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Abstract
We are interested in comparing probability distributions defined on Riemannian manifolds. The traditional approach to

study a distribution relies on locating its mean point and finding the dispersion about that point. On a general manifold
however, even if two distributions are sufficiently concentrated and have unique means, a comparison of their covariances
is not possible due to the difference in local parametrizations. To circumvent the problem we associate a covariance field
with each distribution and compare them at common points by applying a similarity invariant function on their representing
matrices. In this way we are able to define distances between distributions. We also propose new approach for interpolating
discrete distributions and derive some criteria that assure consistent results. Finally, we illustrate with some experimental
results on the unit 2-sphere.
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1. Introduction

The problem of comparing distributions defined on non-Euclidean spaces or to be more specific, on Riemannian
manifolds, becomes increasingly important. A typical example of non-trivial manifold is the unit 2-sphere S2, which
is the domain of our experiments in this work. Consequently, our study has as main application, but not limited to,
problems from directional statistics, a branch of statistics dealing with directions and rotations in R3.

Pioneers in the field are Fisher, R.A.(1953) and von Mises. In recent years directional statistics proved to be
useful in variety of disciplines like shape analysis [10], geology and crystallography [9]. Most of the practitioners in
these fields use parametric distributions to model directional data, like von Mises-Fisher distribution on the circle
and Fisher-Bingham-Kent(FBK) distributions on the 2-sphere. For more details see Kent, J. (1982).

There are application areas however, where parametric models are insufficient. A recent example is provided
by medical imaging community. In a new technique based on MRI and called High Angular Resolution Diffusion
Imaging (HARDI), the data is represented by Orientation Distribution Functions (ODFs) which are nothing but
discrete distributions on the unit 2-sphere. These distributions by their nature are multi-modal - not concentrated
about a particular direction. They do not follow a parametric model and even if they do the eventual model would
be too complicated to be efficient. Consequently, a non-parametric approach is more natural in processing ODFs.

In analysis of HARDI data researchers first have to solve the problem of registration between different volumes
of ODFs, corresponding to the images of different subjects. For this purpose they need models and algorithms for
interpolation between ODFs. There are no many choices for interpolation procedure beyond the simplest linear
one. A recent alternative, using the square root representation of probability mass functions, was proposed by
Srivastava(2007) and implemented in [5]. No existing solution though respects the geometry of the underlying
domain.

It is the main subject of this paper to draw some new directions for searching of possible solutions - approaches
that address the non-Euclidean nature of the random variables and provide adequate solutions.

What we propose basically is a generalization of the classical concept of covariance of distribution. We allow
covariance to be defined with respect to any point of distribution domain and by doing so we try to workaround the
problem of finding the mean point, which might not exist or be ambiguous. Also, since compact manifolds like S2

do not admit global parametrizations, we pay special attention to use the correct mathematical tool for describing
the covariance. We not only point out to the well known fact that covariance can be viewed as a bi-linear operator
and thus defined as a tensor, but specify the exact variety of this tensor. It is important to make a distinction
between covariance tensor and metric tensor on manifold. A central observation in our approach is that at any point
of the domain, the product of the metric and covariance tensors is a linear operator on the respected tangent space.
We call it covariance operator. Collectively they form a field of operators. By applying appropriate functions, so
called similarity invariants, on a covariance operator field we are able to define a representation of the underlying
distribution. These distribution representations can be used for the purpose of comparison and interpolation.

Although in all our experiments we stay on the unit sphere , the theoretical framework still holds on a general
Riemannian manifold and this is one of its main advantages.

∗Florida State University, Department of Statistics, balov@stat.fsu.edu



2. Covariance fields

2.1 Random variables on manifold

Let M be a Riemannian n-manifold, q ∈ M and let Expq be the exponential map at q, Expq : Mq → M . It sends
a tangent vector at q to a point on the manifold along a geodesic through q. There is a maximal open set U(q)
in Mp containing the origin, where Expq is a diffeomorphism. Then the set U(q) = Expq(U(q)) is called maximal
normal neighborhood of q. On this normal neighborhood the exponential map is invertible and let

Logq = Exp−1
q : U(q) → Mp

be its inverse, the so called log-map. Logq is diffeomorphism on U(q). We adopt the notation −→qp = Logqp in analogy
to the Euclidean case, M = Rn, where Logqp = p− q = −→qp.

