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Prediction using noisy observations

I It is typical for more realistic modelling situations that we do
not have access to function values themselves, but only noisy
versions there of yi = f (xi ) + εi , i = 1, . . . , n.

I Assuming additive independent identically distributed
Gaussian noise with variance σ2 , the prior on the noisy
observations becomes

cov(yp, yq) = C (xp, xq) + σ2Ip=q =⇒ cov(y) = C (X ,X ) + σ2I ,

I The joint distribution of the observed target values and the
function values at the test locations under the prior as[

y
f∗

]
∼ N

(
0,

[
C (X ,X ) + σ2I C (X ,X∗)

C (X∗,X ) C (X∗,X∗)

])



Prediction using noisy observations

I The predictive distribution is

f∗ | X∗,X , y ∼ N(f̄∗, cov(f∗)).

where f̄∗ = E [f∗ | X , y ,X∗] = C (X∗,X )[C (X ,X ) + σ2]−1y ,
and
cov(f∗) = C (X∗,X∗)− C (X∗,X )[C (X ,X ) + σ2]−1C (X ,X∗).

I Note first that the mean prediction is a linear combination of
observations y; this is sometimes referred to as a linear
predictor.

I Another way to look at this equation is to see it as a linear
combination of n kernel functions, each one centered on a
training point, by writing correspondence with weight-space
view compact notation predictive distribution linear predictor
representer theorem

f̄ (x∗) =
n∑

i=1

αiC (xi , x∗), α = (C (X ,X ) + σ2I )−1y .



Gaussian process predictions using squared exponential cov
kernel

Figure: Prediction and predictive intervals



Role of hyperparameters

I Typically the covariance functions that we use will have some
free parameters.

I For example, the squared-exponential covariance function in
one dimension has the following form
C (xp, xq) = σ2

f exp{−1/(2l2)(xp − xq)2}.



Gaussian process predictions using squared exponential cov
kernel

Figure: (a) Data is generated from a GP with hyperparameters (l, σf , σn) = (1, 1, 0.1), as shown by the +

symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence region for the

underlying function f (shown in grey). Panels (b) and (c) again show the 95% confidence region, but this time for

hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.



Choosing the hyperpriors

I Consider squared-exponential covariance function in one
dimension C (x , x ′) = σ2

f exp{−A(x − x ′)2}.
I Conjugate Inverse Gamma hyperprior for σ2

f , allow heavier tails

I van der Vaart & van Zanten (2008): If Ad ∼ gamma(a, b),
optimal rate of convergence adaptively over Cα[0, 1]d for any
α > 0. Use Metropolis Hastings algorithm to update A

I Computationally cumbersome, requires matrix evaluation at
each stage of the MCMC.

I Use a discrete uniform prior with bounds chosen in such a way
that 0.05 < cor(f (x), f (x ′)) < 0.95 if |x − x ′| = average of
the observed intersite distances

I You can save the matrices at the support of the uniform prior
before the MCMC.



Series expansion approach

I Mercer’s theorem: There exists a sequence of eigenvalues
λh ↓ 0 and an orthonormal system of eigenfunctions φh, such
that

C (s, t) =
∞∑
h=1

λhφh(s)φh(t)

I Define X̃ (t) =
∑∞

h=1 λ
1/2
h Zh φh(t), where Zh i.i.d. N(0, 1)

I cov
(
X̃s , X̃t

)
=
∑∞

h=1 λhφh(s)φh(t) = C (s, t)

I We can start with a series representation by choosing λh and
φh. Different choices lead to splines, neural networks,
wavelets, etc



Large spatial datasets

I Large observational and computer-generated datasets:

I Often have spatial and temporal aspects.

I Goal: Make inference on underlying spatial processes from
observations at n locations where n is large.



Computational bottleneck

I The posterior predictive involves (C (X ,X ) + σ2I )−1

I The covariance matrix C (X ,X ) is large: n× n for n locations.
unstructured: irregular spaced locations. dense: non-negligible
correlations.

I Cholesky decomposition of n × n matrices Generally requires
O(n3) computations and O(n2) memory.



Options for large n

I Use models that reduce computations and/or storage. Use
approximate methods.

I Compactly supported covariance functions.

I Reduced rank covariance functions.

I Leads Statistical and computational efficiency.


