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Brief History of Bayesian Statistics

1764 -1838: called “probability theory”
↓

1838 - 1945: called “inverse probability” (named by Augustus de
Morgan)
↓

1945 - : called “Bayesian analysis” (Refer to Steve Fienberg, 2006)



Brief History of Bayesian Statistics

1955 - : Emergence of Bayesian analysis, and development of
Bayesian testing and model selection. ↓

Harold Jeffreys: fixed the logical flaw in inverse probability
(objective Bayesian analysis)

↓
Bruno de Finetti and others: developed the logically sound

subjective Bayes school.



Motivating example

I Assess whether a selected population for has a higher growth
rate than a control population.

I Classical statistics: the hypothesis to be tested is that there is
no difference between the two treatments

I Before making the experiment, the error of rejecting this
hypothesis when it is actually true is fixed at a level of 5%)

I Repeating the experiment an infinite number of times
difference between the averages of these samples ( x̄1 − x̄2)

I true value of the difference between selected and control
populations (m1 −m2)



Motivation

If our sample lies in the shadow area,
I There is no difference between treatments, our sample is a

rare one
I The treatments are different, and repeating an infinite number

of times the experiment, ( x̄1 − x̄2 ) will not be distributed
around zero but around an unknown value different from zero.



Bases of Bayesian inference

I Natural to find the most probable value of a parameter based
on our data rather than to find which value of this parameter,
if it would be the true value, would produce our data with a
highest probability.

I To make probability statements based on our data we need
some prior information and it is not clear how to introduce
this prior information in our analysis or how to express lack of
information using probability statements.

I Apply Bayes Theorem!



Bayes’ Theorem

I A,B are 2 events

P(A | B) =
P(B | A)P(A)

P(B)

I Interested in assessing effect of a drug on growth rate of a
rabbit population

I Selected group of rabbits and a control group in which growth
rate has been measured.

I S : Effect of the drug the selected group, C : Effect of the
control group, Interested in assessing (S − C ).

I Want to find the probabilities of all possible values of (S − C )
according to the information provided by our data.

I This can be expressed as P(S − C | y)



Components of a Bayesian machinery

I The posterior distribution

P(S − C | y) =
P(y | S − C )P(S − C )

P(y)

I P(y | S − C ) : distribution of the data for given value of the
unknown, often known or assumed to be known from
reasonable hypotheses.

I P(S − C ) : Prior probability of the difference between selected
and control group independent of data.

I P(y) : the probability of the sample.



Summarizing Bayesian inference: The general set-up

I General set up: yi ∼ f (y | θ), θ ∼ Π(θ) &

I Obtain posterior distribution Π(θ | y1, . . . , yn) as

Π(θ | y1, . . . , yn) =

∏n
i=1 f (yi | θ)Π(θ)∫

θ

∏n
i=1 f (yi | θ)Π(θ)



Galton’s 1877 machine



Bayes estimates - measures of discrepancy

I Measure of Discrepancy - R = Eθ,y1,...,ynL(θ̂(y1, . . . , yn), θ)

1. Posterior mean: minimizes R with squared error L
2. Posterior median: minimizes R with L as absolute deviation
3. Posterior mode minimizes R with L as the 0− 1 loss.



Loss functions

I Mean: 2-fold inconvenience: penalizes high errors, this risk
function is not invariant to transformations

I Mode: signifies the most probable value, easier to calculate in
the pre-MCMC era - may not be representative

I Median: true value has a 50% of probability of being higher or
lower than the median. Attractive loss - invariant to
one-to-one transformations



Bayes estimates



Precision of estimation - credible intervals

I Confidence interval: How often the interval contains the
parameter if the samples are generated according to the truth

I Bayesian credible intervals: Given the data, want to construct
interval that encloses 95% of the posterior probability of the
parameter

I P(θ ∈ [L(y),U(y)] | y) = 0.95

I Can find the shortest interval with a 95% credible interval
(called the Highest posterior density interval at 95%).



Highest posterior density credible interval



Example 1: Binomial-Beta model

I X ∼ Bin(n, p), p ∼ Beta(a, b)

I p | X ∼ Beta(a + X , n − X + b)



How to choose a and b, Vague / No prior information

I Toss a coin n times - want to estimate the probability of head
I Three states of beliefs were tested
I Prior 3 called objective or non-informative by Bayesian

statisticians



Posterior mean for the Beta-Binomial problem

I Posterior mean:

E (p | X ) =
a + X

a + b + n

=
X

n

n

α + β + n
+

a

a + b

a + b

a + b + n



Posterior mean for the Normal-Normal model

I Y1, . . . ,Yn ∼ N(µ, 1), µ ∼ N(µ0, 1)

I µ | Y1, . . . ,Yn ∼ N
(nX̄+µ0

n+1 , 1
n+1

)
I Posterior mean for µ = nX̄+µ0

n+1 .

