency,

the algorithm uses the image information to make informed jumps in the search

space. The image information is given in the form of edge weights and represents

an empirical probability that the nodes connected by the edge belong to the same

object. At each step, the algorithm creates clusters of nodes by turning on/off

the edges randomly according to their weights, and changes the label of all nodes

in one cluster (connected component) in a single move. Each move is accepted

or rejected according to an acceptance probability given by a simple and explicit

xvii



equation. The algorithm is applied to 4 important problems in computer vision:

image segmentation, perceptual organization, stereo matching and motion seg-

mentation. To address different computational or representational issues, multi-

grid, multi-level and multi-cue variants of the algorithm are presented. In image

segmentation, the algorithm’s performance is compared to the Gibbs sampler,

while in stereo matching, it is compared to Graph Cuts and Belief Propagation.
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CHAPTER 1

Introduction

Markov chain Monte Carlo (MCMC) methods are general computing tools for

simulation, inference, and optimization in many fields. The essence of MCMC

is to design a Markov chain whose transition kernel K has an unique invariant

(target) probability π(X) pre-defined to a task. For example, π(X) could be a

Bayesian posterior probability or a probability governing the states of a physical

system. In this thesis, we are interested in Markov chains with finite states X

defined on graphs G =< V,E > where X = (x1, x2, ..., xn) represents the states

of the vertices V = {v1, v2, ..., vn}. Such problems are often referred as graph

coloring (or labeling) and have very broad applications in physics, biology, and

computer science.

Graph partition is a fundamental problem in computer vision, which addresses

a wide array of vision tasks:

• The line drawing interpretation consists of labeling the line segments of a

line drawing with a set of labels corresponding to a dictionary of possible

line types (occlusion edge, convex/concave interior edge), constrained by a

dictionary of junction types.

• In image segmentation, the pixels of an image need to be partitioned into

regions corresponding to the different intensity patterns existent in the im-

age.
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• In motion segmentation, the pixels of a pair (set of images) need to be

partitioned into regions based on a coherent motion criterion.

• Stereo matching can also be regarded as a graph partition problem in which

the pixel lattice needs to be partitioned based on the common depth (dis-

parity) of the pixels.

• other examples include curve grouping, object recognition, etc.

Although the method presented in this thesis is applicable to general graphs

and target probabilities, we shall focus on a number of examples in image analysis,

such as image segmentation and motion analysis. For such applications, the graph

G is very large with O(104)−O(106) vertices which are image elements like pixels,

and G has sparse neighbor connections, i.e. constant O(1) connectivity. That is,

the connectivity of a vertex does not grow with the number of vertices. The state

xi is the color (or label) for image segmentation or discretized motion velocity in

motion analysis. The target probabilities π(X) are usually Markov random fields

whose conditional probabilities can be computed locally.

Historically, graph labeling algorithms were born with the Waltz algorithm

[58] for line drawing interpretation. The Waltz algorithm filters out impossible

combinations of labels by checking pairs of compatible labels at neighboring junc-

tions. It is however not capable of providing a solution in ambiguous cases (e.g.

the Necker cube illusion).

The Waltz algorithm was later refined into the relaxation labeling [43], which

can address a more general set of problems by attaching probabilities to labels.

The algorithm will propagate these probabilities between neighboring nodes until

all probabilities stabilize. It is not guaranteed that the probabilities will provide

a unique solution.
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The relaxation labeling was generalized in two directions.

A stochastic generalization is the Gibbs sampler [17], a generally applicable

MCMC algorithm which is proved to sample from a given probability distribution

after a burn-in period.

A deterministic generalization of relaxation labeling is Belief Propagation

[38, 39, 49, 62], which infers marginal probabilities at the nodes of the graph

by exchanging of messages. Initially, Belief propagation was designed on trees

and was proved to obtain the true marginal probabilities at the nodes. It was

later generalized to graphs with loops to perform approximate inference on prob-

abilities based on pairwise cliques.

Other approaches to graph partition (labeling) are the graph spectral analysis

methods [61] such as Normalized Cut [48] that minimize a discriminative energy

function defined in terms of the graph edge weights. The energy function modeled

by the Normalized Cut is capable of generating clean results, even though the

intensity regions can sometimes be broken into a small number of pieces. However,

the Normalized Cut method has difficulties in modeling the diverse phenomena

existent in images, for example it will break long curve-like regions.

Another popular method [44] maps a simple energy function into a min-cut

problem, which is solved using the max-flow algorithm. One such method is the

Graph Cuts [9], which applies the max-flow algorithm repeatedly, for different

pairs of labels, until convergence. Applications of Graph Cuts include dense

stereo matching and image inpainting.

Following the MCMC direction, we see generalizations of the Gibbs sampler to

multigrid [20], parameter expansion [34], parallel tempering [18]. The slow mixing

of such methods is attributed to the strong coupling between the variables in the

graph.
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One well celebrated algorithm that addresses the coupling between the vari-

ables is the Swendsen-Wang [50] method designed for simulating the Ising/Potts

models [29, 40] in statistical physics. It is often called the cluster sampling

method. At each iteration, the SW method forms clusters of vertices as con-

nected components by sampling Bernoulli variables defined on the edges. Then,

it flips the color of all vertices in one or all clusters simultaneously.

The SW method is found to mix rapidly under certain conditions. For ex-

ample, Cooper and Frieze [10] show that SW has polynomial mixing time for

graphs with O(1) connectivity, such as the Ising/Potts models even at critical

temperature. Gore and Sinclair [21] showed that SW has exponential mixing

time when G is a complete graph. Huber [28] designed bounding chains for the

SW method so as to diagnose exact sampling in some temperature range of the

Potts model (see Fig. 2.2). The SW convergence can also be analyzed with a

maximal correlation technique ([35], chapter 7). Despite its success, the power

of the SW method and its analyses is very limited for two reasons:

1. It is only applicable to the Ising/Potts models and cannot be applied to

arbitrary probabilities on general graphs.

2. It does not make use of the data information in designing the probability for

the binary variables on edges, and thus in clustering the vertices. Because of

this, the SW algorithm slows down drastically in the presence of ”external

fields” (i.e. data energy terms).

In this thesis, we present a general cluster sampling algorithm which general-

izes the SW-method in the following aspects:

1. Designed from the Metropolis-Hastings perspective, it is applicable to gen-

eral probabilities on graphs.
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2. The edge probabilities, which represent compatibilities of adjacent vertices,

are designed using discriminative probabilities computed from the input

data. Therefore the clustering step is informed by the data (external field)

and leads to significant speedup as observed experimentally.

3. In a modified version, it can be viewed as a generalized Gibbs sampler

which samples the color of a cluster according to a conditional probability

(like the Gibbs sampler) weighted by a product of a small number of edge

probabilities. This can also be viewed as a generalized hit-and-run method.

4. It is extended to multi-grid and multi-level graphs for hierarchic graph

labeling.

In our experiments on image analysis (segmentation, curve grouping, motion

and stereo), the algorithm is at least O(102) times faster than the single-site Gibbs

sampler (see Figs.3.3, 3.4, 3.5). When working on pixels, the algorithm is actually

incomparably faster than the Gibbs sampler, since the Gibbs sampler cannot

obtain the same energy level in any reasonable time. Compared to Graph Cuts

[9] and Belief Propagation [49, 53] on a Potts model, our algorithm outperforms

Belief Propagation and comes within 1% of the energy level of Graph Cuts, as

shown in Figure 6.2.

In the literature, there are two famous interpretations of the SW-method

which lead to various analyses or generalizations. Both view the SW method as

a data augmentation method [51].

1. The first is the Random Cluster Model (RCM) by Edwards and Sokal [11].

It augments the target probability π(X) with a new set of binary variables

U on the edges. The joint probability pES(X,U) has a marginal probability

π(X) and two conditional probabilities pES(X|U) and pES(U|X) which are
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easy to sample. In this model, the clustering and labeling are decoupled

completely. It leads to the design of bounding chain [28] for exact sampling.

2. The second is the slice sampling and decoupling method by Higdon [26]. It

augments π(X) by a set of continuous variables W as the ”bond strength”

on edges to increase the connectivity of the space, and then sample the

labels under the constraints of these variables (i.e. slice sampling). Higdon

applied this method to some image analysis examples and also studied a

partial decoupling method which has a coupling factor controlled by the

data.

In this thesis, we take a third route by interpreting SW as a Metropolis-

Hastings step with auxiliary variables for proposing the moves. Each step is

a reversible jump [23] and observes the detailed balance equations. The key

observation is that the proposal probability ratio can be calculated neatly as a

ratio of products of probabilities on a small number of edges on the border of the

cluster.

The thesis is organized as follows. In Chapter 2 we present the theoretical

aspects of our generalized cluster sampling method, also named Swendsen-Wang

Cuts. Chapter 3 shows the first experiment on image segmentation and a perfor-

mance comparison with the single site Gibbs sampler. In Chapter 4 we present

experiments in perceptual organization, namely curve grouping. Then we pro-

ceed to the multi-grid and multi-level cluster sampling in Chapter 5 and show

applications of these methods on hierarchical image-motion segmentation. The

thesis is concluded in Chapter 6 with experiments on stereo matching, including

a comparison of our method with Graph Cuts and Belief Propagation.
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CHAPTER 2

The Swendsen-Wang Cuts Algorithm

In this chapter, we present the Swendsen-Wang Cuts algorithm, which is the

central part of this thesis.

We start with a review of the original Swendsen-Wang algorithm [50] and the

Potts model [40] on which it was originally developed and give two interpretations

in Section (2.1). Then we derive a generalized method by the Metropolis-Hastings

perspective in Section (2.2). A number of variant methods are presented in Sec-

tion (2.3), including the cluster Gibbs sampler and the multiple flipping scheme.

2.1 Background: The Swendsen-Wang Algorithm and its

interpretations

In this section, we review the Potts model, the original Swendsen-Wang method

and its two interpretations. The review is made concrete enough so that impor-

tant results can be followed.

2.1.1 Swendsen-Wang on Potts model

Let G =< V,E > be an adjacency graph, such as a lattice with 4 nearest neighbor

connections. Each vertex vi ∈ V is assigned a state variable xi taking values from

a finite number of labels (or colors), xi ∈ {1, 2, ...,L}. The total number of labels
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L is pre-defined, and the Potts model for a homogeneous Markov field is defined

as,

πPTS(X) =
1

Z
exp{β

∑
<i,j>∈E

1(xi = xj)}. (2.1)

1(xi = xj) is a Boolean function. It is equal to 1 if its condition xi = xj

is observed, and is 0 otherwise. In more general cases, β = β(vi, vj) may be

position dependent. Most computer vision applications use β > 0, also named

the ferro-magnetic model, prefering similar colors for neighboring vertices. The

case β < 0 is the anti-ferromagnetic model. The Potts models and its extensions

are used as a priori probabilities in many Bayesian inference tasks.

Figure 2.1: Illustating the SW method. (a) An adjacency graph G with each

edge < i, j > augmented with a binary variable µij ∈ {1, 0}. (b) A labeling of

the Graph G, where the edges connecting vertices of different colors are removed.

(c). A number of connected components obtained by turning off some edges in

(b) probabilistically.

As Fig.2.1.(a) illustrates, the SW method introduces a set of auxiliary vari-

ables on the edges.

U = {µij : µij ∈ {0, 1}, ∀ < i, j >∈ E}. (2.2)

The edge < i, j > is disconnected (or turned off) if and only if µij = 0. µij follows
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a Bernoulli distribution conditional on xi, xj.

µij|(xi, xj) ∼ Bernoulli(ρ1(xi = xj)), ρ = 1− e−β. (2.3)

µij = 1 with probability ρ if xi = xj, and µij = 1 with probability 0 if xi 6= xj.

The SW method iterates two steps.

1. The clustering step. Given the current state X, it samples the auxiliary

variables in U according to eqn. (2.3). It first turns off all edges < i, j > deter-

ministically if xi 6= xj, as Fig.2.1.(b) shows. Then it turns off the remain edges

with probability ρ. The edge < i, j > is divided into the ”on” and ”off” sets

respectively depending on whether µij = 1 or 0.

E = Eon(U) ∪ Eoff(U). (2.4)

The edges inEon(U) induce a number of connected components shown in Fig. 2.1.(c).

We denote all these connected components by,

CP(U) = {cpi : i = 1, 2, ..., K, with ∪ i = 1Kcpi = V }. (2.5)

Vertices in each connected component cpi have the same color.

2. The flipping step. It selects one connected component cp ∈ CP at random

and assigns a common color y to all vertices in cp. y follows a uniform probability,

xi = y ∀vi ∈ cp, y ∼ unif{1, 2, ...,L}. (2.6)

In this step, one may choose to repeat the random color flipping for all the

connected components in CP(U) independently, as they are decoupled given the

edges in Eon(U).

In one modified version by Wolff [60], one may choose a vertex v ∈ V and

grow a connected component following the Bernoulli trials on edges around v.

This saves some computation in the clustering step, and bigger components have

a higher chance to be selected.
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2.1.2 SW Interpretation 1: data augmentation and RCM

The SW method described above is far from what was presented in the original

paper [50]. Instead our description follows the interpretation by Edward and

Sokal [11], who augmented the Potts model to a joint probability on both X and

U,

pES(X,U) =
1

Z

∏
<i,j>∈E

[(1− ρ)1(µij = 0) + ρ1(µij = 1) · 1(xi = xj)] (2.7)

=
1

Z
[(1− ρ)|Eoff(U)| · ρEon(U)] ·

∏
<i,j>∈Eon(U)

1(xi = xj). (2.8)

The second factor
∏

<i,j>∈Eon(U) 1(xi = xj) is in fact a hard constraint on X and

U. Let the space of X be

Ω = {1, 2, ...,L}|V |. (2.9)

Under this hard constraint, the labeling X is reduced to a subspace ΩCP(U) where

each connected component must have the same label,

∏
<i,j>∈Eon(U)

1(xi = xj) = 1(X ∈ ΩCP(U)). (2.10)

The joint probability pES(X,U) observes two nice properties, and both are

easy to verify.

Proposition 1. The Potts model is a marginal probability of the joint probability,

∑
U

pES(X,U) = πPTS(X). (2.11)

The other marginal probability is the random cluster model πRCM,

∑
X

pES(X,U) = πRCM(U) =
1

Z
(1− ρ)|Eoff(U)| · ρEon(U)L|CP(U)|. (2.12)
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Proposition 2. The conditional probabilities of pES(X,U) are

pES(U|X) =
∏

<i,j>∈E

p(µij |xi, xj), with p(µij |xi, xj) = Bernoulli(ρ1(xi = xj)),

pES(X|U) = unif[ΩCP(U)] =


( 1
L)|CP(U)| for X ∈ ΩCP(U)

0 otherwise
.

(2.13)

Therefore the two SW steps can be viewed as sampling the two conditional

probabilities.

1. Clustering step: U ∼ pES(U|X), i.e. µij|(xi, xj) ∼ Bernoulli(ρ1(xi = xj)).

2. Flipping step: X ∼ pES(U|X), i.e. X(cpi) ∼ Unif{1, 2, ...,L}, ∀cpi ∈

CP(U).