In particular, on M = Sn the log-map has a closed-form expression

−→qp =
cos−1 < p, q >

(1− < p, q >2)1/2
(p− < p, q > q), (1)

which greatly simplifies all metric related operations on the unit sphere.
The Borel sets on M generated by the open sets on M form a σ-algebra A(M) on M. Any Riemannian manifold

has a natural measure V on A(M), called volume measure. In local coordinates x it is given by dV (x) =
√
|Gx|dx,

where Gx is the matrix representation of the metric tensor, |Gx| is its determinant and dx is the Lebesgue measure
in Rn. For example, S2 parametrized with geographical coordinates (θ, φ) has a volume form V (θ, φ) = cos(θ)dθdφ.

A random variable X on M is any measurable function from a probability space (Ω,B,P) to (M,A(M),V). The
distribution function F of X is defined as F (A) = P(X−1(A)), A ∈ A(M). If F can be represented by

F (A) =
∫

A

f(p)dV (p), ∀A ∈ A(M),

for almost everywhere continuous (w.r.t. V) function f , then F is said to be absolute continuous (w.r.t. V) and f
is its density (pdf).
2.2 Intrinsic and Extrinsic mean and covariance

Let (M, ρ) be a metric space. The Fréchet mean set of a distribution F is the set of minimizer’s of Q(q) =∫
ρ2(q, p)dF (p). It was introduced by Frechet (1948). If M is a Riemannian manifold M with metric structure g,

then the intrinsic mean of F , is the Frechet mean of (M,dg), where dg is the geodesic distance. Karcher(1977)
considered the intrinsic mean on M and gave conditions for its existence and uniqueness. An alternative to intrinsic
mean is the extrinsic one, which is obtained by embedding M into a higher dimensional Euclidean space. We point to
the influential paper of Bhattacharya R. and Patrangenaru, V. (2003) where the properties of extrinsic and intrinsic
means and their relation and asymptotic properties are considered in details.

Once a mean point (intrinsic or extrinsic) is specified, the covariance can be defined as usual after fixing a
coordinate system about that point.

To compare two distributions one may first look at their intrinsic means. If they differ, the distributions differ,
otherwise one may further compare their covariances at the common mean point. This approach however suffers
from at least two drawbacks. First, if the population mean set is large, then the finite sample intrinsic mean will
have substantial variance. That will diminish the power of any test for equality of means and more importantly, will
inevitably require comparing covariances at different points. Second, the intrinsic mean, provided it exists and it is
unique, and the covariance alone do not specify completely the distribution.

Thus for solving the problem of comparing distributions, we need a more informative structure that completely
represents distributions and that is defined in coordinates free manner for seamless manipulation and analysis.
2.3 Covariance operators

Many parametric families of distributions can be defined as functions on linear operators. Consider for example
the standard normal distribution in Rn with density f(x) ∝ exp(− 1

2 ||x − µ||2), where µ ∈ Rn is its mean. Since
||x− µ||2 = tr((x− µ)(x− µ)′) and the matrix L(x) = (x− µ)(x− µ)′ defines a linear operator

L(x)(u, v) = u′L(x)v = [u′(x− µ)][(x− µ))′v], u, v ∈ Rn,

we can express the density by f(x) ∝ h(L(x)), h(T ) := exp(− 1
2 tr(T )).

Let M be a Riemannain manifold with metric G. If q ∈ M , then G(q) is a co-variant 2-tensor at Mq, while the
quantity (−→qp)(−→qp)′ is a contra-variant 2-tensor at Mq. The contraction of their tensor product, G(q)(−→qp)(−→qp)′, is a



(1,1)-tensor, or equivalently, a linear operator at Mq. For a distribution F on M, we define a linear operator at Mq

by taking the expectation of G(q)(−→qp)(−→qp)′ with respect to F .
From now on we will use the standard notation T 2(Mq) for co-variant 2-tensors on Mq, T2(Mq) for contra-variant

2-tensors on Mq and T 1
1 (Mq) for bi-linear operators on Mq.

Definition 1 Let r : R+ → R+ be a continuous function. Covariance of distribution F on M at point q ∈ M is
defined by

Σ(q) =
∫

U(q)

(−→qp)(−→qp)′r(||−→qp||)dF (p) (2)

and Σ : q 7→ Σ(q) ∈ T2(Mq) is called covariance field of F .

