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Historical Background

The Reverend Thomas Bayes, began the objective
Bayesian theory, by solving a particular problem

* Suppose X is Binomial
(n,p); an ‘objective’ belief
would be that each value
of X occurs equally often.

* The only prior distribution
on p consistent with this
is the uniform distribution.

* Along the way, he
codified Bayes theorem.

« Alas, he died before the
work was finally
published in 1763.

Rev. T. Baves



Historical Background

The real inventor of Objective Bayes was Simon Laplace
(also a great mathematician, astronomer and civil servant)
who wrote Théorie Analytique des Probabilité in 1812

* He established the ‘central limit
theorem’ showing that, for large
amounts of data, the posterior
distribution is asymptotically normal
(and the prior does not matter).

* He virtually always utilized a
‘constant’ prior density (reasons:
CLT; parameter choice; robustness).

* He solved very many applications,
especially in physical sciences.

* He had numerous methodological
developments, e.g., a version of the
Fisher exact test.

» Laterin his life he invented
frequentist statistics.




Historical Background

What's in a name, part |

* |t was called probability
theory until 1838.

+ From 1838-1950, it
was called inverse
probability, apparently
so named by Augustus
de Morgan. :

+ From 1950 on it was
called Bayesian :
analysis (as well as the |
other names); for why
see Fienberg (2006).

Augustus pE MorGaN



Brief History of Bayesian Statistics

1764 -1838: called “probability theory”

J
1838 - 1945: called “inverse probability” (named by Augustus de

Morgan)

1
1945 - : called “Bayesian analysis” (Refer to Steve Fienberg, 2006)



Brief History of Bayesian Statistics

1955 - : Emergence of Bayesian analysis, and development of
Bayesian testing and model selection. |
Harold Jeffreys: fixed the logical flaw in inverse probability
(objective Bayesian analysis)
+
Bruno de Finetti and others: developed the logically sound
subjective Bayes school.



Motivating example

> Assess whether a selected population for has a higher growth
rate than a control population.

» Classical statistics: the hypothesis to be tested is that there is
no difference between the two treatments

» Before making the experiment, the error of rejecting this
hypothesis when it is actually true is fixed at a level of 5%)

» Repeating the experiment an infinite number of times
difference between the averages of these samples ( x; — x2)

» true value of the difference between selected and control
populations (m; — my)



If our sample lies in the shadow area,
» There is no difference between treatments, our sample is a
rare one
» The treatments are different, and repeating an infinite number
of times the experiment, ( x; — X2 ) will not be distributed
around zero but around an unknown value different from zero.




Bases of Bayesian inference

» Natural to find the most probable value of a parameter based
on our data rather than to find which value of this parameter,
if it would be the true value, would produce our data with a
highest probability.

» To make probability statements based on our data we need
some prior information and it is not clear how to introduce
this prior information in our analysis or how to express lack of
information using probability statements.

» Apply Bayes Theorem!



Bayes' Theorem

> A, B are 2 events

P(A| B) = P(BI‘D(A%P(A)

> Interested in assessing effect of a drug on growth rate of a
rabbit population

» Selected group of rabbits and a control group in which growth
rate has been measured.

» S : Effect of the drug the selected group, C: Effect of the
control group, Interested in assessing (S — C).

» Want to find the probabilities of all possible values of (S — C)
according to the information provided by our data.

» This can be expressed as P(S — C | y)



Components of a Bayesian machinery

» The posterior distribution

Py | S—C)P(S—-C)

» P(y | S — C): distribution of the data for given value of the
unknown, often known or assumed to be known from
reasonable hypotheses.

» P(S — C) : Prior probability of the difference between selected
and control group independent of data.

» P(y) : the probability of the sample.



Summarizing Bayesian inference: The general set-up

> General set up: y; ~ f(y | 6),6 ~ () &
» Obtain posterior distribution M(6 | y1,...,y,) as

I, 10
NO |y, yn) = Jo Ty F(yvi | 0)N(0)




Galton's 1877 machine

1877 Algorithm: Normal Prior-Posterior

Prior

Likelihood
(X=0)

Posterior
discards:

(X=-1)

(X=2)




Bayes estimates - measures of discrepancy

» Measure of Discrepancy - R = Eg, y, L(é(yl, .oy ¥n),0)
1. Posterior mean: minimizes R with squared error L
2. Posterior median: minimizes R with L as absolute deviation
3. Posterior mode minimizes R with L as the 0 — 1 loss.



Loss functions

» Mean: 2-fold inconvenience: penalizes high errors, this risk
function is not invariant to transformations

» Mode: signifies the most probable value, easier to calculate in
the pre-MCMC era - may not be representative

» Median: true value has a 50% of probability of being higher or
lower than the median. Attractive loss - invariant to
one-to-one transformations




Bayes estimates

P(S-Cly)

0 MEAN MEDIAN MODE



Precision of estimation - credible intervals

» Confidence interval: How often the interval contains the
parameter if the samples are generated according to the truth

» Bayesian credible intervals: Given the data, want to construct
interval that encloses 95% of the posterior probability of the
parameter

» P(0 € [L(y),U(y)] | y) =0.95

» Can find the shortest interval with a 95% credible interval
(called the Highest posterior density interval at 95%).