As (X,U) ∼ pES(X,U), discarding the auxiliary variables U, we have X following

the marginal of pES(X,U). The goal is achieved,

X ∼ πPTS(X). (2.14)

The beauty of this data augmentation method [51] is that the labeling of the con-

nected components are completely decoupled (independent) given the auxiliary

variables. As ρ = 1 − e−β, it tends to choose smaller clusters if the temper-

ature (T ∝ 1
β
) in the Potts model is high, and in low temperature it chooses

large clusters and it can overcome the coupling problem of the single site Gibbs

sampler.

2.1.3 Some theoretical results

Let the Markov chain have kernel K and initial state Xo, in t steps the Markov

chain state follows probability pt = δ(X−Xo)Kt where δ(X−Xo) (for δ(X−Xo) =
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1 for X = Xo and 0 otherwise) is the initial probability. The convergence of the

Markov chain is often measured by the total variation

||pt − π||TV =
1

2

∑
X

|pt(X)− π(X)|. (2.15)

The mixing time of the Markov chain is defined by

τ = max
Xo

min{t : ||pt − π||TV ≤ ε}. (2.16)

τ is a function of ε and the graph complexity M = |G| in terms of the number

of vertices and connectivity. The Markov chain is said to mix rapidly if τ(M) is

polynomial or logarithmic.

Empirically, the SW method is found to mix rapidly. Recently some analytic

results on its performance have surfaced. Cooper and Frieze [10] proved using a

path coupling technique that SW mixes rapidly on sparsely connected graphs.

Theorem 1. (Cooper and Frieze 1999) Let n = |V | and ∆ be the maximum

number of edges at any single vertex, and L the number of colors in Potts model.

If G is a tree, then the SW mixing time is O(n) for any β and L. If ∆ = O(1),

then there exists ρo = ρ(∆) such that if ρ ≤ ρo (i.e. higher than a certain

temperature), then SW has polynomial mixing time for all L.

A negative case was constructed by Gore and Jerrum [22] on complete graphs.

Theorem 2. (Gore and Jerrum 1997) If G is a complete graph and L > 2, then

for β = 2(L−1) ln(L−1)
n(L−2)

, the SW does not mix rapidly.

In the image analysis applications, our graph often observes the Copper-Frieze

condition and the graph is far from being complete.

Most recently an exact sampling technique was developed for SW on Potts

model by Huber [28] for very high or very low temperatures. It designs a bounding
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chain which assumes that each vertex vi ∈ V has a set of colors Si initialized with

the full set |Si| = L, ∀i. The Bernoulli probability for the auxiliary variables µij

is changed to

Ubd = {µbd
ij : µbd

ij ∈ {0, 1}, µij ∼ Bernoulli(ρ1(Si ∩ Sj 6= ∅))}. (2.17)

Thus Ubd has more edges than U in the original SW chain, i.e. U ⊂ Ubd. When

Ubd collapses to U, then all SW chains starting with arbitrary initial states

have collapsed into the current single chain. Thus it must have converged (exact

sampling). The collapsing step is called the ”coupling time”.

Theorem 3. (Huber 2002) Let n = |V | and m = |E|, at high temperature, ρ <

1
2(∆−1)

, the bounding chain couples completely by time O(ln(2m)) with probability

at least 1/2. At lower temperature, ρ ≥ 1− 1
mL

, then the coupling time is O((mL)2)

with probability at least 1/2.

In fact the Huber bound is not very tight, as one may expect. Fig. 2.2(a)

plots the results on a 5 × 5 lattice with torus boundary condition on the Ising

model for the empirical coupling time against ρ = 1− e−β. The coupling time is

large near the critical temperature (didn’t plot). The Huber bound for the high

temperature starts with ρo = 0.16 and is plotted by the short curve. The bound

for the low temperature starts with ρo > 0.99 which is not visible. Fig.2.2.(b)

plots the coupling time at ρ = 0.15 against the graph size m = |E| and the Huber

bound.

Despite the encouraging successes discussed above, the SW method is limited

in two aspects.

Limitation 1. It is only valid for the Ising and Potts models, and furthermore

it requires that the number of labels L is known in advance. In many applications,
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(a) (b)

Figure 2.2: The coupling time empirical plots and the Huber bounds for Ising

model.

such as image analysis, L is the number of objects (or image regions) which has

to be inferred from the input data.

Limitation 2. It slows down in the presence of external field, i.e input data.

For example, in the image analysis problem, our goal is to infer the label X from

the input image I and the target probability is a Bayesian posterior probability

where πPTS(X) is used as a prior model,

π(X) = π(X|I) ∝ L(I|X)πPTS(X). (2.18)

L(I|X) is the likelihood model, such as independent Gaussians N(Īc, σ
2
c ) for each

coloring c = 1, 2, ...,L,

L(I|X) ∝
L∏

c=1

∏
xi=c

1√
2πσc

exp{−(I(vi)− Īc)
2

2σ2
c

}. (2.19)

The slowing down is in large amount attributed to the fact that the Bernoulli

probability ρ = 1− e−β for the auxiliary variables is calculated independently of

the input image.

14



2.1.4 SW Interpretation 2: slice sampling and decoupling

In the presence of external field (data), the SW method can be interpreted and

extended by the auxiliary method proposed by Higdon [26]. Suppose we write

the target probability in a more general form,

π(X) =
1

Z

∏
vi∈V

φi(xi) ·
∏

<i,j>∈E

ψ(xi, xj), φ() > 0, ψ() > 0. (2.20)

For the Potts model above, we have ψ(xi, xj) = eβ1(xi=xj). Higdon [26] introduced

a continuous variable on the edges as the bond strength,

W = {ωij : ωij ∈ [0,+∞), ∀ < i, j >∈ E} (2.21)

In contrast to the Bernoulli probability for the binary variable µij in eqn. (2.3),

the bond variables follow uniform probabilities, depending on X,

ωij|(xi, xj) ∼ Unif[0, ψ(xi, xj)] = ψ−1(xi, xj)1(0 ≤ ωij ≤ ψ(xi, xj)). (2.22)

Thus a conditional probability is constructed as

pHGD(W |X) =
∏

<i,j>∈E

p(ωij|xi, xj) =
∏

<i,j>∈E

ψ−1(xi, xj)1(0 ≤ ωij ≤ ψ(xi, xj)).

(2.23)

This formula is chosen to cancel the internal field in a joint probability,

pHGD(X,W ) = π(X)p(W |X) =
1

Z
[
∏
vi∈V

φi(xi)] · [
∏

<i,j>∈E

1(0 ≤ ωij ≤ ψ(xi, xj))].

(2.24)

We have the second conditional probability by the Bayes rule,

pHGD(X|W ) =
1

Z ′ [
∏
vi∈V

φi(xi)] · [
∏

<i,j>∈E

1(0 ≤ ωij ≤ ψ(xi, xj))] (2.25)

That is, given the bond strength ωij, xi and xj must be sampled so that the

condition ψ(xi, xj) ≥ ωij is observed. This idea is called ”slice sampling”. In
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case of the Potts model, this becomes,

p(X|W ) =
1

Z ′ [
∏
vi∈V

φi(xi)] · [
∏

<i,j>∈E

1(0 ≤ ωij ≤ eβ1(xi=xj)] (2.26)

Given W , the second product imposes a hard constraint on X. If ωij ≤ 1, 1(0 ≤

ωij ≤ eβ1(xi=xj)) = 1 is satisfied for any xi, xj, because β > 0 and eβ1(xi=xj) ≥ 1.

Thus it imposes no constraints on xi, xj. If ωij > 1, then it imposes the constraint

that xi = xj. Thus the auxiliary variables µij and ωij are linked by the following

equation,

µij = 1(ωij > 1), ∀ < i, j >∈ E. (2.27)

Thus turning on the edges is equivalent to ωij > 1.

Eon(W ) = {e =< ij >: ωij > 1, < i, j >∈ E}. (2.28)

Given W , we have the set of connected components and the vertices in each

component receive the same color.

CP(W ) = {cpk : k = 1, 2, ..., K,∪K
i=1cpk = V }. (2.29)

As the hard constraints are absorbed by the connected component, the condi-

tional probability in eqn. (2.26) becomes

pHGD(X|W ) =
K∏

k=1

∏
vi∈cpk

φi(xi). (2.30)

As we can see, the coloring of each connected component is independent of other

vertices (completely decoupled !). In the special case when φi(xi) = 1, it reduces

to the RCM model in the previous subsection.

In summary pHGD(X,W ), like pES(X,U) in eqn.(2.7), has marginal probabil-

ity being the target π(X) and has two conditional probabilities that are easy to

sample. There are two problems with this design.
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Firstly, although the decoupling idea with conditional probability pHGD(W |X)

in eqn. (2.25) is valid for any pair clique Markov random field models and thus

goes beyond the Potts model, the hard constraints may become impractical to

compute for non-Potts model. That is, given W , the constraint conditions on X

are no longer expressed as clustering. Many slice sampling methods suffer from

this problem.

Secondly, although the flipping step in eqn.(2.30) makes use of the data, the

clustering step in eqn. (2.23) does not. It is similar to the original SW method.

This in practice often makes the constructed cluster ineffective.

2.2 Generalizing SW to arbitrary probabilities on graphs

In this section, we generalize the SW to arbitrary probabilities from the perspec-

tive of Metropolis-Hastings method ([37], [25]). Our method iterates three steps:

(i) a clustering step driven by data, (ii) a label flipping step which can intro-

duce new labels, and (iii) an acceptance step for the proposed labelling. A key

observation is the simplicity of the formula expressing the acceptance probability.

We will clarify the three steps in the following three subsections, and then we

show how our method applied to the Potts model reduces to the original SW.

We illustrate the algorithm by an example on image segmentation shown in

Fig. 2.3. Fig. 2.3.(a) is an input image I on a lattice Λ, which is decomposed

into a number of ”atomic regions” to reduce the graph size in a preprocessing

stage. Each atomic region has nearly constant intensity and is a vertex in the

graph G. Two vertices are connected if their atomic regions are adjacent (i.e.

sharing boundary). Fig. 2.3.(c) is a result by our algorithm optimizing a Bayesian

probability π(X) = π(X|I) (see chapter 3 for details). The result X assigns a
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(a). Input image (b). atomic regions (c). segmentation

Figure 2.3: Example of image segmentation. (a). Input image. (b). Atomic

regions by edge detection followed by edge tracing and contour closing. each

atomic region is a vertex in the graph G. c. Segmentation (labeling) result

where each closed region is assigned a color or label.

uniform color to all vertices in each close region, which hopefully corresponds to

an object in the scene or a part of it. Note that the number of objects or colors

L is unknown, and we do not distinguish between the different permutations of

the labels.

2.2.1 Step 1: data-driven clustering

We augment the adjacency graph G with a set of binary variables on the edges

U = {µij :< i, j >∈ E}, as in the original SW method. Each µij follows a

Bernoulli probability depending on the current state of the two vertices xi and

xj,

µij|(xi, xj) ∼ Bernoulli(qij1(xi = xj)), ∀ < i, j >∈ E. (2.31)

qij is an empirical probability on edge < i, j > that tells how likely the two

vertices vi and vj have the same label. In Bayesian inference where the target

π(X) is a posterior probability, then qij can be better informed by the data.

For the image segmentation example, qij = exp{−1
2
(KL(hi||hj)+KL(hj||hi))
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a. G b. Current partition state X c. CP

Figure 2.4: Three stages of graphs in the algorithm. a) Adjacency graph G, b.

The graph of the current partition (coloring) X, c. connected components CP

obtained in the clustering step.

is computed based on the similarity between image intensity histograms hi, hj at

vi and vj (or their local neighborhoods) and it is an approximate to the marginal

probability of π(X|I),

qij = q(xi = xj|I(vi), I(vj)) ≈ π(xi = xj|I). (2.32)

The design of q(xi = xj|I(vi), I(vj)) is application specific and is part of the so

called discriminative methods. In the applications chapters 3, 4, 5, 6 we will show

how to define the edge weights for each individual application.

Our method will work for any qij, but a good choice will inform the clustering

step and achieve faster convergence. In the ideal case when the segmentation is

known, choosing qij = 1 if and only if i and j are part of the same label, otherwise

qij = 0, will result in convergence in approximately |L| steps.

Fig. 2.5 shows nine clustering examples of the horse image. In these examples,

we set all vertices to the same color (X = c) and sample the edge probability

independently,

U|(X = c) ∼
∏

<i,j>∈E

Bernoulli(qij). (2.33)

The connected components in CP(U) are shown by the differently colored regions.
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Figure 2.5: Nine examples of connected components for the horse image computed

using discriminative edge probabilities.

We repeat the clustering step nine times. As we can see, the edge probabilities

lead to ”meaningful” clusters which correspond to distinct objects in the image.

Such effects cannot be observed using constant edge probability.

2.2.2 Step 2: flipping of color

Let X = (V1, V2, ..., Vn) be the current coloring state. The edge variables U,

sampled conditional on X, decompose X into a number of connected components

CP(U|X) = {cpi : i = 1, 2, ..., N(U|X)}. (2.34)

Suppose we select one connected component R ∈ CP(U|X) with color XR = ` ∈

{1, 2, ..., n}, and assign its color to `′ ∈ {1, 2, ..., n, n + 1} with some probability

q(l′|R,X) that needs to be designed, obtaining a new state X′. The probability
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q(l′|R,X) is another place when one could use data driven information to speed-

up convergence, instead of choosing a uniform probability. We will show in the

applications chapters 3, 4, 5, 6 how it is designed in each case. A reasonably

good choice is to assign a higher probability to colors of nodes adjacent to R and

a small probability to all other colors and to a new color.

After changing the color of R from l to l′, the total number of colors can stay

the same, increase, decrease, as explained below and shown in Fig. 2.6.

(a) State XA (b) State XB (c) State XC

Figure 2.6: Three labeling states XA,XB,XC that differ only in the color of a

cluster R.

1. The canonical case: R ⊂ V` and `′ ≤ n. That is, a portion of V` is re-

grouped into an existing color V`′ , and the number of colors remains L = n

in π′. The moves between XA ↔ XB in Fig. 2.6 are examples.

2. The merge case: R = V` in X is the set of all vertices that have color `

and `′ ≤ n, ` 6= `′. That is, color V` is merged to V`′ , and the number of

distinct colors reduces to n− 1 in X′. The moves XC → XA or XC → XB

in Fig. 2.6 are examples.

3. The split case: R ⊂ V` and `′ = n + 1. V` is split into two pieces and the

number of distinct color increases to n+ 1 in X′. The moves XA → XC in

Fig.2.6 are examples.
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Note that this color flipping step is also different from the original SW with

Potts model as we allow new colors in each step. The number of color L is not

fixed.

2.2.3 Step 3: accepting the flipping

The previous two steps basically have proposed a move between two states X and

X′ which differ in the coloring a connected component R. In the third step we

accept the move with the probability given by the Metropolis-Hastings method:

α(X→ X′) = min{1, q(X
′ → X)

q(X→ X′)
· π(X′)

π(X)
}. (2.35)

q(X′ → X) and q(X → X′) are the proposal probabilities between X and X′.