With r = 1 we obtain the generic covariance field associated with F and this is the default choice.
As noted above, G(q)Σ(q) is a linear operator on Mq, which we call covariance operator. Hence, GΣ is a field

of linear operators on M. With respect to a coordinate system x at q, G(q)Σ(q) is represented by a symmetric and
positive definite matrix GxΣx, where Gx and Σx are the representations of G(q) and Σ(q) respectively. In other
words, GΣ is a field of symmetric and positive definite operators on M.

If v ∈ Mq has components vx with respect to x, we define (G(q)Σ(q))v := ΣxGxvx and < v, (G(q)Σ(q))v >:=
v′xGxΣxGxvx. One can check that indeed the last quantity is invariant to coordinate change at q.

It is worth to mention that for a covariance field Σ on M, Σ−1 is also symmetric and positive definite and when
it is differentiable, Σ−1 introduce a new Riemannian metric on M. Moreover, if Σ1 and Σ2 are two covariance fields
on M, then Σ1Σ−1

2 is a field of linear operators, i.e. for any q ∈ M , Σ1(q)Σ−1
2 (q) ∈ T 1

1 (Mq).
On a complete Riemannian manifold, the problem of minimizing the trace of the default covariance field is

equivalent to the problem of finding the intrinsic mean µ of F , i.e.

µ = argminq∈M{
∫

U(q)

tr(G(q)(−→qp)(−→qp)′)dF (p) =
∫

M

d2
g(q, p)dF (p)}.

See [2] for more comprehensive introduction to covariance fields.

2.4 Similarity invariants

Let Sym+
n denote the space of symmetric and positive definite matrices. Since this is the representation domain

of covariance operators it is of obvious importance for us. Sym+
n attracted the attention of many researchers in

the recent years due to its manifold nature that accepts convenient metric structures and consequently, the variety
of application opportunities it provides. For the purposes of Diffusion Tensor Imaging, Fletcher, P. T., Joshi, S.,
(2007) and Pennec. X., Fillard, P., Ayache, N (2006) proposed the use of affine invariant distance, while Arsigny,V.,
Fillard, P., Pennec X., and Ayache, N. (2007) proposed the so called log-Euclidean distance. A good survey of the
available distances and estimators in Sym+

n along with new ones is provided by Dryden, I., etc. (2008). We aim
a more general treatment of Sym+

n and instead of dealing with specific matrix functions we define a whole class of
invariants. What particular member of this class should be used is an application specific choice.

Two matrices A,B ∈ Sym+
n are said to be similar if

A = X−1BX, for X ∈ GLn.

Matrix representations of linear operators are similar and thus, this fact holds for the representations of GΣ and
Σ1Σ−1

2 . Next we define an important class of functions that respect similarity.
Definition 2 A similarity invariant function on Sym+

n is any continuous bi-variate h that satisfies

(i) h(AXA′, AY A′) = h(X, Y ), ∀X,Y ∈ Sym+
n and A ∈ GLn.

It is a non-negative with a unique root if

(ii) h(X, Y ) ≥ 0, ∀X,Y ∈ Sym+
n and h(X, Y ) = 0 ⇐⇒ X = Y .

Moreover, h is called similarity invariant distance, if in addition to (i) and (ii) also satisfies

(iii) h(X, Y ) + h(Y, Z) ≥ h(X, Z), ∀X, Y, Z ∈ Sym+
n .

Below we list several examples of similarity invariant function we use in our experiments.

1. For a fixed Z ∈ Sym+
n , the similarity invariant

htrdif (X, Y ; Z) = |(tr(Z−1X − Z−1Y )|,
satisfies (iii) but not (ii). Default choice will be Z = G−1, the inverse of the metric tensor representation.



2. The second one is sometimes referred as affine-invariant distance in Sym+
2 , see for example [11], [4], [7] and

[12], and it is defined by
htrln2(X, Y ) = {tr(ln2(XY −1))}1/2, X, Y ∈ Sym+

2 .

Actually, htrln2 is not a unique choice for a distance in Sym+
2 .

3. Log-likelihood function gives us another choice for h,

hlik(X, Y ) = tr(XY −1)− ln|XY −1| − n.

It satisfies (i) and (ii) but it fails to satisfy the triangular inequality.

The concept of covariance fields can be used for measuring the difference between distributions on M. Let f and
g be two densities on M and Σ[f ] and Σ[g] be their respected covariance fields.