Highest posterior density credible interval

b lascyy)

Shortest interval with P=0.93 Symmetric interval with P=0.95



Example 1: Binomial-Beta model

» X ~ Bin(n, p), p ~ Beta(a, b)
» p| X ~Beta(a+ X,n— X + b)



How to choose a and b, Vague / No prior information

» Toss a coin n times - want to estimate the probability of head

> Three states of beliefs were tested
> Prior 3 called objective or non-informative by Bayesian

statisticians

T /% Prior2

Prior 1

Prior 3

heritability



Posterior mean for the Beta-Binomial problem

» Posterior mean:

a+ X

a+b+n
X n a a+b

natpB+n atbatbtn

E(p| X) =




Posterior mean for the Normal-Normal model

> Y1,y Yo~ N(p, 1), ~ N(uo,1)
nX+ 1
> :u| Yi,.00y Yo~ N( n+{107n+1)
H f _ nX+4uo
> Posterior mean for p1 = = -=.
. _ (precision of MLE)
> Posterior mean = MLE (precision of MLE + prior precision) +
ior mean (prior precision)
prior mea (precision of MLE + prior precision)
» Conjugate prior: Posterior distribution has the same family as

the prior distribution



Bayesian testing: Some Anomalies

» Psychokinesis Example

» Does a subject possess Psychokinesis?

» Schmidt, Jahn and Radin (1987) used electronic and
quantum-mechanical random event generators with visual
feedback; the subject with alleged psychokinetic ability tries to
“influence” the generator.



Some Anomalies: Psychokinesis Example

Red light
/ v i
Quantum el ".v y
Gate

Stream of particles Quantum mechanics

b i e g e . implies the particles are
. 50/50 to go to each light

) 3

Green light

Tries to make
the particles to
go to red light




Data and model

» Each “particle” is a Bernoulli trial (red = 1, green = 0), 6 =
probability of “1”

» n = 104,490,000 trials

» X = # successes

» X ~ Binomial(n,0), x = 52,263,470 is the actual
observation.

» To test Hp : @ = 1/2 (subject has no influence) versus
Hy : 0 # 1/2 (subject has influence)

> P-value = Py_y»(|X — n/2| > [x — n/2|) ~ 0.0003.

» Is there strong evidence against Hp (i.e., strong evidence that
the subject influences the particles) 7



Bayesian Analysis: (Jefferys, 1990)

» Prior distribution for hypothesis: P(H;) = prior probability
that H; is true, i =0, 1;

» On Hy : 0 # 1/2, let w(0) be the prior density for 6.

» Subjective Bayes: choose the P(H;) and () based on
personal beliefs.

» Objective (or default) Bayes: choose P(Hp) = P(H;) = 0.5,
m(@)=1on0< 6 <1,



Bayesian Analysis: (Jefferys, 1990)

Posterior probability of hypotheses:

P(Ho | x) = probability that Hy true, given data, x
f(x |0 =1/2)P(Ho)
f(x | 0 =1/2)P(Ho) + Pr(Hy) [ f(x | 8)x(60)d6’

For the objective prior,
P(Ho | x = 52,263, 470) ~ 0.92
(recall, p-value ~ .0003) Posterior density on Hy : 0 # 1/2 is
(0| x, H1) ox w(0)f(x | 0) x 1 x 6%(1 — )",

which is Be(6 | 52263470, 52226530).



Bayes Factor: An objective alternative to choosing
P(Ho) = P(Hy) = 1 is to report the

likelihood of observed data under Hy
‘average' likelihood of observed data under H;

Bayes factor =

_ fix]o= 1/ 2)
fo x | 0)m(0)do
P(Ho | x) P(Ho)
—_— = x BF
P(Hi[x) — P(H) =7
Posterior odds = Prior odds x Bayes factor(BFo1)

so BFp; is often thought of as “the odds of Hy to H; provided by
the data”.



Clash between p-values and Bayes answers

» In the example, p-value is .0003, but

» The objective posterior probability of the null is 0.92; (Bayes
factor gives 12 to 1 odds in favor of the null).

» Was the prior on 6 inappropriate? (Few would say it was
unfair to give Hp prior probability of 1/2.)
» But it was a neutral, objective prior.

» Any prior produces Bayes factors orders of magnitude larger
than the p-value.



other Example: A New(?) path for HIV vaccine

T
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Hypotheses and Data

» Alvac had shown no effect, Aidsvax had shown no effect

» Question: Would Alvac as a primer and Aidsvax as a booster
work?
» The Study: Conducted in Thailand with 16,395 individuals
from the general (not high-risk) population:
» 71 HIV cases reported in the 8198 individuals receiving
placebos
» 51 HIV cases reported in the 8197 individuals receiving the
treatment



The test that was likely performed:

> Let p1 and p denote the probability of HIV in the placebo
and treatment populations, respectively.

» Test Hy : p1 = p2 versus Hy : p; > po (vaccines were not live,
so p; < pp can probably be ignored)

» Normal approximation okay, so

L p1— p2 _ 0.00866 — 0.00622

= = 1.82.
Opr—po 0.00134

is approximately N(6, 1), where 6 = (p1 — p2)/(0.00134).
» We thus test Hy : # = 0 versus Hy : 6 > 0, based on z.
» Observed z = 1.82, so the (one-sided) p-value is 0.034.



Bayesian analysis

» Prior distribution: P(H;) = prior probability that H; is true,
i=0,1.

» On H; : 0 >0, let w(0) be the prior density for 6.

» Objective (or default) Bayes: choose P(Hp) = P(H1) = 1/2

» 7(6) = Uniform(0, 6.46), which arises from assigning: uniform
for po on 0 < p < p1, and plug in for p;.

» For the objective prior, P(Hy | z = 1.82) ~ 0.47, whereas
one-sided p-value is 0.034.