If the proposal is rejected, the Markov chain stays at state X. To make this

equation explicit, we need the following

Definition 1. Let X = (V1, V2, ..., VL) be a coloring state, and R ∈ CP(U |X) a

connected component, the ”cut” between R and the set Vk of nodes with color k

is the set of edges between R and Vk\R,

C(R, Vk) = {< i, j >∈ E : i ∈ R, j ∈ Vk\R}, ∀k.

The crosses in Fig. 2.6, state XA and state XB show the cuts C(R, V1) and

C(R, V2) respectively. In Fig. 2.6.(c), R = V3 and thus C(R, V3) = ∅ and we have∏
<i,j>∈C(R,V3)(1− qij) = 1.

Now we can state the main result, which gives the acceptance probability

Theorem 4. The acceptance probability for the proposed cluster flipping is,

α(X→ X′) = min{1,
∏

<i,j>∈C(R,V`′ )
(1− qij)∏

<i,j>∈C(R,V`)
(1− qij)

· q(XR = `|R,X′)

q(XR = `′|R,X)
· π(X′)

π(X)
}. (2.36)
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In the special case when R = V`, then the cut is C(R, V`) = ∅ and therefore

we have
∏

<i,j>∈C(R,V`)
(1− qij) = 1.

Proof. The proof is given in Apendix A.

2.2.4 The Swendsen-Wang Cuts Algorithm

In the image segmentation application in Chapter 3, we observe experimentally

that our cluster sampling method is O(100) times faster than the single site Gibbs

sampler in terms of CPU time. We refer to plots and comparison in Figs.(3.3),

(3.4) and (3.5) in Chapter 3 for details.

We give our algorithm described in steps 1-3 above the name ”Swendsen-

Wang Cuts”. We can summarize it in the following two versions, which differ in

the way they choose the connected component R.

The first version, SWC-1, turns on/off the edges of the whole graph and picks

one component randomly.

Swendsen-Wang Cuts: SWC-1

Input: G =< V, E >, qe,∀e ∈ E, and posterior p(W |I).

Output: Samples W ∼ p(W |I).

1. Initialize a partition X by random clustering

2. Repeat, for current state X = (V1, V2, ..., Vn),

3. For e =< i, j >∈ E, turn µij = on with probability qij if xi = xj , else µij = off.

4. V` = (V`1, ..., V`n`
) is divided into n` connected components for ` = 1, 2, ..., n.

5. Collect all the connected components in CP(U|X) = {V`i : ` = 1, .., n, i = 1, .., n`}.

6. Select a connected component R ∈ CP(U|X) with prob. q(R |CP(U|X)),

say R ⊂ V`. (Usually q(R |CP(U|X)) = 1
|CP(U|X)| is uniform).

7. Propose to assign R a new label cR = `′ with probability q(`′|R,X), obtaining X′.

8. Accept the proposal with probability α(X→ X′) defined in theorem 4 or 5.
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The second version, SWC-2, grows the connected component R from a seed

node v, in a similar fashion to the Wolff [60] variant of the original Swendsen-

Wang algorithm.

Swendsen-Wang Cuts: SWC-2

1. Repeat, for current state X = (V1, V2, ..., Vn),

2. Select a seed vertex v, say v ∈ V` in X. Set R← {v}, C ← ∅,

3. Repeat until C ∩ C(R, V` \R) = C(R, V` \R),

4. For any e =< i, j >∈ C(R, V` \R), i ∈ R, j ∈ V` \R.

5. If xi = xj , turn µij = on with probability qij , else µij = off,

6. If µij = on, set R← R ∪ {j}, else C ← C ∪ {e}.

7. Propose to assign R a new label `′ with probability q(cR = `′|R,X).

8. Accept the move with probability α(X→ X′) defined in theorem 4 or 5.

Theorem 4 assumed that the posterior probability only depends on the parti-

tion X. However, it is very often necessary to incorporate parametric models for

the different regions (sets of nodes of the same color). For example, in image seg-

mentation application in chapter 3, the intensity of each region is modeled either

using a constant intensity model, a linear model with 3 parameters or a quadratic

model with 6 parameters. Then the hidden variables will be W = (X, µ), consist-

ing of the partition X = {V1, ..., Vn} and the model parameters µ = (µ1, ..., µn}.

If the model parameters are obtained deterministically, then Theorem 4 can be

applied. If they are not deterministically obtained, we assume that they can be

obtained by sampling from some modeling proposals qm(µi|Vi). Then Theorem 4

extends naturally to

Theorem 5. (SW Cuts with model switching). Consider a candidate component

R selected by SWC. Let qm(µi|Vi) be a proposal probability from which the model

µi of a subgraph Vi of the partition is chosen by sampling. If the proposed move
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to reassign R from V` to V`′, and then change the model of V` from µX
` to µX′

` and

the model of V`′ from µX
`′ to µX′

`′ is accepted with probability

α(X→ X′) = min(1,
qm(µX

` |V` ∪R)qm(µX
`′ |V`′ −R)

qm(µX′
` |V` −R)qm(µX′

`′ |V`′ ∪R)

∏
<i,j>∈C(R,V ′

` )

(1− qij)∏
<i,j>∈C(R,V`)

(1− qij)

q(`|R,X′)π(X′)
q(`′|R,X)π(X)

)

(2.37)

then the Markov chain is reversible and ergodic.

2.2.5 SW Interpretation 3: the Metropolis-Hastings perspective

Now we are ready to derive the original SW method as a special case.

Proposition 3. If we set all the edge probabilities to a constant qij = 1 − e−β,

and we choose the new label l′ uniformly, q(XR = `′|R,X) = 1/|L|, then

q(X′ → X)

q(X→ X′)
=

∏
<i,j>∈C(R,V`)

(1− qij)∏
<i,j>∈C(R,V`′ )

(1− qij)
= exp{β(|C(R, V`′)| − |C(R, V`)|)}, (2.38)

where |C| is the cardinality of the set.

As X and X′ only differ in labeling R, the potentials for the Potts model only

differ at the ”cracks” between R and V` and V`′ respectively.

Proposition 4. For the Potts model π(X) = po(X) = πPTS(X),

πPTS(XR = `′|X∂R)

πPTS(XR = `|X∂R)
= exp{β(|C(R, V`)| − |C(R, V`′)|)} (2.39)

Therefore, following eq. (2.36) (where the proposal probabilities for the labels

are uniform), the acceptance probability for the Potts model is always one, due

to cancellation.

α(X→ X′) = 1. (2.40)

Therefore the third acceptance step is always omitted. This interpretation is

related to the Wolff [60] modification (see also Liu [35], p157).
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2.3 Variants of the SWC method

In this section, we briefly discuss two variants of the cluster sampling method.

2.3.1 Cluster Gibbs sampling — the ”hit-and-run” perspective

(a) (b)

Figure 2.7: Illustrating the cluster Gibbs sampler. (a) The cluster R has a number

of neighboring components of uniform color. (b) The cuts between R and its

neighboring colors. The sampler follows a conditional probability modified by

the edge strength defined on the cuts.

With a slight change, we can modify the cluster sampling method to become

a generalized Gibbs sampler.

Suppose that R ∈ CP(U |X) is the candidate chosen in the clustering step,

Fig. 2.7 shows its cuts with adjacent sets

C(R, Vk), k = 1, 2, ...,L(X).

We compute the cut weight γk as the strength of connectivity between R and

Vk\R,

γk =
∏

<i,j>∈C(R,Vk)

(1− qij). (2.41)
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Proposition 5. Let π(X) be the target probability, in the notation above. If R

is relabelled probabilistically with

q(XR = k|R,X) ∝ γkπ(XR = k|X∂R), k = 1, 2, ...., N(X), (2.42)

then the acceptance probability is always 1 in the third step.

Proof. Let the label of R in state X be XR = ` and after relabeling X′
R = `′.

From Theorem 4, we obtain

α(X→ X′) = min{1, γ`′

γ`

· q(XR = `|R,X′)

q(XR = `′|R,X)
· π(X′)

π(X)
}. (2.43)

We observe that the number and values of γk do not depend on the particular

value of XR, so in both states X,X′, all γk are the same. Since X∂R = X′
∂R, we

have
N(X)∑
k=1

γk · π(XR = k|X∂R) =

N(X′)∑
k=1

γk · π(X′
R = k|X′

∂R) (2.44)

so
q(XR = `|R,X′)

q(XR = `′|R,X)
=

γ` · π(X)

γ`′ · π(X′)
(2.45)

So we get

α(X→ X′) = min{1, γ`′

γ`

· γ` · π(X)

γ`′ · π(X′)
· π(X′)

π(X)
} = 1, (2.46)

which means the move is always accepted.

This yields a generalized Gibbs sampler which flips the color of a cluster

according to a modified conditional probability.

Cluster Gibbs Sampler Algorithm: SWC-3

1. Repeat, for a current partition π = (V1, ..., Vn).

2. Clustering step: Select a candidate set R as in SWC-1 or SWC-2

3. Flipping step: relabel R according to eqn. (2.42)
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The traditional single site Gibbs sampler [17] is a special case when qij = 0

for all < i, j > and thus R = {v} and γk = 1 for all k.

One may also view the above method from the perspective of hit-and-run.

In continuous state space, a hit-and-run method [19] chooses a new direction ~e

(random ray) at time t and then sample on this direction by a ∼ π(x+ a~e). Liu

and Wu [34] extended it to any compact groups of actions. In finite state space Ω,

one can choose any finite sets Ωa ⊂ Ω and then apply the Gibbs sampler within

the set1.

But it is difficult to choose good directions or subsets in hit-and-run meth-

ods. In the cluster Gibbs sampler presented above, the subset is selected by the

auxiliary variables on the edges.

2.3.2 The multiple flipping scheme

Given a set of connected components CP(U|X) (see eqn. (2.34)) after the cluster-

ing step, instead of flipping a single component R, we can flip all (or any chosen

number of) connected components simultaneously. There is room for designing

the proposal probabilities for labeling these connected components, independently

or jointly. In what follows, we assume the labels are chosen independently for each

connected component cp ∈ CP(U|X), by sampling from a proposal probability

q(Xcp = l|cp). Suppose we obtain a new labeling state X′ after flipping. Let

Eon(X) ⊂ E and Eon(X
′) ⊂ E be the subsets of edges that connect the vertices

of same color in X and X′ respectively. We define two cuts as the differences of

the sets

C(X→ X′) = Eon(X
′)−Eon(X), and C(X′ → X) = Eon(X)−Eon(X

′), (2.47)

1Persi Diaconis once discussed a unifying view of hit-and-run for MCMC in a talk in 2002.
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We denote the set of connected components which have different colors before

and after the flipping by D(X,X′) = {cp : Xcp 6= X′
cp}.

Proposition 6. The acceptance probability of the multiple flipping scheme is

α(X→ X′) = min{1,
∏

<i,j>∈C(X→X′)(1− qij)∏
<i,j>∈C(X′→X)(1− qij)

∏
cp∈D(X,X′) q(X

′
cp|cp)∏

cp∈D(X,X′) q(Xcp|cp)
· p(π

′)

p(π)
}

(2.48)

Proof. We will proceed in a similar fashion with the proof of Theorem 4, and we

maintain the same notations for Uon,Uoff ,CP(U|X).

In state X, let U be one of the many sets of auxiliary variables that can be

used to obtain the connected components D(X,X′). Then any cp ∈ D(X,X′)

is connected through edges of Uon. The probability to obtain state X′ through

flipping the components from CP(U|X) independently is

q(X′|U,X) =
∏

cp∈CP(U|X)

q(X′|cp) (2.49)

The probability to go from state X to X′ is

q(X′|X) =
∑
U

∏
cp∈CP(U|X)

q(X′|cp)
∏

<i,j>∈Uon

qij
∏

<i,j>∈Uoff

(1− qij) (2.50)

Let

−Uoff = Uoff\C(X→ X′) (2.51)

Then

q(X′|X) =
∏

<i,j>∈C(X→X′)

(1−qij)
∏

cp∈D(X,X′)

q(X′|cp)
∑
U

∏
cp∈CP(U|X)\D(X,X′)

q(X′|cp)
∏

<i,j>∈Uon

qij
∏

<i,j>∈−Uoff

(1−qij)

(2.52)

Similarly, the probability of going from state X′ to X is

q(X|X′) =
∏

<i,j>∈C(X′→X)

(1−qij)
∏

cp∈D(X,X′)

q(X|cp)
∑
U′

∏
cp∈CP(U′|X′)\D(X,X′)

q(X|cp)
∏

<i,j>∈U′
on

qij
∏

<i,j>∈−U′
off

(1−qij)

(2.53)
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Similarly to the proof of Theorem 4, there is a one-to-one correspondence between

auxiliary variables U in state X and U′ in state X′ such that such that

CP(U|X) = CP(U′|X′) (2.54)

and

Uon = U′
on,

− Uoff =− U′
off . (2.55)

Then the sums in eqs. 2.52 and 2.53 are equal, so we obtain, by cancellation

q(X|X′)

q(X′|X)
=

∏
<i,j>∈C(X→X′)

(1− qij)∏
<i,j>∈C(X′→X)

(1− qij)

∏
cp∈D(X,X′)

q(X′|cp)∏
cp∈D(X,X′)

q(X|cp)
(2.56)

which, by applying the Metropolis acceptance eq. 2.35, gives the desired result.

Observe that when D = {R} is a single connected component, this reduces

to Theorem 4.

It is worth mentioning that if we flip all connected components simultaneously,

then the Markov transition graph of K(X,X′) is fully connected, i.e.

K(X,X′) > 0, ∀X,X′ ∈ Ω. (2.57)

This means that the Markov chain can walk with non-zero probability between

any two partitions in a single step.

2.3.3 The multi-cue Swendsen-Wang Cuts

Sometimes there are many cues which provide bottom-up information for the

graph partitioning. For example there are different types of texture, intensity,

motion cues. How can we combine all these cues while maintaining detailed

balance?
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Great help for answering this question comes from the following

Theorem 6. Let q1, ..., qn be Markov moves with transition kernels K1, ..., Kn,

such that all qi observe detailed balance with respect to the same probability p.

Let α1, ..., αn ≥ 0 be such that α1 + ... + αn = 1. Then the Markov move q that

at each step randomly selects an i ∈ {1, ..., n} with probability αi and executes qi

has transition kernel:

K =
n∑

i=1

αiKi (2.58)

and also satisfies the detailed balance equation for p.

From this theorem, the answer to our question comes easily. We can construct

multiple graphs, one for each cue, and this way have multiple types of SWC algo-

rithms corresponding to these cues. Then the algorithms are used alternatively

as in the following

Corollary 1. Let SW1, ..., SWn be a number of Swendsen-Wang Cuts algorithms

working on the same nodes V and same posterior probability P , with adjacency

graphs G1, ..., Gn. Let α1, ..., αn ≥ 0 be fixed numbers such that α1 + ... + αn =

1. Then the move consisting of randomly choosing an i with probability αi and

executing SWi is reversible and ergodic.