For a non-negative h ∈ SIM(n) we define

dh(f, g) :=
∫

M

h(Σ[f ](p),Σ[g](p))dV (p). (3)

When M is a compact, the above integral is well defined and finite. Moreover, if h(X, Y ) is a distance function on
Sym+

n , then dh will be a distance in the space of densities on M.
Equation (3) gives a very general but impractical way to compare distributions due to the fact that the integration

domain is the whole manifold. For application purposes however, one may restrict to a smaller domain or perform
the comparison on discrete set of points which are of particular interest.

3. Interpolation of discrete distributions on S2

Here we assume that distributions are defined on a common domain - a fixed set of points on the sphere. The
approach we propose is first, to generate an interpolated field based on the covariance fields of the initial distributions
and second, to find a probability mass function which covariance field is close to the interpolated one. Closeness is
measured using a suitable similarity invariant function. Covariance fields are also considered discrete ones - they
are defined on a finite set of observation points. With a fixed coordinate system at each observation point, not
necessarily a global one, the covariance field is represented by a set of matrices. As always, we are going to use the
tensor notation to guarantee a coordinate free approach.

Let {pi}k
i=1 and {qi}k

i=1 be two sets of k points on S2. The first set is the distribution domain. The second one is
the observation set. Hereafter, a discrete mass function (pmf) is any k-vector f , such that f = {fi = f(pi) ≥ 0}k

i=1

and
∑k

i=1 fi = 1. We write f ∈ P+
k , where P+

k denotes the compact k-simplex.
The number of observation points may be in fact less than k, the size of the pmfs. However, with a smaller

observation set one may lose the uniqueness and the continuity of an estimation. Particular geometric configurations
also lead to the same result and one has to check carefully the consistency conditions corresponding to the problem.

The covariance field of f ∈ P+
k at qj is defined as

Σ[f ]j := Σ[f ](qj) =
k∑

i=1

(−−→qjpi)(−−→qjpi)′r(||−−→qjpi||)f(pi),

where −−→qjpi is given by (1). We use either r = 1 or r(t) = (1− π
2t )

2. The second choice is known to be optimal on S2

in the class of functions ra(t) = (1− a
t )2 because it minimizes the maximum of tr(GΣ(q)) (see Lemma 3 in [2]).

Let fs,s=1,...,m, be a collection of pmfs and {Cs
j = Σ[fs]j}k

j=1, s = 1, ..., m, be their covariances. With a
non-negative similarity invariant function h, we measure the difference between f and fs

dh(f, fs) :=
k∑

j=1

h(Σ[f ]j , Cs
j ), s = 1, ..., m. (4)

Let α ∈ P+
m , i.e. α = {αs}m

s=1, such that αs ≥ 0 and
∑

s αs = 1. Then we define the functional

H(f ; α) :=
m∑

s=1

αsdh(f, fs). (5)

Finally, we formulate the following optimization problem: find a probability mass function f̂ such that

f̂(α) = argminfH(f ; α). (6)



Below we show some results regarding the consistency of the estimators (6).
Lemma 1 Let h ∈ SIM(n), αl ∈ P+

M and f l ∈ P+
k . If αl → α0 and f l → f0 (in L2 norm), then

H(f l, αl) → H(f0, α0).

Proof: We have that {Σ[f ]j}k
j=1 are continuous in f (see Prop. 2 in [2]). Now observe that

||H(f l;αl)−H(f0; α0)|| ≤ ||H(f l; αl)−H(f l;α0)||+ ||H(f l; α0)−H(f0;α0)||.

Since H(f ; α0) is continuous in f , the second term above goes to zero. The first term is bounded by

||H(f l;αl)−H(f l; α0)|| ≤ ||αl − α0||max
s,j,l

h(Σ[fs]j , Cl
j).

The sets {Σ[f ]j |f ∈ P+
k } are compact in Sym+

n and h is continuous, therefore maxs,j,l h(Σ[fs]j , Cl
j) = C < ∞ and

H(f l; αl) → H(f l; α0). ¤
For a sequence αl, define f̂ l = argminfH(f ;αl). We have the following

Lemma 2 If h ∈ SIM(n) and αl → α0, then H(f̂ l, αl) → H(f̂0, α0).

Proof: Since P+
k is a compact, any sub-sequence of f̂ l has a point of convergence in P+

k . Without loss of generality
we may assume that f̂ l → g ∈ P+

k . Accounting for the minimizing properties of f̂ and applying lemma 1 we can
write

H(f̂0, αl) ≥ H(f̂ l, αl) → H(g, α0) ≥ H(f̂0, α0).

