Nonparametric Bayesian Methods

Debdeep Pati Florida State University

October 2, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Large spatial datasets (Problem of big n)

- Large observational and computer-generated datasets:
- Often have spatial and temporal aspects.
- ▶ Goal: Make inference on underlying spatial processes from observations at *n* locations where *n* is large.

- The posterior predictive involves $(C(X, X) + \sigma^2 I)^{-1}$
- ► The covariance matrix C(X, X) is large: n × n for n locations. unstructured: irregular spaced locations. dense: non-negligible correlations.
- Cholesky decomposition of $n \times n$ matrices Generally requires $O(n^3)$ computations and $O(n^2)$ memory.

 Use models that reduce computations and/or storage. Use approximate methods.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Compactly supported covariance functions.
- Reduced rank covariance functions.
- Leads Statistical and computational efficiency.

Covariance Tapering (Furrer et al 2006)

- Covariance tapering: $\tilde{C}(x, x') = C(x, x') \circ T(x, x'; \gamma)$,
- T(x, x'; γ): an isotropic correlation function of compact support, i.e., T(x, x'; γ) = 0 for |x − x'| ≥ γ.
- Assumptions: The covariance function has compact support. Its range is sufficiently small.
- The tapered covariance matrix C̃ retains the property of positive definiteness, zero at large distances.
- Minimal distortion to C for nearby locations.
- Efficient sparse matrix algorithms can be used. Also saves storage.

Reduced Rank approximations

- ► Find reduced rank covariance function representation, Banerjee et al. (2008), JRSSB: proposed Gaussian predictive processes f̃(x) to replace f(x) by projecting f(x) onto a m-dimension (lower) subspace f̃(x) = E(f(x) | f(x₁^{*}),..., f(x_m^{*})).
- Cressie and Johannesson (2008), JRSSB proposed a reduced rank approach by defining a low rank process *f̃*(x) = B^T(x)η_{m×1}, where B is a vector consisting of m basis functions and var(η) = G.
- Have computational advantages but also limitations. (Stein, 2013, Spatial Statistics).

► Low rank+tapering: Sang and Huang (2011), JRSSB

Why Projections help

- For both predictive process and the basis function truncation approach, $\tilde{C}(X, X)$ is of the form $\tilde{C}(X, X) = B'GB$ where B is an $m \times n$ matrix, $m \ll n$.
- Need to invert $\sigma^2 I + \tilde{C}(X, X) = \sigma^2 I + B' GB$
- Use Woodbury Inversion formula

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Requires inverting m × m matrices !!!

- In np Bayes, want priors to place positive probability around arbitrary neighborhoods of a large class of parameter values (large support property)
- The prior concentration plays a key role in determining the rate of posterior contraction
- The reproducing kernel Hilbert space (RKHS) of a Gaussian process determines the prior support and concentration

 Intuitively, a space of functions that are similar to the covariance kernel in terms of smoothness

Applications of Gaussian processes- Classification

- ▶ Let $\{(X_i, Y_i), i = 1, ..., n\}$, be i.i.d random pairs of observations, where $X_i \in [0, 1]^d$ and $Y_i \in \{0, 1\}$. Let $\mathcal{Z} = [0, 1]^d \times \{0, 1\}$.
- Denote by P_X, the probability distribution of X_i and by P_{X,Y} the joint distribution of (X_i, Y_i) and P^{⊗n} the joint distribution of {(X_i, Y_i), i = 1,..., n} and E^{⊗n} denotes the expectation w.r.t P^{⊗n}.
- The goal of a classification is to predict the label Y given the value of X, i.e. to provide a decision rule f : [0,1]^d → {0,1}. The class of decision rules is denoted by F.
- The performance of a decision rule f is measured by the misclassification error

 $R(f) := P(Y \neq f(X))$

and corresponding empirical version

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \neq f(X_i)}.$$

Applications of Gaussian processes- Classification

- Of particular interest is the optimal decision rule $f^*(X) = 1_{\{\eta(X) \ge 1/2\}}$ where $\eta(x) = P(Y = 1 | X = x)$.
- The parameter η is usually estimated from the data necessitating the next definition. An empirical classifier is a random mapping f_n : Zⁿ → F. Its accuracy can be characterized by excess risk

$$\mathcal{E}(\hat{f}_n) = E^{\otimes n} \{ R(\hat{f}_n) - R(f^*) \}.$$

Theorem

The decision rule f^* is a minimizer of the risk R(f) over all decision rules $f \in \mathcal{F}$.

Lemma

For any empirical decision rule \hat{f}_n , $\mathcal{E}(\hat{f}_n) = E^{\otimes n} \int_{[0,1]^d} |2\eta(x) - 1| I_{\{\hat{f}_n(x) \neq f^*(x)\}} P_X(x) dx.$

- We define two metrics on \mathcal{F} ,
- $d(f, f^*) = \int_{[0,1]^d} I_{\{f(x) \neq f^*(x)\}} P_X(x) dx$
- $d_{\eta}(f, f^*) = \int_{[0,1]^d} |2\eta(x) 1| I_{\{f(x) \neq f^*(x)\}} P_X(x) dx$. $d_{\eta}(f, f^*)$ is actually a pseudo-metric as it satisfies all the axioms except that $d(f_1, f_2) = 0 \implies f_1 = f_2$.

▶ We will consider $\mathcal{Z} = [0,1]^d \times \{0,1\}$. For $\eta : [0,1]^d \rightarrow [0,1]$, consider

 $y_i \mid x_i \sim \text{Ber}\{\eta(x_i)\},\$

- Assume η(x) = Φ(f(x)) and f ~ GP(0, c). Consider three different classifiers based on the posterior distribution of η.
 - 1. Plug-in classifiers: $\hat{f}(x) = 1_{\hat{\eta}(x) > 1/2}$, where $\hat{\eta}(x)$ is posterior mean / median.

- 2. Hybrid Plug-in Empirical Risk Minimizer (ERM) classifiers: $\hat{\eta}_{ERM}$ is the maximizer of the posterior density $R_n(f) \mid Y^n, X^n, \hat{f}(x) = 1_{\hat{\eta}_{ERM}(x) > 1/2}$
- 3. Bayes estimate with respect to loss $d_{\eta}(f, f^*)$: $\hat{f}(x) = 1_{\{\Pi(\eta(x) > 1/2 | Y^n, X^n) > 1/2\}}$.