We can think of each SWi as a hypothesis that is being tested in a reversible

manner.

The only restriction in using the above results is that the αi be fixed. We can

still use, if possible, bottom-up information to select good values for αi, resulting

in an efficient visiting schedule of the different SWi as long as the schedule is

fixed a priori. This way we can have some hypotheses more likely than other, so

they are tested more often. For each hypothesis, the algorithm will be efficient at
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the places where that hypothesis is valid. By combining a good set of hypotheses,

the algorithm will be efficient everywhere.
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CHAPTER 3

Image Segmentation

Our first experiment tests the cluster sampling algorithm in an image segmenta-

tion task. The objective is to partition the image into a number of disjoint regions

(as Figs. 2.3 and 2.5 have shown) so that each region has consistent intensity

in the sense of fitting to some image models. The final result should optimize a

Bayesian posterior probability π(X) ∝ L(I|X)po(X).

a. input image b. atomic regions in G c. segmentation

Figure 3.1: Image segmentation as graph partition. a. Input image. b. Atomic

regions by Canny edge detection followed by edge tracing and contour closing,

each being a vertex in the graph G. c. Segmentation result.

In this problem, G is an adjacency graph with vertices V being a set of

atomic regions (see Figs.(2.3) and (3.1)), obtained by edge detection followed by

edge tracing. Alternatively, the atomic regions could be computed using other

methods, such as normalized cuts [48]. Usually |V | = O(102). For each atomic

region v ∈ V , we compute a 15-bin intensity histogram h normalized to 1. Then
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the edge probability is calculated as

qij = p(µe = on|I(vi), I(vj)) = exp{−1

2
(KL(hi||hj) +KL(hj||hi))}, (3.1)

where KL() is the Kullback-Leibler divergence between the two histograms.

Usually qij should be close to zero for < i, j > crossing an object boundary. In

our experiments, the edge probability leads to good clustering as Fig. 2.5 shows.

Figure 3.2: The edge weights qij are computed using the intensity histograms

Hi, Hj of the atomic regions i, j.

Now we briefly define the target probability in this experiment. Let X =

(V1, ..., VL) be a coloring of the graph with the number of regions L being an

unknown random variable, and the image intensities of the regions in each set Vk

are consistent in the sense of fitting to a model θk. Different colors are assumed

to be independent. Therefore, we have,

π(X) = π(X|I) ∝
L∏

k=1

[L(I(Vk); θk)po(θk)]po(X). (3.2)

We selected three types of simple models for the likelihood models to account

for different image properties. The first model is a non-parametric histogram H,
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which in practice is represented by a vector of B-bins (H1, ...,HB) normalized to

1. It accounts for cluttered objects, like vegetation.

I(x, y; θ0) ∼ H iid, ∀(x, y) ∈ Vk. (3.3)

The other two are regression models for the smooth change of intensities in

the two-dimensional image plane (x, y), and the residues follow the empirical

distribution H (i.e. the histogram).

I(x, y; θ1) = β0 + β1x+ β2y +H iid, ∀(x, y) ∈ Vk. (3.4)

I(x, y; θ2) = β0 + β1x+ β2y + β3x
2 + β4xy + β5y

2 +H iid, ∀(x, y) ∈ Vk. (3.5)

In all cases, the likelihood is expressed in terms of the entropy of the histogram

H

L(I(Vk); θk) ∝
∏
v∈Vk

H(Iv) =
B∏

j=1

Hnj

j = exp(−|Vk|entropy(H)). (3.6)

The model complexity is penalized by a prior probability po(θk) and the pa-

rameters θ in the above likelihoods are computed deterministically at each step

as the best least square fit. The deterministic fitting could be replaced by the

reversible jumps together with the flipping of color. This was done in [54] and is

beyond the scope of our experiments.

The prior model po(X) encourages large and compact regions with a small

number of colors, as it was suggested in [54]. Let r1, r2, ..., rm, m ≥ L be the

connected components of all Vk, k = 1, ...,L. Then the prior is

po(X) ∝ exp{−α0L− α1m− α2

m∑
k=1

Area(rk)
0.9}. (3.7)

The last thing than needs to be designed for the SWC algorithm is the reas-

signment probability q(l|R,X). We choose it again in terms of the KL divergence
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between the intensity histogram of the cluster R and the intensity histogram of

region Vl, as follows:

q(l|R,X) ∝


10e−KL(H(R),H(Vl)) if R adjacent to Vl

e−KL(H(R),H(Vl)) if R not adjacent to Vl

0.1 if l 6∈ L (new region)

(3.8)

(a) convergence CPU time in seconds (b) Zoom-in view of the first 5 seconds.

Figure 3.3: The plot of− ln π(X) over computing time for both the Gibbs sampler

and our algorithm for the horse image. Both algorithms are measured by the CPU

time in seconds using a Pentium IV PC, so they are comparable. (a). Plot of

the first 1, 400 seconds. The Gibbs sampler needs a high initial temperature and

slow annealing step to achieve the same energy level. (b). The zoomed-in view

of the first 5 seconds.

For the image segmentation example (horse) shown in Figs. 2.3 and 2.5, we

compare the cluster sampling method with the single-site Gibbs sampler and the

results are displayed in Fig. 3.3. Since our goal is to maximize the posterior prob-

ability π(X), we must add an annealing scheme with a high initial temperature

To and then decrease to a low temperature (0.05 in our experiments). We plot the
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− ln π(X) over CPU time in seconds with a Pentium IV PC. The Gibbs sampler

needs to raise the initial temperature high (To ≥ 100)) and uses a slow annealing

schedule to reach the same energy level as our algorithm. The cluster sampling

method can run at low temperature. We usually raise the initial temperature to

To ≤ 15 and use a fast annealing scheme. Fig. 3.3.(a) plots the two algorithms

at the first 1, 400 seconds, and Fig. 3.3.(b) is a zoomed-in view of the first 5

seconds.

Figure 3.4: Convergence comparison between the clustering method and Gibbs

sampler in CPU time (seconds) on the artificial image (circles, triangle and rectan-

gles) in the first row of Fig.3.8. (left). The first 1,200 seconds. (right) Zoomed-in

view of the first 30 seconds. The clustering algorithm is run 5 trials for both the

random and uniform initializations.

We run the two algorithms with two initializations. One is a random labeling

of the atomic regions and thus has higher initial energy − ln π(X), and the other

initialization sets all vertices to the same color. The clustering methods are run

five times on both cases. They all converged to one solution (see Fig.2.3.(c))

within 1 second, which is O(102) times faster than the Gibbs sampler.

Fig. 3.8 shows five more images. Using the sample comparison method as in
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the horse image, we plot − ln π(X) against running time in Figs. 3.4 and 3.5 for

the images in the first and second row of Fig. 3.8 respectively. In experiments,

we also compared the effect of the edge probabilities. The clustering algorithm

are O(100) times slower if we use a constant edge probability µij = c ∈ (0, 1) as

the original SW method does. For example the single-site Gibbs sampler is an

example with qij = 0, ∀ i, j.

Figure 3.5: Convergence comparison between the clustering method and Gibbs

sampler in CPU time (seconds) on the cheetah image. (Left) The first 1,200

seconds. (Right) Zoomed-in view of the first 20 seconds. The clustering algorithm

is run 5 times for both the random and uniform initializations.

To study the effects of the discriminative probabilities qe on convergence

speed, we compare the performance of our algorithm with and without discrim-

inative probabilities in Fig.3.6. We run the SWC-1 algorithm 3 times with all

edges having the constant probability, qe = 0.2, 0.4, 0.6 respectively (Note that

the Gibbs sampler is equivalent to SWC with qe = 0). The annealing schedules

for these runs have to be slower, starting at higher temperature, to obtain the

same final energy. Sometimes the algorithm cannot reach the same low energy

as with discriminative models.
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Figure 3.6: Evaluation of the effects of the discriminative probabilities qij. For

comparison, the SWC-1 algorithm is compared with an SWC where the edge

weights are fixed to values qij = 0.2, 0.4, 0.6 respectively, on the cheetah image

3.1 (left) and the airplane image from Figure 3.8 (right).

Fig. 3.6 displays the energy vs CPU time (in seconds) of the three runs and the

SWC-1 on the cheetah (left) image of Figure 3.1 and airplane (right) image shown

in Fig.3.8. The energies of the three SWC runs with constant edge probability

qe = 0.2, 0.4, 0.6 are shown in dotted lines, all three runs start from a uniform

initialization. They are significantly slower than SWC-1. It is worth mentioning

that these SWC runs without discriminative probabilities are not equivalent with

the original SW algorithm because we work on a more general energy function,

on which the original SW cannot be applied because the acceptance probability

is not one.

Fig. 3.7 compares SWC-1 and SWC-3 on the second image in Figure 3.8.

The plot displays the average of 100 runs of SWC-1 and SWC-3 respectively.

SWC-1 is more effective than SWC-3 because of the computational overhead of

each SWC-3 move, and that there is more data-driven information used in the

SWC-1 than in SWC-3, existent in the design of the q(l′|R,X).
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Figure 3.7: Comparison of SWC-1 and SWC-3 for the second image in Figure

3.8. Both plots are in CPU time. SWC-3 has more overhead at each step and is

slower than SWC-1.

Compared with the DDMCMC algorithm from [54], our algorithm can speed

it up by 20-40 times in CPU time. Our model fitting and switching steps are

quite simple, but we observed that the full-featured model fitting and switching

steps take much less time than the split-merge steps which are the focus of our

algorithm. By incorporating full-featured model fitting and switching steps in

our algorithm, it will remain 20-40 times faster than the DDMCMC[54].
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(a) input image (b) atomic regions (c) segmentation result

Figure 3.8: More results for image segmentation.
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CHAPTER 4

Curve Grouping

In this experiment we are given an edge map with a number of n edgels. These

edgels are obtained using the Canny edge detector followed by fitting long curves

by many line segments. Usually we have n ∈ [500 − 2000] short line segments

(edgels of 3-6 pixels long) as vertices V in G. We denote them by vi = (xs
i ,x

e
i ), i =

1, 2, ..., N with xs
i ,x

e
i being the starting and ending points.

Figure 4.1: Perceptual grouping: input image, map of edgelets by Canny edge

detection and a grouping result.

Our goal is to group these edgels into an unknown number n of subgraphs

Vi, i = 1, 2, ..., n, each being a chain of edgels. By filling in the gaps between

consecutive edgels in Vi we obtain a smooth and continuous curve Γi.

Now we choose the likelihood model. In discrete form, the edgel set V in G

consists of pixels on the edges, denoted by

42



Dobs = {(i, j) : (i, j) on v ∈ V }

The n continuous curves also contain a set of pixels on curves

D = {(i, j) : (i, j) on Γk, k = 1, 2, ..., n}

We choose the likelihood to be

p(Dobs|W ) ∝
∏

(i,j)∈Dobs−D

p0

∏
(i,j)∈D−Dobs

p1 = e−λ0|Dobs−D|−λ1|D−Dobs| (4.1)

where p0 = e−λ0 ∈ [0, 1] is the probability for detecting a false edge, and

penalizes removing too many edges. In contrast, p1 = e−λ1 is the probability for

missing an edge and penalizes the gaps in the curves.

Each curve is then represented by a list of points Γj = (xj1,xj2, ...,xjNj
). The

prior model for a curve group is

p(W ) ∝ exp{−λn}
n∏

i=1

p(Γi).

Each curve follows a 2nd order Markov chain model.

p(Γi) = p(xi1,xi2)
k∏

j=3

p(xj|xj−1,xj−2). (4.2)

The probability p(xi1,xi2) is assumed uniform, while p(xj|xj−1,xj−2) is a

two gram represented by a 2-way joint histogram. We compute it by supervised

learning from a number of manually parsed images, e.g. from [36]. As Figure 4.2.a

shows, we compute three variables: (1). distance d1 = |xj−1−xj−2|, (2). distance

d2 = |xj − xj−1|, and (3). the angle α. There are 6 histograms, one for the
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(a) (b)

Figure 4.2: (a) The joint histograms of p(xj|xj−1,xj−2) contain 6 bins for d2 and

36 bins for α. There are 6 such histograms, for different values of d1. (b) The

SW edge strength between two nodes (edgels) is defined in terms of the gap and

the angle between the edgels.

values of d1 in each of the intervals [0, 2), [2, 4), [4, 8), [8, 16), [16, 32), [32, 64]. Each

histogram has 6 bins for d2, in the same range as d1, and 36 bins for α, each of

size 10o. Thus we have 6 histograms with 6 × 36 bins each and we represent

p(xj|xj−1,xj−2) by p(d2, α|d1). To avoid empty bins we will start with each bin

having one sample in it.

This model depends on the ordering and orientation of the edgels in the curve.

For each curve Vl, we resolve the ordering and orientation in a deterministic

greedy way as follows.

1. we begin with the curve Vl = {v1, .., vk} broken down into k curves γi = vi.

2. find γi, γj and orientations such that the log likelihood ratio of the merged

curve log p(γi ∪ γj)− log p(γi)− log p(γj) is maximized.

3. merge γi and γj into γ = γi ∪ γj. The numbers of curves is reduced by 1.

4. repeat steps 2,3 until the number of curves is 1.

To construct the SWC graph G, we start with a complete graph on the edgels,

and compute an edge strength for any pair e = (vi, vj) (see Fig.4.2.b), based on

the gap dij between the two edgels, and the two gram learned for the prior
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qe = 0.99 · p(xs
j|xe

i , x
s
i ) · p(xe

j |xs
j , x

e
i ) · e−λ1∗dij (4.3)

where λ1 is the gap penalty used in the likelihood equation.

If qe < 0.01 then edge e is removed. We assume this is a very safe threshold

to reduce the graph complexity.

Figure 4.3: Curve grouping: input edgel map and two grouping results.

We display four examples obtained with SWC-1 in Fig. 4.1, 4.3, 4.4. The

results are not ideal, mainly because of the simple curve model that we used.

In future work, we should introduce more advanced curve models. In fact, most

recently, the SWC method was applied to grouping parallel curves and trees and

more advanced results are in a paper [55].

Figure 4.4: Curve grouping: input image, edgel map and grouping result.
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CHAPTER 5

Hierarchic image-motion segmentation

5.1 Multi-grid and Multi-level cluster sampling

When the graph size G is big, for example, |V | = O(104) ∼ O(106) in image

analysis, a clustering step has to flip many edges and is costly computationally.

This section presents two strategies for improving the speed – the multi-grid and

multi-level cluster sampling. Our methods are different from the multi-grid and

multi-level samplings ideas in the statistical literature (see Gilks [19] and Liu

[35]).

5.1.1 Rationale for multi-grid and multi-level cluster sampling

In multi-grid clustering sampling, we introduce an ”attention window” Λ (see

Figure reffig:multigrid) which may change location and size over time. The cluster

sampling is limited to within the window at each step, and this is equivalent to

sampling a conditional probability,

XΛ ∼ π(XΛ|XΛ̄). (5.1)

The multi-level cluster sampling is motivated by the problem of hierarchic

graph labeling. Figure 5.1 illustrates an example in motion segmentation. Sup-

pose we are given two consecutive image frames in a video, and our goal consists

of three parts: (i) calculate the planar velocity (i.e. optical flow) of the pixels
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Figure 5.1: Cluster sampling on multi-level of graphs for motion segmentation.