The claim follows from the fact that H(f̂0, αl) → H(f̂0, α0). ¤
Note that H(f̂ l, αl) → H(f̂0, α0) is not enough to claim that f̂ l → f̂0. However, if H(f ;α0) has a well separated

minimum at f̂0, then indeed f̂ is continuous at α0.
Another problem is how to find the global minimum f̂ of H(f ;α), provided it is unique. We know that the

minimum is easily found in case of convex function H, by gradient descent algorithm for example. Moreover, the
convexity of H(f ; α0) in P+

k guarantees the well separability of its minimum and that gives us the desired consistency.

Proposition 1 If αl → α0 and h ∈ SIM(n) is such that H(f ; α0) is convex in P+
k , then f̂ l → f̂0.

Proof: Suppose the contrary, that there exists g ∈ P+
k , and sub sequence f̂ l → g, such that ||f̂0 − g|| > 0.

Then H(g; α0) > H(f̂0; α0) by the separability of the minimum. But H(f̂ l; αl) → H(g; α0) by lemma 1 and
H(f̂ l; αl) → H(f̂0; α0) by lemma 2, which imply H(g;α0) = H(f̂0; α0). The contradiction shows that the assumption
for g is false, which proves the claim. ¤

3.1 Linear Interpolation

Here we consider the similarity invariant function h2
trdif (., .; G−1). The corresponding optimization functional is

Htrdif (f, α) =
m∑

s=1

αs

k∑

j=1

tr2(G(qj)Σ[f ]j −G(qj)Cs
j )

We use the default covariance, r = 1. Denote aij = tr(G(qj)(−−→qjpi)(−−→qjpi)′) = d2(qj , pi) and cs
j = tr(G(qj)Cs

j ), then

Htrdif (f, α) =
m∑

s=1

αs

k∑

j=1

(
∑

i

aijfi − cs
j)

2.

We have
∂Htrdif

∂fi
= 2

m∑
s=1

αs

k∑

j=1

aij(
∑

l

aljfl − cs
j).

The second partial derivatives are
∂2Htrdif

∂fi∂fl
= 2

m∑
s=1

αs

k∑

j=1

aijalj



Let w = {wi} ∈ Rk, then
∑

i,l

wiwl
∂2Htrdif

∂fi∂fl
= 2

m∑
s=1

αs

k∑

j=1

(
k∑

i=1

wiaij)2 ≥ 0.

Therefore, if the matrix A = {aij}k,k
i=1,j=1 is of full rank k, then Htrdif is convex in P+

k . Moreover, the optimal
solution of (6) satisfies

∑
i aijfi =

∑m
s=1 αsc

s
j ,

j = 1, ..., k, with a unique solution f̂ =
∑m

s=1 αsf
s, since for every s and j,

∑
i aijf

s
i = cs

j .
Thus, we showed the following

Proposition 2 If the matrix A has full rank, rank(A) = k, then the linear interpolation is the unique solution of
the optimization problem (6) for Htrdif .

3.2 Non-Linear Interpolations

Consider similarity invariant function htrln2 and corresponding optimization functional Htrln2

Htrln2(f ;α) =
m∑

s=1

αs

k∑

j=1

tr(ln2(Σ[f ]j(Cs
j )−1)).

The value of Htrln2(f) is small when G(qj)Σ[f ]j is close to covariance operators G(qj)Cs
j for all j and s. This is a

much stronger condition than the requirement for their traces to be close as in the problem of minimizing Htrdif .
Consequently the minimum of Htrln2(f), in general, will be strictly positive and the optimal pmf will be different
from the linear interpolation.

Define the operators
Zs

ij = (−−→qjpi)(−−→qjpi)′(1− π

2||−−→qjpi|| )
2(Cs

j )−1

and set Y s
j =

∑
i fiZ

s
ij . The gradient of Htrln2 is

∇Htrln2(f, α) = {fi

m∑
s=1

αs

k∑

j=1

tr(ln(Y s
j )Zs

ij)
tr(Zs

ij)
}k

i=1.

