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Large spatial datasets (Problem of big n)

I Large observational and computer-generated datasets:

I Often have spatial and temporal aspects.

I Goal: Make inference on underlying spatial processes from
observations at n locations where n is large.



Computational bottleneck

I The posterior predictive involves (C (X ,X ) + σ2I )−1

I The covariance matrix C (X ,X ) is large: n× n for n locations.
unstructured: irregular spaced locations. dense: non-negligible
correlations.

I Cholesky decomposition of n × n matrices Generally requires
O(n3) computations and O(n2) memory.



Options for large n

I Use models that reduce computations and/or storage. Use
approximate methods.

I Compactly supported covariance functions.

I Reduced rank covariance functions.

I Leads Statistical and computational efficiency.



Covariance Tapering (Furrer et al 2006)

I Covariance tapering: C̃ (x , x ′) = C (x , x ′) ◦ T (x , x ′; γ),

I T (x , x ′; γ): an isotropic correlation function of compact
support, i.e., T (x , x ′; γ) = 0 for |x − x ′| ≥ γ.

I Assumptions: The covariance function has compact support.
Its range is sufficiently small.

I The tapered covariance matrix C̃ retains the property of
positive definiteness, zero at large distances.

I Minimal distortion to C for nearby locations.

I Efficient sparse matrix algorithms can be used. Also saves
storage.



Reduced Rank approximations

I Find reduced rank covariance function representation,
Banerjee et al. (2008), JRSSB: proposed Gaussian predictive
processes f̃ (x) to replace f (x) by projecting f (x) onto a
m-dimension (lower) subspace
f̃ (x) = E (f (x) | f (x∗1 ), . . . , f (x∗m)).

I Cressie and Johannesson (2008), JRSSB proposed a reduced
rank approach by defining a low rank process
f̃ (x) = BT (x)ηm×1, where B is a vector consisting of m basis
functions and var(η) = G .

I Have computational advantages but also limitations. (Stein,
2013, Spatial Statistics).

I Low rank+tapering: Sang and Huang (2011), JRSSB



Why Projections help

I For both predictive process and the basis function truncation
approach, C̃ (X ,X ) is of the form C̃ (X ,X ) = B ′GB where B
is an m × n matrix, m� n.

I Need to invert σ2I + C̃ (X ,X ) = σ2I + B ′GB

I Use Woodbury Inversion formula

(A + UCV )−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1

I Requires inverting m ×m matrices !!!



RKHS of Gaussian processes

I In np Bayes, want priors to place positive probability around
arbitrary neighborhoods of a large class of parameter values
(large support property)

I The prior concentration plays a key role in determining the
rate of posterior contraction

I The reproducing kernel Hilbert space (RKHS) of a Gaussian
process determines the prior support and concentration

I Intuitively, a space of functions that are similar to the
covariance kernel in terms of smoothness



Applications of Gaussian processes- Classification

I Let {(Xi ,Yi ), i = 1, . . . , n}, be i.i.d random pairs of
observations, where Xi ∈ [0, 1]d and Yi ∈ {0, 1}. Let
Z = [0, 1]d × {0, 1}.

I Denote by PX , the probability distribution of Xi and by PX ,Y

the joint distribution of (Xi ,Yi ) and P⊗n the joint distribution
of {(Xi ,Yi ), i = 1, . . . , n} and E⊗n denotes the expectation
w.r.t P⊗n.

I The goal of a classification is to predict the label Y given the
value of X , i.e. to provide a decision rule f : [0, 1]d → {0, 1}.
The class of decision rules is denoted by F .

I The performance of a decision rule f is measured by the
misclassification error

R(f ) := P(Y 6= f (X ))

and corresponding empirical version

Rn(f ) =
1

n

n∑
i=1

1Yi 6=f (Xi ).



Applications of Gaussian processes- Classification

I Of particular interest is the optimal decision rule
f ∗(X ) = 1{η(X )≥1/2} where η(x) = P(Y = 1 | X = x).

I The parameter η is usually estimated from the data
necessitating the next definition. An empirical classifier is a
random mapping f̂n : Zn → F . Its accuracy can be
characterized by excess risk

E(f̂n) = E⊗n{R(f̂n)− R(f ∗)}.

Theorem
The decision rule f ∗ is a minimizer of the risk R(f ) over all
decision rules f ∈ F .



Applications of Gaussian processes- Classification

Lemma
For any empirical decision rule f̂n,
E(f̂n) = E⊗n

∫
[0,1]d |2η(x)− 1|I{f̂n(x)6=f ∗(x)}PX (x)dx.

I We define two metrics on F ,

I d(f , f ∗) =
∫

[0,1]d I{f (x)6=f ∗(x)}PX (x)dx

I dη(f , f ∗) =
∫

[0,1]d |2η(x)− 1|I{f (x)6=f ∗(x)}PX (x)dx . dη(f , f ∗)
is actually a pseudo-metric as it satisfies all the axioms except
that d(f1, f2) = 0 =⇒ f1 = f2.



Modeling η(x)

I We will consider Z = [0, 1]d × {0, 1}. For η : [0, 1]d → [0, 1],
consider

yi | xi ∼ Ber{η(xi )},

I Assume η(x) = Φ(f (x)) and f ∼ GP(0, c). Consider three
different classifiers based on the posterior distribution of η.

1. Plug-in classifiers: f̂ (x) = 1η̂(x)>1/2, where η̂(x) is posterior
mean / median.

2. Hybrid Plug-in Empirical Risk Minimizer (ERM)
classifiers: η̂ERM is the maximizer of the posterior density
Rn(f ) | Y n,X n, f̂ (x) = 1η̂ERM (x)>1/2

3. Bayes estimate with respect to loss dη(f , f ∗):

f̂ (x) = 1{Π(η(x)>1/2|Y n,X n)>1/2}.