A connected component with the same color is frozen and collapsed into a single

vertex in the level above.

in the second frame based on the displacement between pixels in two frames, (ii)

segment (group) the pixels into regions of coherent intensities, and (iii) further

group the regions into moving objects, such as the running cheetah and the grass

background where each object should have both consistent intensity and motion

velocity in the image plane.

This problem can be represented in a three-level labeling

X = (X(0),X(1),X(2)). (5.2)

and this label forms three levels of graph shown in Figure 5.1,

{G(s) =< V (s), E(s) > : s = 0, 1, 2}. (5.3)

G(0) is the image lattice with each vertex being a pixel. The pixels are labeled by

X(0) according to their intensity and planar motion velocity, and thus grouped

into a number of small regions of nearly constant intensity and velocity in G(1).
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The vertices in G(1) are further labeled by X(1) according to their intensities and

grouped into a smaller graph G(2), which is in turn labeled by X(2). The vertice

size has been reduced from O(105) in G(0) to O(102) in G(1) and to O(10) in G(2).

We should discuss more details in the next two subsections. In the rest of

this subsection, we discuss the theoretical justifications for the multi-grid and

multi-level cluster sampling.

The essence of the cluster sampling design is that its Markov chain kernel

observes the detailed balance equations as a result of the Metropolis-Hastings

design.

π(X)K(X,Y) = π(Y)K(Y,X), ∀X,Y. (5.4)

The detailed balance equation is a sufficient condition for K to satisfy the invari-

ant condition, ∑
X

π(X)K(X,Y) = π(Y), ∀Y. (5.5)

In practice, one may design a set of Markov chain kernels, each corresponding

to specific MCMC dynamics,

∆ = {Ka, a ∈ A}, (5.6)

The overall Markov chain kernel is a mixture of these dynamics with probability

qa,

K(X,Y) =
∑
a∈A

qaKa(X,Y), ∀X,Y. (5.7)

There are two basic design criteria for ∆, which are easily observed in the finite

state space.

1. The Kernels in ∆ are ergodic so that for any two points X and Y, there is

a path of finite length (X,X1, ...,XN ,Y) between X and Y consisting of
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the N + 1 kernels k(0), ..., k(N) ∈ ∆, with

Kk(0)(X,X1) · Kk(1)(X1,X2) · · · Kk(N)(XN ,Y) > 0.

2. Each sub-kernel observes the detailed balance equations, and thus the over-

all kernel satisfies them.

The multigrid and multi-level design in the next two subsections are ways for

designing the sub-kernels that observe the detailed balance equations.

5.1.2 Multigrid cluster sampling

Figure 5.2: Multigrid flipping: computation is restricted to different “attention”

windows Λ of various sizes, with the rest of the labels fixed.

Let Λ be an “attention window” on graph G, and X = (V1, V2, ..., VL) the

current labeling state. Λ divides the vertices into two parts,

V = VΛ ∪ VΛ̄, and X = (XΛ,Xλ̄). (5.8)

For example, Figure reffig:multigrid displays a rectangular window Λ (in red

dashed) in a lattice G. The window Λ cuts some edges within each subset Vk, k =
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1, 2, ...,L, and we denote them by,

C(Vk,Λ) = {< s, t >: s ∈ Vk ∩ VΛ, t ∈ Vk ∩ VΛ̄}.

In Figure 5.2 the window Λ intersects with three subsets V1 (white), V2 (black),

and V3 (grey), and all edges crossing the (red) rectangle window are cut.

Multi-grid Swendsen-Wang Cuts

1. Select an attention window Λ ⊂ G.

2. Cluster the vertices within Λ and select connected component R.

3. Flip the label of R.

4. Accept the flipping with probability, using XΛ̄ as boundary condition.

Following the proof of Theorem 4 in Section (2.2), we can derive the accep-

tance proposal probability to move from state XA to state XB within Λ.

Proposition 7. The acceptance probability for proposing R as a candidate cluster

within window Λ and moving from state X to state X′ is

α(X→ X′) = min{1,

∏
<i,j>∈C(R,V`′ )−C(V`′ ,Λ)

(1− qij)∏
<i,j>∈C(R,V`)−C(V`,Λ)

(1− qij)
· q(XR = `|R,X′)

q(XR = `′|R,X)
· π(X′)

π(X)
}.

In Figure 5.2), we have X = XA and X′ = XB (` = 1, `′ = 3).

The difference between this ratio and the ratio in Theorem 4 is that some

edges in C(V`,Λ) ∪ C(V`′ ,Λ) no longer participate in the computation.

Proposition 8. The Markov chain simulated by the multi-grid scheme has invari-

ant probability π(XΛ|XΛ̄) and its kernel K observes the detailed balance equation,

π(XΛ|XΛ̄)K(XΛ,YΛ) = π(YΛ|XΛ̄)K(YΛ,XΛ). (5.9)
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The proof is straightforward.

We will now prove that the multi-grid method is also invariant to teh full

posterior probability. Let p(x, y) be a two dimensional probability, and K be a

Markov kernel sampling its conditional probability p(x|y) (or p(y|x)). Thus it

observes the detailed balance equations,

p(x|y)K(x, x′) = p(x′|y)K1(x
′, x), ∀x, x′. (5.10)

Theorem 7. In the above notation, K observes the general detailed balance equa-

tions after augmenting y

p(x, y)K((x, y), (x′, y′)) = p(x′, y′)K((x′, y′), (x, y)).

Proof. If y = y′, then it is straightforward. If y 6= y′ then K((x, y), (x′, y′)) =

K((x′, y′), (x, y)) = 0 because there is no way to go from state (x, y) to state

(x′, y′).

The conclusion of this theorem is that an algorithm which is reversible when

sampling from a conditional probability is also reversible for sampling the full

probability. From here we obtain

Proposition 9. Let π(X) be a target probability defined on a graph G =< V,E >

and Λ ⊂ V a window. Then the kernel KΛ of the multi-grid scheme for Λ observes

the detailed balance equation with respect to π(X),

π(X)K(X,Y) = π(Y)K(Y,X). (5.11)

5.1.3 Multi-level cluster sampling

Following the notations in Section (5.1.1), the problem is hierarchic labeling with

G = (G(0),G(1),G(2)) and X = (X(0),X(1),X(2)). Each level of labeling X(s) is

51



Level 1 Level 2

Figure 5.3: Multi-level cluster sampling. Computation is performed at differ-

ent levels of granularity, where the connected components from the lower level

collapse into vertices in the higher level.

equivalent to a partition of the lattice with connected components.

CP(X(s)) = {cp(s)
1 , cp

(s)
2 , ..., cp

(s)

m(s)}, s = 0, 1, 2. (5.12)

Note that vertices in each connected component have the same label and two

disconnected components may share the same label.

Definition 2. The hierarchic labels X = (X(0),X(1),X(2)) are said to be ”nested”

if

∀cp(s) ∈ CP(X(s)), ∃cp(s+1) ∈ CP(X(s+1)) so that cp(s) ⊂ cp(s+1), s = 0, 1.

A nested X has a tree structure for the levels of labels. A vertex in level s+1

has a number of children vertices in level s.

Multi-level Swendsen-Wang Cuts

1. Select a level s, usually in an increasing order.

2. Cluster the vertices in G(s) and select a connected component R.
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3. Flip the labeling of R.

4. Accept the flipping with probability, using the lower levels (denoted by X(<s))

as boundary condition.

Proposition 10. Let π(X) be a probability on the nested labeling X = (X(0),X(1),X(2)),

and let the kernels of the cluster sampling algorithm on the three levels of graphs

be K(0), K(1) and K(2) respectively. Then they observe the detailed balance equa-

tions with respect to the conditional probabilities,

π(X(s)|X(<s))K(s)(X(s),Y(s)) = π(Y(s)|X(<s))K(s)(Y(s),X(s)), s = 0, 1, 2.

(5.13)

where X(<s) = (X0, ...,Xs−1). Therefore the multi-level SWC observes the de-

tailed balance equation (5.4).

5.2 Hierarchic motion segmentation

Now we report the experiments on motion analysis using multi-grid and multi-

level SWC.

Let I1, I2 be two consecutive image frames in a video sequence, as Figure

5.4 illustrates. The images I1 and I2 are discretized into lattices Λ1 and Λ2

respectively. Due to motion occlusion, some points are visible in only one image,

say the white areas φ1 in I1 and φ2 in I2, and are called ”half-occluded” points.

All other points, named ρ1 = φ̄1 = Λ1 \ φ1 and ρ2 = φ̄2 = Λ2 \ φ2 respectively,

can be mapped between the two image frames. The mapping function is called

the ”optical flow” field,

(u, v) : ρ2 7→ ρ1 (5.14)

For any point (x, y) in the first frame, (u(x, y), v(x, y)) is the displacement for

the planar motion velocity. Usually one can assume that the intensity of a point
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image frame I1 image frame I2

Figure 5.4: Two consecutive image frames with two moving objects, foreground

and background respectively. The pixels in the areas φ1 are not seen in I2 and

reversely, the pixels in φ2 are not seen in image I1; they are called ”half-occluded”

pixels. The other pixels can be mapped between the two frames.

will be constant (with stable illumination and Lambertian surfaces) between the

two frames, and the residue is modeled by Gaussian noise n ∼ Gaussian(0, σ2
o).

Let’s take the second image as the reference frame,

I2(x, y) = I1(x− u(x, y), y − v(x, y)) + n(x, y), ∀ (x, y) ∈ ρ2. (5.15)

In the motion analysis problem, we consider discrete pixels in the second

image frame G(0) = Λ2, and each pixel has three labels x = (x(0), x(1), x(2)):

1. The velocity x(0) = (u, v) is discretized into 21 × 9 = 189 different planar

velocities. We assume the maximum displacement in the lattice between

two consecutive frames to be −5 ≤ u ≤ 5,−2 ≤ v ≤ 2 with 1/2 pixel

precision. That leads to 189 possible planar velocities. Then for pixels

which do not have corresponding pixels in the first frame, i.e. pixels in φ2,

their velocities cannot be decided and are denoted by nil. They can be

estimated based on context information on their intensity through image

segmentation. Thus we have x(0) ∈ {nil, 1, 2, ..., 189} as its velocity label.
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2. The intensity label x(1) ∈ {1, 2, ...,L(1)} for image segmentation. That is,

the image lattice is partitioned into a number of regions with coherent in-

tensities in terms of fitting to the three families of image models in Chapter

3.

3. The object label x(2) ∈ {1, 2, ...,L(2)}. That is, the image lattice is par-

titioned into a number of L(2) objects which have coherent intensity and

motion.

To fix notation, we divide the image frames into two parts,

I1 = (I1,φ1 , I1,φ̄1
), I2 = (I2,φ2 , I2,φ̄2

)

The target probability is the Bayesian posterior,

π(X) = π(X(0),X(1),X(2)|I1, I2) ∝ L(I1,φ̄1
|I2,φ̄2

,X(0))L(I2|X(1))πo(X). (5.16)

The first likelihood is specified by the optical flow model,

L(I1,φ̄1
|I2,φ̄2

,X(0)) =
∏

(x,y)∈φ̄2

1√
2πσo

exp{− 1

2σo

(I2(x, y)−I1(x−u(x, y), y−v(x, y)))2}.

(5.17)

The second likelihood is the same as the image segmentation likelihood in Chapter

3.

The prior probability assumes piecewise coherent motion. That is, each mov-

ing object o = 1, 2, ...,L(2) has a constant planar velocity co ∈ {1, 2, ..., 189} plus

a Markov model for the adjacent velocities. Also each object (and region) has a

compact boundary.
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πo(X) ∝
L(2)∏
o=1

exp{−α
∑

v,x(2)(v)=o

|x(0)(v)− co|2 − β
∑

v′∈∂v

|x(0)(v′)− x(0)(v)|}

L(1)∏
l=1

exp{−γ|∂V
(1)
l |}

L(0)∏
i=1

exp{−δ|∂V
(0)
i |} exp{−λ0L(0) − λ1L(1) − λ2L(2)}

(5.18)

Now we define the edge probability at the three levels of graph for the auxiliary

variables.

At level X(0), let (x, y) and (x′, y′) be two adjacent pixels, and (u, v) the

common motion velocity of both pixels, The edge probability is defined as

q(0)(v, v′) = min
(u,v)

e−[|I2(x,y)−I1(x−u,y−v)|+|I2(x′,y′)−I1(x′−u,y′−v)|]/7

= −|I2(x, y)− I2(x
′, y′)|/10}.

At the region level X(1), the edge weights between two adjacent nodes v, v′

(each being a set of pixels) are based on the KL divergence between their intensity

histograms hu, hv, as in Chapter 3.

At the object level X(2), the edge weights between two adjacent nodes v, v′

(each being a set of pixels) are based on the KL divergence between their motion

histograms hm(v), hm(v′). We maintain the histogram of the motion velocities in

each object.

q(2)(v, v′) = exp{−1

2
(KL(hm(v)||hm(v′)) +KL(hm(v′)||hm(v))}. (5.19)

We run the multi-grid and multi-level SW-cut on a number of synthetic and

real world motion images. We show four results in Figure 5.5. The first image

shows two moving rectangles where only the 8 corners provide reliable local ve-

locity (aperture problem) and the image segmentation is instrumental in deriving
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frame I1 frame I2 image segmentationmotion segmentation

Figure 5.5: Hierarchical motion analysis. From left to right: first frame I1, second

frame I2, image segmentation, motion segmentation. The image segmentation is

the result at level s = 1 and the motion segmentation is the result at level s = 2.

For the color images (the 3rd and 4th rows) we treated the three R,G, B color

bands each as a grey image.

the right result. For the other three sequences, the algorithm obtains satisfac-

tory results despite large motion and complex background. The cheetah image

in Figure 5.1 is a fifth example.

For comparison of the different cluster sampling methods, we choose the image

segmentation example – the cheetah image in Figure 3.8.

In Chapter 3, the pixels are grouped deterministically into atomic regions in
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Figure 5.6: Convergence comparison of multigrid and multi-level SWC for the

cheetah image in Figure 3.8. (see text for explanation)

a pre-processing stage. Now we perform the cluster sampling on two levels, the

atomic regions being generated by the first level of the cluster sampling process,

while the second level groups the atomic regions into intensity regions.

We plot in Figure 5.6 the − ln π(X) vs the CPU time for various methods.

This figure should be compared with Figure 3.5. The multi-level cluster sampling

was run in two initializations.

Firstly, the two level cluster sampling is much slower than the the one level

clustering. The latter assumed deterministic atomic regions. But the two level

cluster sampling can reach a deeper minimum as it has more flexibility in forming

the atomic regions.