The optimization problem (6) is solved by gradient descent algorithm, which shows relatively fast convergence,
unfortunately not always to the global minimum, because Htrln2(f, α) is not convex in f ∈ P+

k .
Log-likelihood function gives us another choice for H,

Hlik(f ;α) =
m∑

s=1

αs

k∑

j=1

{tr(Σ[f ]j(Cs
j )−1)− ln|Σ[f ]j(Cs

j )−1| − n} =

m∑
s=1

αs

k∑

j=1

{tr(Y s
j )− ln|Y s

j | − n}.

The gradient of Hlik is

∇Hlik(f ;α) = {fi

m∑
s=1

αs

k∑

j=1

tr((Y s
j − In)Zs

ij)
tr(Zs

ij)
}k

i=1.

Note that hlik is neither symmetric nor satisfies the triangular inequality, but its importance is determined by
the relation to normal distributions and its analytical properties. Define the matrix

B = {bij = (d(qj , pi)− π

2
)2}k,k

i=1,j=1.

Proposition 3 If B has full rank, rank(B) = k, then for all α, Hlik(f ; α) is a convex function in P+
k .

Proof: We have
∂Hlik

∂fi
=

m∑
s=1

αs

k∑

j=1

tr(Zs
ij − Zs

ij(Y
s
j )−1).
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Figure 1: Two examples of interpolation of pmfs on S2 using htrln2. The linear and square root interpolations
are also given for reference. Top plots show Htrln2 and Hlik for the three interpolations. Bottom plots show
corresponding MSEs in the left and FAs in the right.

and
∂2Hlik

∂fi∂fl
=

m∑
s=1

αs

k∑

j=1

tr(Zs
ij(Y

s
j )−1Zs

lj(Y
s
j )−1).

We want to show that the matrix of second partial derivatives is positive definite. Let w = {wi} ∈ Rk and w 6= 0,
then

∑

i,l

wiwl
∂2Hlik

∂fi∂fl
=

m∑
s=1

αs

k∑

j=1

tr(
k∑

i=1

wiZ
s
ij(Y

s
j )−1)2 > 0,

since by the assumption for B, for at least one j,
∑k

i=1 wiZ
s
ij 6= 0. ¤

The rank of B can be calculated using the pairwise distances between q and p points and only in very special
circumstances this rank will be less than k. More formally, if a random process chooses the points, then P (rank(B) <
k) = 0.

4. Examples and conclusions

Figure 1 shows interpolation between two pmfs of size 6 (m = 2, k = 6) applying htrln2. We compare it to the
linear and the square root interpolations. It is also informative to compare the Mean-Squared Error (MSE) between
different interpolations. It is defined by MSE(f̂) =

∑2
s=1 αs

∑k
i=1(f̂i− fs

i )2. Linear and square root interpolations,
by their nature, are very close in MSE, but very different from f̂trln2(α), which manifests the non-linear origin of
the latter.

Another performance criteria relevant to the study of spherical data is the Fractional Anisotropy (FA). Let
{λi}n

i=1 be the eigenvalues of
∑k

i=1
−→pi
−→pi
′fi, where −→pi are considered vectors in Rn (thus FA is defined only for

distributions on Sn−1). Then we define FA(f) = { n
n−1

∑n
i=1(λi− λ̄)2/

∑n
i=1 λ2

i }1/2. Fractional Anisotropy measures
a distribution concentration. The higher FA, the more concentrated is the distribution about particular axes. A
uniform distribution has FA = 0. As we may expect the linear interpolation substantially reduces the FA index.
htrln2-based one however, is more conservative and manage to sustain higher FA. Preserving the concentration factor
is of importance for processing ODFs in HARDI, and the empirical evidence for the good FA performance of htrln2

is encouraging.
A second set of examples in figure 2 illustrates interpolation based on the likelihood function, hlik. As we showed,

this choice guarantees the convexity of Hlik and thus the continuity of the optimal solution f̂lik(α).
The likelihood based interpolation f̂lik exhibits behaviour similar to that of f̂trln2. Again, it is very distinct from

the linear and square-root ones and tends to preserve the anisotropy.
In conclusion, the proposed interpolation approach is general enough to be applied for distributions on any

Riemannian manifold. Moreover, by employing a great variety of instruments, the similarity invariants, our method
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Figure 2: Two examples of interpolation of pmfs on S2 using hlik. The linear and square root interpolations are
also given for reference. Top plots show Hlik for the three alternatives. Bottom plots show corresponding MSEs in
the left and FAs in the right.

allows application specific choices and provides flexibility.
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