I Posterior mean = MLE ∗ (precision of MLE)
(precision of MLE + prior precision) +

prior mean ∗ (prior precision)
(precision of MLE + prior precision)

I Conjugate prior: Posterior distribution has the same family as
the prior distribution



Bayesian testing: Some Anomalies

I Psychokinesis Example

I Does a subject possess Psychokinesis?

I Schmidt, Jahn and Radin (1987) used electronic and
quantum-mechanical random event generators with visual
feedback; the subject with alleged psychokinetic ability tries to
“influence” the generator.



Some Anomalies: Psychokinesis Example



Data and model

I Each “particle” is a Bernoulli trial (red = 1, green = 0), θ =
probability of “1”

I n = 104, 490, 000 trials

I X = # successes

I X ∼ Binomial(n, θ), x = 52, 263, 470 is the actual
observation.

I To test H0 : θ = 1/2 (subject has no influence) versus
H1 : θ 6= 1/2 (subject has influence)

I P-value = Pθ=1/2(|X − n/2| > |x − n/2|) ≈ 0.0003.

I Is there strong evidence against H0 (i.e., strong evidence that
the subject influences the particles) ?



Bayesian Analysis: (Jefferys, 1990)

I Prior distribution for hypothesis: P(Hi ) = prior probability
that Hi is true, i = 0, 1;

I On H1 : θ 6= 1/2, let π(θ) be the prior density for θ.

I Subjective Bayes: choose the P(Hi ) and π(θ) based on
personal beliefs.

I Objective (or default) Bayes: choose P(H0) = P(H1) = 0.5,
π(θ) = 1 on 0 < θ < 1.



Bayesian Analysis: (Jefferys, 1990)

Posterior probability of hypotheses:

P(H0 | x) = probability thatH0 true, given data, x

=
f (x | θ = 1/2)P(H0)

f (x | θ = 1/2)P(H0) + Pr(H1)
∫
f (x | θ)π(θ)dθ

.

For the objective prior,

P(H0 | x = 52, 263, 470) ≈ 0.92

(recall, p-value ≈ .0003) Posterior density on H1 : θ 6= 1/2 is

π(θ | x ,H1) ∝ π(θ)f (x | θ) ∝ 1× θx(1− θ)n−x ,

which is Be(θ | 52263470, 52226530).



Bayes factor

Bayes Factor: An objective alternative to choosing
P(H0) = P(H1) = 1 is to report the

Bayes factor =
likelihood of observed data underH0

‘average’ likelihood of observed data underH1

=
f (x | θ = 1/2)∫ 1

0 f (x | θ)π(θ)dθ
≈ 12.

P(H0 | x)

P(H1 | x)
=

P(H0)

P(H1)
× BF01

Posterior odds = Prior odds× Bayes factor(BF01)

so BF01 is often thought of as “the odds of H0 to H1 provided by
the data”.



Clash between p-values and Bayes answers

I In the example, p-value is .0003, but

I The objective posterior probability of the null is 0.92; (Bayes
factor gives 12 to 1 odds in favor of the null).

I Was the prior on θ inappropriate? (Few would say it was
unfair to give H0 prior probability of 1/2.)

I But it was a neutral, objective prior.

I Any prior produces Bayes factors orders of magnitude larger
than the p-value.



Another Example: A New(?) path for HIV vaccine



Hypotheses and Data

I Alvac had shown no effect, Aidsvax had shown no effect

I Question: Would Alvac as a primer and Aidsvax as a booster
work?

I The Study: Conducted in Thailand with 16, 395 individuals
from the general (not high-risk) population:

I 71 HIV cases reported in the 8198 individuals receiving
placebos

I 51 HIV cases reported in the 8197 individuals receiving the
treatment



The test that was likely performed:

I Let p1 and p2 denote the probability of HIV in the placebo
and treatment populations, respectively.

I Test H0 : p1 = p2 versus H1 : p1 > p2 (vaccines were not live,
so p1 < p2 can probably be ignored)

I Normal approximation okay, so

z =
p̂1 − p̂2

σp̂1−p̂2

=
0.00866− 0.00622

0.00134
= 1.82.

is approximately N(θ, 1), where θ = (p1 − p2)/(0.00134).

I We thus test H0 : θ = 0 versus H1 : θ > 0, based on z .

I Observed z = 1.82, so the (one-sided) p-value is 0.034.



Bayesian analysis

I Prior distribution: P(Hi ) = prior probability that Hi is true,
i = 0, 1.

I On H1 : θ > 0, let π(θ) be the prior density for θ.

I Objective (or default) Bayes: choose P(H0) = P(H1) = 1/2

I π(θ) = Uniform(0, 6.46), which arises from assigning: uniform
for p2 on 0 < p2 < p1, and plug in for p1.

I For the objective prior, P(H0 | z = 1.82) ≈ 0.47, whereas
one-sided p-value is 0.034.