Secondly, the multi-grid method is the fastest among the methods that work

directly on pixels.
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Thirdly, the Gibbs sampler plotted in Figure 3.5 run on the deterministic

atomic regions not the pixels. If it is running on the pixels, we cannot get it

converge to the minimum in any reasonable amount of time.
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CHAPTER 6

Stereo Matching

6.1 Comparison of SWC with Graph Cuts and Belief Prop-

agation for stereo

Tappen [53] compared the performance of the Graph Cuts [9] and Belief Prop-

agation [62] algorithms on stereo matching, using a model that can be used by

both algorithms, model that has been presented in [46]. Using the same model,

in this section we compare the performance of the SW Cuts with Graph Cuts

and Loopy Belief Propagation.

Given a pair of stereo images I = (Il, Ir), we assign an integer disparity value

(as color) cv = dv for every pixel v in the left image. The adjacency graph Go is

simply the lattice with 4-nearest neighbor connections. The energy used in the

benchmark[46, 53] is a Potts model with external field,

E =
∑

v

D(dv, v) +
∑
<s,t>

βs,t1(ds 6= dt) (6.1)

The external field (data) term measures the goodness of intensity match between

the left and right images for a disparity dv using the Birchfield-Tomasi matching

cost [4],

D(dv, v) = min{ min
dv−1/2≤x≤dv+1/2

|Il(v)− Ir(v − x)|, 50} (6.2)

The coefficient in the prior term is made to be dependent on < s, t > (inho-

mogeneous Potts model) βs,t = 20 if |Il(s)− Il(t)| > 8, otherwise βs,t = 40. This
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a. Left image b. SWC-2 result c. Graph cuts result d. Manual (truth)

Figure 6.1: Stereo matching for the Tsukuba sequence (first row) and the Saw-

tooth sequence (second row).

energy has some shortcomings. (i). It is a first order Markov random field capa-

ble only of properly representing fronto-parallel planes. For example, the slanted

planes in Fig. 6.1 (second row) are broken into many pieces. (ii) It does not treat

half-occluded pixels explicitly and because of this, the ground truth has a much

higher energy than the output of the algorithms (see Fig.6.2). We are forced to

use this energy in order to compare with the graph cuts (and BP) as this is the

type of energy that they can minimize. We compare the SWC-2 with the Graph

Cuts implementations provided in the Scharstein and Szelisky’s package [46] and

Tappen’s extension to Belief Propagation [53] available online.

For the stereo problem, we define discriminative probabilities on both vertices

and edges to get better empirical results.

On each vertex (pixel) v ∈ V we compute the vertex probability q(dv, v) ∝

e−D(dv ,v) normalized to 1 for dv ∈ {0, ..., dmax}. It measures how likely pixel v

has disparity dv based on local information. We compute a marginal probability
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q(d) = 1
|V |

∑
v q(d, v) for each disparity level d.

For each edge e =< s, t >, we define an edge probability for any d ∈

{0, ..., dmax},

qd
e = 1− e−

20βs,t
3(D(s,ds)+D(t,dt))+10 . (6.3)

Thus we have dmax + 1 probabilities on each edge e, one for each disparity level.

At each SWC-2 step, we first choose a disparity level d with probability q(d), and

then we use qd
e as the edge probability for clustering the connected component R.

We found that most of the energy costs are contributed by the boundary

pixels (due to the lack of half-occlusion treatment). Therefore, in SWC-2, a seed

vertex v is chosen with equal probability either from the boundary pixels or by

sampling from a goodness of fit probability q(dv, v)D(dv, v) with dv being the

current assigned disparity at v. That is, we wish to choose more often those

pixels v whose assigned disparity level dv have a lower probability. Then we grow

the component R as in SWC-2 from the seed v and propose to flip its label. The

new disparity level d (or color) for R is chosen according to a probability

q(d|R, π) ∝ e−
∑

v∈R D(d,v)−0.7K
∑

<s,t>,s∈R βs,t1(d6=dt). (6.4)

Fig. 6.2 compares the energy curves against CPU time in seconds for the

SWC (two runs with different annealing schedules), graph cuts[9], and belief

propagation (synchronous and accelerated)[53] We initialized the system with

an SWC-1 version working on atomic regions which decreased the energy from

about 5, 000, 000 to about 650, 000 in less than 30 seconds (included in the plot).

Then the SWC-2 version working on the pixel lattice provided the final result.

The final energy obtained with SWC-2 was within 1% of the final energy of the

Graph Cuts algorithm for the Tsukuba sequence and within less then 2% for the

other sequences. All parameters were kept the same in all experiments.
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Figure 6.2: Performance comparison of SWC with Graph Cuts and Belief Prop-

agation for the Tsukuba sequence. The curves plot the energy over CPU time in

seconds.

The energy level is not a good indicator of the quality of results as the ground

truth results have higher energy than all algorithms. The experiments show that

the SWC reaches lower energy than belief propagation but it is slower than Graph

cuts.

a. Left image b. Right image c. SWC result d. Graph cut result

Figure 6.3: The simple Potts model does not allow a faithful reconstruction of a

face.

The Potts model is not suitable for 3d reconstruction of free-form surfaces such

as faces, as shown in Figure 6.3. Models with second order priors and sub-pixel

accuracy, computed using PDE methods [13] are better choices in this case.
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6.2 SWC with generative models for stereo

In this section, we release ourselves from the simple energy model in eqn.(6.1), and

adopt generative models with piecewise planar surfaces, in a Bayesian framework.

The SWC graph G has atomic regions as nodes. The atomic regions are

obtained by intersecting a rectangular grid of 6 × 6 squares with an edge map

obtained by Canny edge detection. For each atomic region ri, we compute the

matching cost for all d in a discrete set {0, ..., dmax} of possible disparities.

C(ri, d) =
∑
v∈ri

D(d, v) (6.5)

where D(d, v) is the Birchfield-Tomasi cost from equation 6.2.

Our SWC algorithm will assign a label to each atomic region. In the previous

section, this label represented a unique disparity. In the generative setup of

this section, each label represents a plane in the disparity space, which does not

necessarily has to be fronto-parallel, as in the previous section. Observe that in

the case of a perspective projection camera, planar regions in the disparity space

correspond to planar regions in the scene and vice versa. Therefore, each label

` ∈ L, corresponds to a planar model θ` = (a`, b`, c`) so that

d(v) = a`x+ b`y + c`, ∀ v = (x, y) ∈ V` (6.6)

Instead of computing this disparity all the time, we will assume that the dis-

parity is relatively constant in each atomic region ri, which is a valid assumption

since the atomic regions have a small size. Then we approximate the disparity of

all pixels in ri with the disparity of the center ci = (xi, yi) of the region ri.

d(v) = d(ci) = a`xi + b`yi + c`, ∀ v ∈ ri (6.7)

where ` = l(ri). This approximation will greatly reduce the computation time.
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Thus the variables that have to be inferred are

W = {l(ri),∀ri} ∪ θ`,∀` ∈ L (6.8)

Our Bayesian probabilistic model is

p(W |I) = p(I|W )p(W ) (6.9)

The likelihood is given in terms of the model parameters and the matching cost

p(I|W ) ∝ exp[−
∑

i

C(ri, al(ri)xi + bl(ri)yi + cl(ri))] (6.10)

while the prior is the same as in the previous section.

a. Left image b. SWC result c. Graph cuts d. Manual (truth)

Figure 6.4: Using a Bayesian formulation with generative models fitting piecewise

planar surfaces, our algorithm obtains much better results for the same set of

stereo images. The running time is also reduced to 2 minutes in a PC.

The SWC edge weights between the atomic regions are defined in terms of

the smallest matching cost for fitting both atomic regions by the same disparity
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qij = exp{−1

2
min

d
[C(ri, d) + C(rj, d)]/(|ri|+ |rj|)}, ∀ < i, j >∈ E. (6.11)

At random steps of the algorithm, the models for the regions involved in

reassignment are updated by least square fitting of proposals from the textured

atomic regions (with high saliency to one disparity only) in each region.

Our algorithm runs in 2 minutes and obtains the much better results shown

in Figure 6.4 which are closer to the ground truth. We run the SWC-1 algorithm

on the atomic regions and then run the boundary diffusion[63] on pixels for a few

steps to smooth the object boundary.

This method applies for simple scenes where the surfaces can be described

by parametric models. It will not be as efficient for free-form surfaces such as

clothes or faces. For these, PDE optimization techniques [13] could be used.

6.3 Incorporating visual knowledge in stereo

Stereo matching is an intensively studied problem, and recently there is major

interest in studying it using effective algorithms such as BP[49] and graph cuts[9]

based on Markov random field models and splines [33]. However, the represen-

tations (models) used in these methods are still very limited. As a result, they

often produce unsatisfactory results when the images have textureless surfaces,

such as indoor walls, or when the images have curve structures which do not fit

to the pixel-based MRF representation. Fig. 6.21 displays two such results using

the state-of-the-art graph cuts algorithm. For such images, one could see that

just matching pixels using Markov Random Field priors is not enough. It is de-

sirable to incorporate some visual knowledge into the surface representation. In

the stereo literature, the 3D reconstruction of curves was studied in [64], but the
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depth was obtained only at the location of curve boundaries and the algorithm

does not provide a dense depth estimation.

In what follows, we present a two-layer generative model that incorporates

generic middle-level visual knowledge for dense stereo reconstruction. The over-

all dataflow of the algorithm is illustrated in Fig. 6.5. Given a pair of stereo

images, we first compute a primal sketch representation[24] which decomposes

the image into two layers. (i) A structural layer for object boundaries and high

intensity contrast represented by a 2D sketch graph, and (ii) a structureless layer

represented by Markov random field on pixels. The sketch graph in the structural

layer consists of a number of isolated points, line segments, and junctions which

are considered vertices of different degrees of connection.

Figure 6.5: The flow diagram of our algorithm.

We then study the 3D structures for these points, line segments, and junctions

and develop a dictionary for different configurations. The boundary primitives

correspond to places where the depth map is not smooth, namely the boundaries

between objects in the scene (first order discontinuities) and the places where the

surface normal experiences large changes in direction (second order discontinu-

ities). The curve primitives describe thin curves of different intensity from the

background, and usually represent wire-like 3D objects such as thin branches of

a tree or electric cables, etc. The point primitives represent feature points in the
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image that have reliable depth information. The valid combinations of these 3D

primitives is summarized in a dictionary of junctions. Figs. 6.8 and 6.10 shows

the dictionaries of line segments and junctions respectively. Each is a 3D surface

primitive specified by a number of variables. The number of variables is reduced

for degenerated (accidental) cases.

There are three reasons for us to study these primitives. Firstly, the primitive

representation reduces the number of variables (dimension reduction). For exam-

ple, a boundary primitive may have 11 pixels in width and 30 pixels in length,

and is described by 4-7 variables which can be more reliably estimated from data.

A similar idea was pursued in motion boundary estimation in[5]. Secondly, these

sketches are the most informative parts in the images, and it is computationally

more effective to compute their 3D depth early and then propagate the surface in-

formation to the textureless layers. Thirdly, the dictionary of junction primitives

limit the search space by ruling out invalid configurations, like in line drawing

interpretation and perceptual organization[45].

We adopt a probability model in a Bayesian framework, where the likelihood is

described in terms of the matching cost of the primitives to images, while the prior

has terms for continuity and consistency between the primitives, and a Markov

Random Field that is used to fill in the depth information in the structureless

areas. This Markov Random Field together with the labeling of the edges can be

thought of as a Mixed Markov Model [15], in which the neighborhood structure

of the MRF depends upon the types of the primitives, and changes dynamically

during the computation.

The inference algorithm simultaneously finds the types of the 3D primitives,

their parameters and the full depth map. To make-up for the slowdown given

by the long range interactions between the primitives through the MRF, the
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algorithm makes use of data driven techniques to propose local changes (updates)

in the structureless areas.

6.3.1 A two layer representation

Given a stereo pair Il, Ir of images, we are required to find the depth of all pixels

in Il. Assuming that the camera parameters are known, this is equivalent to

finding for each pixel, the horizontal disparity that matches it to a corresponding

pixel in Ir. Let D be the disparity map that needs to be inferred and Λ be the

pixel lattice.

We assume the disparity map D is generally continuous and differentiable,

with the exception of a number of curves Λsk where the continuity or differen-

tiability assumption does not hold. These curves are augmented with disparity

values and are considered to form a 3D sketchDs that acts as boundary conditions

for the Markov Random Field modeling the disparity on Λnsk = Λ \ Λsk.

(a) (b) (c)

Figure 6.6: Our algorithm starts from a two layer sketch representation. (a) input

image, (b) region layer, (c) curve layer.
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6.3.2 The sketch layer – from 2D to 3D

We assume that the places where the disparity is discontinuous or non-differentiable

are among the places of intensity discontinuity. The intensity discontinuities are

given in the form of a sketch S consisting of a region layer SR and a curve layer

SC , as illustrated in figure 6.6. The curve layer is assumed to occlude the region

layer. These sketches can be obtained as in [24, 56]. The sketch edges are approx-

imated with line segments S = {si, i = 1, .., ne}. The segments that originated

from the region layer si ∈ SR will be named edge segments while the segments

originating from the curve layer si ∈ SC will be named curve segments.

Each edge segment si ∈ SR from the region layer is assigned two 5 pixel wide

edge regions li, ri, on the left respectively on the right of si, as shown in Figure

6.7, left. Each curve segment sj ∈ SC is assigned a curve region rj along the

segment, of width equal to the width of the curve, as shown in Figure 6.7, right.

Denote the pixels covered by the edge and curve regions by ΛR,ΛC respectively.

Figure 6.7: Division of the image in figure 6.6 into sketch primitives and 6x6 pixel

square regions. Region layer (left) and curve layer (right).

Because away from the places of discontinuity, the surfaces are in general very

smooth and to reduce the dimensionality of the problem, the pixels of Λ \ΛR are
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grouped into square regions of size 6×6 pixels, by intersecting Λ\ΛR with a 6×6

rectangular grid. Small regions at the boundary between the edge regions and

the rectangular grid are merged to the edge regions. This way, the entire lattice

Λ is divided into atomic regions that either are along the sketch SC , or are on

the rectangular grid, as shown in Figure 6.7. This structure allows the use of the

thin plate spline model for the MRF and also enables implementation of good

boundary conditions by the 3D primitives.

Then all line segments si ∈ S are augmented with parameters to become 3D

sketch primitives, as shown in figure 6.8. Depending on the type of segments they

originated from, there are boundary primitives and curve primitives.

Let

V1 = {πi = (si, [li, o
l
i], ri, o

r
i , ti, pi, di, wi[, fi]), i = 1, .., ne} (6.12)

be the set of all primitives, where the parameters in brackets might be missing,

depending on the primitive type. The variables of each primitive are:

1. the edge segment si ∈ SR or curve segment si ∈ SC

2. the left and right regions li, ri in case of an edge segment, or the curve as a

region ri in case of a curve segment.

3. an occlusion label ol
i, o

r
i for each of the regions li, ri, representing whether

the region is occluded (value 0) or not (value 1).

4. the label ti = t(πi) ∈ {1, .., 8} indexing the type of the primitive from the

primitive dictionary with the restriction that edge segments si ∈ SR can

only be assigned types from {1, .., 6} while curve segments si ∈ SC can only

be assigned types from {1, 7, 8}. These types are illustrated in Figure 6.8.

