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Prediction using noisy observations

» It is typical for more realistic modelling situations that we do
not have access to function values themselves, but only noisy
versions there of y; = f(x;) +¢;,i =1,...,n.

» Assuming additive independent identically distributed
Gaussian noise with variance o2 , the prior on the noisy
observations becomes

cov(yp: Ya) = Clxp. xg) + 0% Ipmq = couly) = C(X, X) + 01,

» The joint distribution of the observed target values and the
function values at the test locations under the prior as
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Prediction using noisy observations

» The predictive distribution is
f* ‘ X*7X7y ~ N(?*v COV(f*))-

where f, = E[f. | X,y, X.] = C(X., X)[C(X, X) + %] Ly,
and
cov(f.) = C(Xi, Xi) — C(Xs, X)[C(X, X) + 0?]LC(X, X,).
» Note first that the mean prediction is a linear combination of
observations y; this is sometimes referred to as a linear
predictor.
> Another way to look at this equation is to see it as a linear
combination of n kernel functions, each one centered on a
training point, by writing correspondence with weight-space
view compact notation predictive distribution linear predictor
representer theorem

f(x) = Za,-C(x,-,x*), a=(C(X,X)+ %) ty.
i=1



Gaussian process predictions using squared exponential cov

kernel

Figure: Prediction and predictive intervals

A sample from the prior for each covariance function:
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Role of hyperparameters

» Typically the covariance functions that we use will have some
free parameters.

» For example, the squared-exponential covariance function in
one dimension has the following form

C(Xp, xq) = 02 exp{—1/(21%)(xp — x4)*}.



Gaussian process predictions using squared exponential cov

kernel
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FIgU re. (a) Data is generated from a GP with hyperparameters (/, of, o) = (1,1, 0.1), as shown by the +

symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence region for the
underlying function f (shown in grey). Panels (b) and (c) again show the 95% confidence region, but this time for

hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.



Choosing the hyperpriors

» Consider squared-exponential covariance function in one
dimension C(x,x’) = o2 exp{—A(x — x')?}.

» Conjugate Inverse Gamma hyperprior for o2, allow heavier tails

» van der Vaart & van Zanten (2008): If A9 ~ gamma(a, b),
optimal rate of convergence adaptively over C*[0,1]? for any
a > 0. Use Metropolis Hastings algorithm to update A

» Computationally cumbersome, requires matrix evaluation at
each stage of the MCMC.

> Use a discrete uniform prior with bounds chosen in such a way
that 0.05 < cor(f(x), f(x")) < 0.95 if |[x — x| = average of
the observed intersite distances

» You can save the matrices at the support of the uniform prior
before the MCMC.



Series expansion approach

» Mercer's theorem: There exists a sequence of eigenvalues
Ap 1 0 and an orthonormal system of eigenfunctions ¢, such
that

£) =Y Anon(s)dn(t)
h=1

> Define X(t) = 32°°, \Y/? Z,, ¢u(t), where Z, i.i.d. N(0,1)
> cov(Xs, Xe) = 30521 Anon(s)en(t) = C(s,t)

» We can start with a series representation by choosing A\ and
¢p. Different choices lead to splines, neural networks,
wavelets, etc



Large spatial datasets

» Large observational and computer-generated datasets:
» Often have spatial and temporal aspects.

» Goal: Make inference on underlying spatial processes from
observations at n locations where n is large.



Computational bottleneck

» The posterior predictive involves (C(X, X) + o2/)~!
» The covariance matrix C(X, X) is large: n x n for n locations.

unstructured: irregular spaced locations. dense: non-negligible
correlations.

» Cholesky decomposition of n x n matrices Generally requires
O(n3) computations and O(n?) memory.



Options for large n

v

Use models that reduce computations and/or storage. Use
approximate methods.

v

Compactly supported covariance functions.

Reduced rank covariance functions.

v

v

Leads Statistical and computational efficiency.