• Type 1 represents edges or curves that are on the surface of the objects.
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Figure 6.8: Each sketch segment is augmented to a primitive from the following

dictionary, order by generality.

• Type 2 represents first order discontinuities, i.e. places where the

surface is continuous but the normal is discontinuous.

• Types 3, 4, 5, 6 represent occluding edges where the occluded surface

is on the left (types 3, 4) or on the right (types 5, 6) of the edge.

• Types 7, 8 represent 3D curves, either connected with one end to the

surface behind, or totally disconnected.

5. a label pi specifying whether this primitive is a control point (value 1) of
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the thin plate spline or not (value 0). All horizontal edges have pi = 0 at

all times.

6. the disparities di = d(πi) = (d0
i , d

1
i ) at the endpoints of the segment or the

disparity di = d(πi) at the center of the segment if the segment is short

(less than 6 pixels long).

7. the left and right control arm wi = w(πi) = (wl
i, w

r
i ) representing the slope

of the disparity map D in the direction perpendicular to the line segment.

8. for types 3-6, the disparity fi = f(πi) = (f 0
i , f

1
i ) of the occluded surface at

the ends of the segment, or the disparity fi = f(πi) at the center of the

edge segment if the segment is short (less than 6 pixels long).

Each of the regions li, ri of the primitive πi = (si, [li, o
l
i], ri, o

r
i , ti, pi, di, wi[, fi])

is assigned a matching cost

c(ri, d) =


0 if ri intersects the curve sketch SC∑

v∈ri
|Il(v)− Ir(v − dv(πi))| if or

i = 1

α else

(6.13)

where for each pixel v ∈ ri, the disparity dv(πi) is the linear interpolation based

on the parameter d representing the disparity at the ends of the region, in the

assumption that w = 0. Then the matching cost of the primitive πi is

c(πi) = c(ri, [li], ti, di, [fi]) =



c(ri, di) if ti = 7, 8, 1(curve)

c(li, di) + c(ri, di) if ti = 2, 1(region)

c(li, fi) + c(ri, di) if ti = 3, 4

c(li, di) + c(ri, fi) if ti = 5, 6

(6.14)
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The primitives form a graph by the natural adjacency relation between the

underlying edge segments, as it can be seen in Figure 6.9.

Figure 6.9: A set of edge segments (black) and their 3D primitives (gray). The

primitives form a graph by the adjacency of the segments.

To increase the model accuracy, the junction points of two or more primitives

are modeled. Similar to [45] we will have certain types of possible junctions

depending on the degree (number of primitives) of the junction, as mentioned

below and illustrated in Fig. 6.10.

• junctions of 2 boundary primitives have three main types: Surface junc-

tions, beginning of occlusion and occlusion junctions.

• junctions of 3 boundary primitives have three main types: Surface junc-

tions, Y-junctions and T-junctions.

• junctions of 4 or more boundary primitives are accidental and are assumed

to be all surface junctions.

• we assume there are no junctions between one or two curve primitives and

one boundary primitive

• junctions of 1 curve primitive with two boundary primitives have three main

types: curve beginning, Y-junctions and T-junctions.
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Figure 6.10: These are the main types of junctions between boundary and curve

primitives.

• junctions of 2 curve primitives have only one type.

• junctions of 3 curve primitives have only one type, namely bifurcation.

• junctions of 4 curve primitives have two types, namely curve crossing of

curve overlapping. In both cases, the opposite primitives can be seen as

part of the same 3D curve.

Let J = {φi = (t, k, πi1 , ..., πik), πi1 , ..., πik ∈ V1, i = 1, ..., nJ} be the set of junc-

tions, each containing the list of primitives that are adjacent to it. The variable
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t is the junction type and restricts the types of the primitives πi1 , ..., πik to be

compatible to it.

Each junction φi ∈ J imposes a prior model that depends on the junction

type, and the types and directions of the 3D primitives πi1 , ..., πik meeting in this

junction. This prior is composed of a 3D geometric prior on the primitives and a

2D occurrence prior of each particular junction type.

Thus

P (φ) ∝ P (πi1 , ..., πik |t, φ2D)P (φ2D, t) = P (φ3D|t, φ2D)P (t|φ2D) (6.15)

since the 2d geometry φ2D of the junction is fixed.

We will now discuss P (φ3D|t, φ2D) for each junction type.

Figure 6.11: The prior of the junction between 3 or more boundary primitives

and the curve bifurcation or crossing encourages 3D continuity of the primitives.

1) All the surface junctions of 3 or more boundary primitives and the curve bi-

furcation or crossing have a prior that prefers the same disparity for all primitives

meeting at this junction.

P (φ3D|t, φ2D) =
1

Z1

exp(−βc

∑
πj ,πk∈φ

|dφ
j − d

φ
k |

2) (6.16)
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Figure 6.12: The prior of the junction between two boundary or curve primitives

depends on the angle θ between the primitives.

where dj = (dφ
j , d

φ
j ) is the disparity of the primitive πj, d

φ
j being the disparity at

the junction φ endpoint.

2) The prior of junctions of two boundary or two curve primitives depends

on the angle θ between the primitives at the junction. First, define the curve

continuity measure

s(πj, πk) = |dφ
j − 2dφ

j + dφ
k |

2 + |dφ
j − 2dφ

k + dφ
k |

2 (6.17)

Then the prior is

P (φ3D|t, φ2D) =
1

Z2


exp(−βc|dφ

j − d
φ
k |2) if |θ − π| > π/6

exp[−βc|dφ
j − d

φ
k |2 − βss(πj, πk)] else

(6.18)

as shown in Figure 6.12.

3) For the curve overlapping junction involving four curve primitives, the prior

is defined in terms of the continuity of each pair of opposite curves.

P (φ3D|t, φ2D) =
1

Z3

exp[−βc(|dφ
i − d

φ
k |

2 + |dφ
j − d

φ
l |

2)− βs(s(πi, πk) + s(πj, πl))]

(6.19)
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Figure 6.13: The prior of the curve overlapping junction encourages continuity

of each pair of opposite curves.

as shown in Figure 6.13.

4) For the Y-junctions of 3 boundary primitives and for the curve beginning,

the prior encourages all three primitives to be adjacent, and the primitives πi, πj

(refer to Figure 6.10) to have a good continuation as in case 2).

P (φ3D|t, φ2D) =
1

Z4

exp[−βc

∑
πu,πv∈φ

|dφ
v − dφ

u|2 − βss(πi, πj)] (6.20)

5) For the T-junctions, the prior encourages continuity of the occluding edge.

P (φ3D|t, φ2D) =
1

Z5

exp[−βc|dφ
i − d

φ
j |2 − βss(πi, πj)] (6.21)

Since the disparity space of each primitive is discretized, the normalizing

constant for each junction can be computed effectively.

The prior P (t|φ2D) can be learned from hand labeled data, independently for

each degree (number of primitives) k of the junction.

Based on the matching cost, a saliency map

ψπi
(d, [f ]) = exp(−c(ri, [li], ti, d, [f ])/10) (6.22)
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towards all possible values of d, f is computed for each primitive πi ∈ V1. This

information will be used to find the disparities di of the sketch primitives.

Figure 6.14: The frequency of the feature ξ as fitted from hand labeled data.

We also compute a saliency map towards the three main types of boundary

primitives, namely surface (types 1, 2), occluding left (types 3, 4), occluding right

(types 5, 6), based on the feature

ξ(πi) =
mind c(li, d)

|li|
− mind[c(li, d) + c(ri, d)]

|li|+ |ri|
(6.23)

which measures how well both wings of the primitive fit the same disparity, as

compared to the left wing alone.

From hand labeled data, we obtained histograms H12, H34, H56 of the values of

ξ for each of the three main types of boundary primitives. We fit these histograms

with gaussians to even out the small amount of training data and eliminate the

need for histogram bins. The fitted gaussians and their relative importance are

displayed in Figure 6.14. From here we obtain a likelihood Lπ(t) towards the
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three main types of boundary primitives.

Lπ(t) =


60e−ξ2/2. if t = 1, 2

4.4e−(ξ+1.18)2/1.42 + 3.67e−(ξ+8.21)2/6 if t = 3, 4

9.18e−(ξ−0.58)2/0.87 + 3.06e−(ξ−7.36)2/7.5 if t = 5, 6

(6.24)

Using the intensity-driven likelihood for the boundary primitives, we construct

a likelihood, driven simultaneously by the image intensity and the geometry (rel-

ative position of primitives), for each junction φ = {π1, ..., πk}:

Lφ(t) = P (φ)Lπ1(t1)...Lπk
(tk) (6.25)

6.3.3 The free-form layer

The primitives π ∈ V1 discussed in the previous section are elongated primitives

corresponding to line segments, so they can be considered of dimension 1. Other

sketch primitives that are involved in the free form layer are the zero dimensional

primitives corresponding to feature points with reliable disparity information, i.e.

point primitives. These primitives are a subset of the rectangular atomic regions,

and together with the one dimensional boundary primitives are the control points

of the thin plate spline. The curve primitives are not involved in the MRF

computation.

Let R be the set of all rectangular atomic regions.

For each region r ∈ R, we compute a saliency map

ρr(d) ∝ exp(−
∑
v∈r

|Il(v)− Ir(v − d))|/10) (6.26)

to all possible disparities d ∈ [dmin, dmax]

Then the square regions

R = {ri = (di, oi, pi, µi, σ
2
i ), i = 1, .., nr} (6.27)
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have the following parameters:

1. the disparity di = d(ri) of the center of the region.

2. a label oi specifying whether this region is occluded (value 0) or not (value

1).

3. a label pi = p(ri) ∈ {0, 1} representing whether the region is a point prim-

itive (i.e. control point for the thin plate spline) or not.

4. the mean µi and variance σ2
i of the saliency map ρri

.

All regions (edge regions, curve regions and square regions) will have their

occlusion label deterministically assigned based on the disparities of the boundary

and curve primitives. For example, for an occlusion primitive πi of type 4, the

left region li and other regions horizontally to the left of the edge at horizontal

distance less than the disparity difference between the right and left wings of πi

will be labeled as occluded.

The matching cost for each region ri ∈ R is

c(ri) =


α if oi = 0∑

v∈ri
|Il(v)− Ir(v − di))| if oi = 1

(6.28)

The set of point primitives is denoted by

V0 = {ri ∈ R, si = 1}. (6.29)

In Figure 6.15 we present the labeled graph, i.e. primitive types (middle), and

the point and boundary primitives that act as control points for the Λnsk part

(right). The depth and disparity maps obtained this way are shown in Figure

6.22. Observe that the horizontal edges are not control points.
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Figure 6.15: Left image of a stereo sequence, the graph labeling and the control

points (point and boundary primitives) of the thin plate spline.

The dense disparity map D is obtained from V1 and R by interpolation. By

using the boundary primitives to model the places of discontinuity, the obtained

disparity map has crisp discontinuities at the object boundaries and is smooth

everywhere else, as shown in Figure 6.22.

6.3.4 Bayesian formulation

We formulate our model using the Bayes rule:

P (V1, R|Il, Ir) = P (Il|Ir, V1, R)P (R− V0|V0, V1)P (V0, V1) (6.30)

The likelihood P (Il|Ir, V1, R) is expressed in terms of the likelihood Lπi
(ti) and

matching cost c(rj) of the sketch primitives.

P (Il|Ir, V1, R) ∝
ne∏
i=1

Lπi
(ti) exp[−

∑
rj∈R

c(rj)] (6.31)

The prior

P (R− V0|V0, V1) ∝ exp[−Ec(R)− βbEb(R, V1)] (6.32)

is defined in terms of the energy of the soft control points:

Ec(R) =
∑
rj∈V0

(dj − µj)/2σ
2
j (6.33)
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and the thin plate bending energy:

Eb(R, V1) =
∑

(x,y)∈G

[d2
xx(x, y) + 2dxy(x, y)2 + d2

yy(x, y)] (6.34)

which is computed on a 6× 6 grid G containing the centers of all the square

regions and neighboring grid points on the boundary primitives. For example, if

the point (x, y) ∈ G is the center of rj ∈ R and rN , rNW , rW , rSW , rS, rSE, rE, rNE

are the 8 neighbors of rj, then

dxx(x, y) = dW − 2dj + dE

dyy(x, y) = dN − 2dj + dS

dxy(x, y) = (dNE + dSW − dNW − dSE)/4

Figure 6.16: The region not covered by boundary primitives has a thin plate

spline prior, computed on a rectangular grid that intersects the wings (atomic

regions) of the primitives.

Similar terms in the bending energy Eb(R, V1) can be written for cases where

one or many of the neighbors are boundary primitives. However, there are no

terms involving the left and right atomic regions li, ri ∈ πi belonging to the same

edge primitive πi.
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The prior P (V0, V1) = P (V0)P (V1) assumes a uniform prior on V0 while P (V1)

is defined in terms of the junction priors P (φi) defined in section 6.3.2.

P (V1) =
∏
φi∈J

P (φi) (6.35)

6.3.5 The inference algorithm

In our problem formulation, there are two types of variables, discrete and con-

tinuous. The discrete variables are

∆ = V d
1 ∪Rd (6.36)

consisting of V d
1 = {(t(π), ol(π), or(π), p(π)),∀π ∈ V1} andRd = {(s(r), o(r), p(r)),∀ r ∈

R}. All other variables are continuous variables, namely V c
1 = V1 \ V d

1 and

Rc = R−Rd, and can be divided into the boundary conditions

Γ = V c
0 ∪ {d(π),∀π ∈ V1, p(π) = 1} (6.37)

and the fill-in variables

Ψ = {([w(π)], [f(π)]),∀π ∈ V1}∪

{d(π),∀π ∈ V1, p(π) = 0} ∪Rc − V c
0 .

(6.38)

The posterior probability can then be written as

p(V1, R|Il, Ir) = p(∆,Γ,Ψ|Il, Ir) (6.39)

In a MAP formulation, our algorithm needs to perform the following three

tasks:

1. Reconstruct the 3D sketch to infer the parameters Γ of the primitives.
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2. Label the primitive graph to infer the discrete parameters ∆, i.e. associate

the primitives with the appropriate types. This represents the detection of

surface boundaries and of the feature points of the image.

3. Perform ”fill in” of the remaining parts of the image, using the MRF and

Γ,∆ as boundary conditions, to infer Ψ and obtain a dense disparity map

D.

The algorithm will proceed as follows. In an initialization phase, the first two

steps will be performed to compute an approximate initial solution. Then steps

2) and 3) will be performed to obtain the final result.

6.3.5.1 Initialization

Initializing the system purely based on the local depth ψπ and likelihood Lπ(t)

information existent at the primitives π ∈ V1 results in an inconsistent initial

solution which is valid only at places with reliable local depth information, as

shown in Figure 6.17.

Figure 6.17: An initialization purely based on local information is not satisfactory.

A major improvement can be achieved by using the junction prior P (φ) that

has been defined in Section 6.3.2, which provides a way to propagate depth infor-

mation quickly along the edges of the sketch, from the places where it is available.
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This is why we use an approximation of the posterior probability that only takes

into account the matching cost of the edge regions πi ∈ V1 and the junction prior.

P (V1|Il, Ir) ∝ exp[−
ne∑
i=1

c(πi)]
∏
φi∈J

P (φi) (6.40)

At this stage, the variables that highly depend on the thin plate spline prior

will be assigned some default values. Thus, the wing parameters wi,∀πi ∈ V1 will

be assigned value 0 (i.e. all wings will be horizontal), while the occlusion labels

oi will be assigned value 1 (unoccluded).

The initialization algorithm alternates the following MCMC steps:

• a single node move that changes one variable di at a time.

• a move that simultaneously shifts all di at the same junction φ by the same

value. This move is capable of adjusting the disparity of primitives at a

junction at times when changing the disparity of only one primitive will be

rejected because of the continuity prior.

• a labeling move as described in the MCMC algorithm section 6.3.5.3, which

proposes a new labeling for a set of primitives and junctions. The move

is accepted using the Metropolis-Hastings method based on the posterior

probability from Eq. (6.40).

The algorithm is run for 10|V1| steps and obtains the initialization result

shown in Figure 6.18 in about 10 seconds. The initialization algorithm is very

fast because the fill-in of the interior pixels is not performed, eliminating the

expensive MRF computation.

The 3D reconstruction of the curve primitives is performed separately in a

similar manner. The labeling move is much simpler, since the curve primitives
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Figure 6.18: By propagating the junction priors along the sketch, a much better

initialization can be quickly obtained.

basically accept two labels, surface/non-surface.

6.3.5.2 Updating the fill-in variables Ψ

Observe that in our formulation of the energy, if ∆,Γ are fixed, the conditional

− log(P (Ψ|∆,Γ)) is a quadratic function in all the variables Ψ, so it can be

minimized analytically. This implies that Ψ can be regarded as a function on

∆,Γ, i.e. Ψ = Ψ(∆,Γ). This restricts the problem to maximizing the probability

P (∆,Γ,Ψ(∆,Γ)|Il, Ir), of much smaller dimensionality.

However, minimizing − log(P (Ψ|∆,Γ)) analytically involves inverting a ma-

trix of size n × n, where n = |Ψ|. This can be computationally expensive if

all the variables of Ψ are updated at the same time, since Ψ is on the order of

|Ψ| ∼ 4000. But since inside each of the regions bounded by the control point

sketch primitives, the variables depend only on the control points inside and on

the boundary of this region, the computation can be localized to each of these

regions independently, as shown in Figure 6.19, and the computation demand

will be much lower.

Observe that the update can affect some non-control point edges, such as the
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Figure 6.19: The fill-in can be restricted to the connected components bounded

by control point boundary primitives. In a few steps, the initial 3D reconstruction

before graph labeling is obtained. Shown are the 3D reconstructions after 0,1,4,5

connected components have been updated. The horizontal edges change the

disparity at the same time with the interior, because they are not control points.

horizontal edges from Figure 6.19.

For each such connected component C, we define relative labels lC of the edges

adjacent to C that only take into account the side of the edge that belongs to C.

For example, an occluding edge type 4 and an edge of type 1 will have the same

label relative to the component containing the atomic region on the right of the

edge. Using these relative labels, we reduce the computation expense, b defining

the energy of the region

E(C, lC) =
∑

l(π)∈C

c(l(π)) +
∑

r(π)∈C

c(r(π)) +
∑

r∈C∩R

c(r) + Ec(C) + µbEb(C) (6.41)

This energy will be memorized for each pair C, lC , so that, during the MCMC
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optimization described below, if the same labeling combination occurs for this

region, the energy computation will be readily available without performing an-

other MRF reconstruction.

The full posterior probability can be recovered from the energy of the regions

and the junction prior:

P (V1, R|Il, Ir) ∝ exp[−
∑

C

E(C, lC)]
∏
φ∈J

P (φ) (6.42)

6.3.5.3 The MCMC optimization algorithm

After the initialization, the 3D sketch variables Γ = Γ0 will be fixed. The algo-

rithm will only update the primitive types ∆ and the fill-in variables Ψ.

To maximize P (∆,Γ0,Ψ(∆,Γ0)|Il, Ir) we will use a Markov chain Monte Carlo

algorithm that will sample P (∆,Γ0,Ψ(∆,Γ0)|Il, Ir), and this way obtain the most

probable solutions.

Figure 6.20: Each graph labeling move changes the types of a set of primitives in a

consistent manner. First a primitive π is chosen and its type is sampled from the

likelihood Lπ(t), then the adjacent junctions change their type conditional on the

chosen type of π, which in turn determine the types of the other primitives of the

junctions, etc. The labeling move is accepted based on the Metropolis-Hastings

method. Illustrated is the left side of the umbrella image.

At each step, the algorithm proposes, as shown in Figure 6.20, new types for
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a set of primitives N and junctions J in one move described below:

1. a random non-horizontal primitive π is chosen and N is initialized N = {π}

while J is initialized with the two junctions φ1, φ2 adjacent to π, J =

{φ1, φ2}.

2. the primitive type t(π) is sampled from the local likelihood Lπ(t).

3. conditional on the primitive type t(π), the type of each of the two junctions

φ ∈ J is sampled from Lφ(t). This determines the types of all primitives of

Nn = {π′ 6∈ N, π′ ∼ φ for some φ ∈ J}, (6.43)

where π ∼ φ means π is adjacent to φ.

4. N is updated N ← N ∪Nn.

5. The junctions adjacent all primitives π ∈ Nn are added to J as follows.

Initialize Jn = ∅. For each π ∈ Nn, we pick the adjacent junction φ 6∈ J . If

the primitive had its type changed, then Jn ← Jn∪{φ}. If the primitive and

has the same type as before this move, then Jn ← Jn∪{φ} with probability

0.5. Set J ← J ∪ Jn.

6. for each π ∈ Nn and each φ ∈ Jn, π ∼ φ, repeat steps 3-5.

After each proposal, the fill-in variables Ψ(∆,Γ) are updated for the connected

components C for which it is necessary.

The labeling move is accepted based on the full posterior probability, com-

puted using eq. (6.42).
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(a) (b) (c)

Figure 6.21: Two comparison examples using the graph cuts algorithm on

scenes containing textureless surface and curve structures. (a) left image, (b)

disparity map, (c) 3d map. Our results are shown in Fig.6.22.

6.3.6 Experimental results

The experiments are presented in Fig.6.22 where five typical images for stereo

matching are shown. The first two have textureless surfaces and the most in-

formation is from the surface boundaries. The fourth image has curves (twigs).

For these three images, it is not a surprise to see that the graph cut method

with simple MRF models on pixels produce unsatisfactory results (see Fig.6.21

for comparison).

The third and fifth images are from [33] and [47] respectively and have free-

form surfaces with or without textures. We have also shown the interactions of

the two layers in Fig.6.19 and the effects of sketch labeling in Fig. 6.17 and 6.18.
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(a) (b) (c) (d)

Figure 6.22: Results obtained using our method. (a) left image of the stereo pair,

(b) 3D sketch using the primitives, (c) 3D depth map, (d) disparity map.
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CHAPTER 7

Conclusions

In this thesis, we present a generic inference algorithm for sampling arbitrary

probabilities or energy functions on general graphs by extending the SW method

from physics and the Gibbs sampler (SWC-3). Our method extends the SW

method from the Metropolis-Hastings perspective and it is thus different from

other interpretations in the literature[11, 26]. In fact, there were some early

attempts for applying SW to image analysis[26, 7] using a partial decoupling

concept.

The speed of the SW-cut method depends on the discriminative probabilities

on the edges and vertices. Such probabilities also make a theoretical analysis of

convergence difficult. In ongoing projects, we are studying ways for bounding

the SW-cut convergence with “external field” (data) and for diagnosing exact

sampling using recent advanced techniques. We are also incorporating the SW-

Cuts into the DDMCMC framework for image parsing.
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APPENDIX A

Proof of Theorem 4

Consider a reversible jump between two states X and X′ which differ only in the

labeling of R,

XR = ` 6= `′ = X′
R, XR̄ = XR̄. (A.1)

As we have already mentioned, the acceptance probability is computed by the

Metropolis-Hastings method

α(X→ X′) = min{1, q(X
′ → X)

q(X→ X′)
· π(X′)

π(X)
}. (A.2)

We will now compute the proposal probabilities q(X→ X′) and q(X′ → X).

First we consider the canonical case when there is a unique path for moving

between states X and X′ in one step – choosing R and changing its color from `

to `′.

Then the computation of the probability q(X → X′) follows the description

of the algorithm.

Let U|X and U′|X′ be the auxiliary variables following the Bernoulli prob-

abilities in the flipping step. They lead to two sets of connected components

CP(U|X) and CP(U′|X′) respectively. We divide U into two sets for the ”on”

and ”off” edges respectively,

U = Uon ∩Uoff . (A.3)
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Uon = {µij : µij = 1}, Uoff = {µij : µij = 0}.

We are only interested in the configurations U (and thus CP’s) which yield the

connected component R. We collect all such U given X in the set,

Ψ(R|X) = {U : R ∈ CP(U|X)}. (A.4)

In order for R to be a connected component in X, all edges between R and V`\R

must be cut (turned off), otherwise R is connected to other vertices in V` and

cannot be a connected component. So, we denote the remaining ”off” edges by

−Uoff ,

Uoff = C(R, V`) ∪ −Uoff , ∀U ∈ Ψ(R|X). (A.5)

Similarly, we collect all U′ in state X′ which produce the connected component

R,

Ψ(R|X′) = {U′ : R ∈ CP(U′|X′)}. (A.6)

In order for R to be a connected component in U′|X′, the clustering step must

cut all the edges between R and V`′ . Thus we have

U′ = U′
on ∩U′

off (A.7)

with

U′
off = C(R, V`′) ∪ −U′

off , ∀U′ ∈ Ψ(R|X′). (A.8)

We are now ready to compute q(X → X′). Suppose that we choose R ∈ CP

with probability q(R|CP). Since for all configurations Ψ(R|X), the probability

to change the label of R to `′ has the same value q(XR = `′|R,X), we have

q(X→ X′) = q(R|X)q(XR = `′|R,X) (A.9)

The two factors correspond to the clustering and flipping steps, respectively.
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Then the probability q(R|X) of choosing R at state X is the sum over all

possible U ∈ Ψ(R|X) of the probability of choosing U ∈ Ψ(R|X) times the

probability of choosing R from CP(U|X),

q(R|X) =
∑

U∈Ψ(R|X)

[q(R|CP(U|X))
∏

<i,j>∈Uon

qij
∏

<i,j>∈−Uoff

(1− qij)]
∏

<i,j>∈C(R,V`)

(1− qij).

(A.10)

Similarly, the probability for choosing R ⊆ V`′ at state X′ is

q(R|X′) =
∑

U′∈Ψ(R|X′)

[q(R|CP(U′|X′))
∏

<i,j>∈U′
on

qij
∏

<i,j>∈−U′
off

(1− qij)]
∏

<i,j>∈C(R,V`′ )

(1− qij).

(A.11)

We see that these proposal probabilities are very hard to compute, because of

the exponential number of combinations U ∈ Ψ(R|X) which produce the same

connected component R. In what follows, we will show how the ratio of the

proposal probabilities can be simplified to obtain the desired equation (2.36).

We obtain
q(X′ → X)

q(X→ X′)
=
q(R|X′)

q(R|X)
· q(XR = `|R,X′)

q(XR = `′|R,X)
. (A.12)

Dividing eqn. (A.10) by eqn. (A.11), we obtain the ratio

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V`)

(1− qij)
∑

U∈Ψ(R|X)

[q(R|CP(U|X))
∏

<i,j>∈Uon

qij
∏

<i,j>∈−Uoff

(1− qij)]∏
<i,j>∈C(R,V`′ )

(1− qij)
∑

U′∈Ψ(R|X′)

[q(R|CP(U′|X′))
∏

<i,j>∈U′
on

qij
∏

<i,j>∈−U′
off

(1− qij)]

(A.13)

The sums in the numerator and denominator of the above equation are equal

because of the following

Observation 1. For any U ∈ Ψ(R|X), there exists exactly one U′ ∈ Ψ(R|X′)

such that

CP(U|X) = CP(U′|X′) (A.14)
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and

Uon = U′
on,

− Uoff =− U′
off . (A.15)

That is, U and U′ differ only in the cuts C(R, V`) and C(R, V`′).

The cancelation of the sums in equation (A.13) gives

q(R|X)

q(R|X′)
=

∏
<i,j>∈C(R,V`)

(1− qij)∏
<i,j>∈C(R,V`′ )

(1− qij)
. (A.16)

Note that the proof holds for arbitrary design of qij, arbitrary design of

q(R|CP(U|X)) on arbitrary graphs.

We will now consider the split and merge cases (see Section 2.2.2) which have

two possible paths between the states X and X′.

Figure A.1: State X has two subgraphs V1 and V2 which are merged in state X′.

There are two paths between X and X′. One is to choose R = V1 and the other

is to choose R = V2.

Without loss of generality, we can assume the states are X = (V1, V2, V3, ..., Vn)

and X′ = (V1+2, V3, V4, ..., Vn) with V1+2 = V1 ∪ V2. The proposal probability

q(X→ X′) is the sum of proposal probabilities in the two paths.

• Path 1: Choose R = V1 in X and merge it to V2 (i.e. choosing XR = 2) to

reach X′, and conversely, choose R = V1 ⊂ V1+2 in X′ and split it to a new

color V1 (i.e. choosing XR = 1) and the rest V1+2\V1 is named V2.
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• Path 2: Choose R = V2 in X and merge it to V1 (i.e. choosing XR = 1) to

reach X′, and reversely, Choose R = V2 ⊂ V1+2 in X′ and split it to a new

color V2 and the rest V1+2\V2 is named V1.

We can summarize these paths into

q(X→ X′)
q(X′ → X)

=
q(R = V1|X)q(XR = 2|R = V1,X) + q(R = V2|X)q(XR = 1|R = V2,X)

q(R = V1|X′)q(XR = 1|R = V1,X′) + q(R = V2|X′)q(XR = 2|R = V2,X′)
.

(A.17)

Then we have the following two observations:

Firstly, from eq (A.13), we know,

q(R = V1|X)

q(R = V1|X′)
=

1∏
<i,j>∈C(V1,V2)(1− qij)

=
q(R = V2|X)

q(R = V2|X′)
(A.18)

Secondly, once R is selected from X (or X′), its new label follows a label

proposal probability which depends on the partition of all other vertices V \R

which are the same for both X and X′. Note that all permutations of the labelings

are considered equivalent. Therefore we have

q(XR = 2|R = V1,X)

q(XR = 1|R = V1,X′)
=
q(XR = 1|R = V2,X)

q(XR = 2|R = V2,X′)
. (A.19)

Therefore, we can write the ratio in both paths as q(XR=`′|R,X)
q(XR=`|R,X′)

. Plug eqns. (A.18)

and (A.19) in eq. (A.17), we have the result.

The split case is the reverse of the merge case and thus both cases are proven

in the above discussion.
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