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Large spatial datasets (Problem of big n)

» Large observational and computer-generated datasets:
» Often have spatial and temporal aspects.

» Goal: Make inference on underlying spatial processes from
observations at n locations where n is large.



Computational bottleneck

» The posterior predictive involves (C(X, X) + o2/)~!
» The covariance matrix C(X, X) is large: n x n for n locations.

unstructured: irregular spaced locations. dense: non-negligible
correlations.

» Cholesky decomposition of n x n matrices Generally requires
O(n3) computations and O(n?) memory.



Options for large n

v

Use models that reduce computations and/or storage. Use
approximate methods.

v

Compactly supported covariance functions.

Reduced rank covariance functions.

v

v

Leads Statistical and computational efficiency.



Covariance Tapering (Furrer et al 2006)

» Covariance tapering: C(x,x') = C(x,x') o T(x,x;7),

» T(x,x’;v): an isotropic correlation function of compact
support, i.e., T(x,x";v) =0 for |[x — x| > ~.

» Assumptions: The covariance function has compact support.
Its range is sufficiently small.

» The tapered covariance matrix C retains the property of
positive definiteness, zero at large distances.

» Minimal distortion to C for nearby locations.

> Efficient sparse matrix algorithms can be used. Also saves
storage.



Reduced Rank approximations

» Find reduced rank covariance function representation,
Banerjee et al. (2008), JRSSB: proposed Gaussian predictive
processes f(x) to replace f(x) by projecting f(x) onto a
m-dimension (lower) subspace
f(x)=E(f(x) | f(x1),...,f(x3))-

» Cressie and Johannesson (2008), JRSSB proposed a reduced
rank approach by defining a low rank process
(x) = BT (x)nmx1, where B is a vector consisting of m basis
functions and var(n) = G.

» Have computational advantages but also limitations. (Stein,
2013, Spatial Statistics).

» Low rank+tapering: Sang and Huang (2011), JRSSB



Why Projections help

» For both prNedictive process and th(i basis function truncation
approach, C(X, X) is of the form C(X, X) = B'GB where B

isan m X n matrix, m < n.
» Need to invert o2/ + C(X,X) = ¢/ + B'GB

> Use Woodbury Inversion formula
(A+UCV)t=Al AU (Cr 4 vAalu) T vaT]

» Requires inverting m x m matrices !!!



RKHS of Gaussian processes

v

In np Bayes, want priors to place positive probability around
arbitrary neighborhoods of a large class of parameter values
(large support property)

v

The prior concentration plays a key role in determining the
rate of posterior contraction

v

The reproducing kernel Hilbert space (RKHS) of a Gaussian
process determines the prior support and concentration

v

Intuitively, a space of functions that are similar to the
covariance kernel in terms of smoothness



Applications of Gaussian processes- Classification

» Let {(X;,Yi),i=1,...,n}, bei.i.d random pairs of
observations, where X; € [0,1]9 and Y; € {0,1}. Let
Z =1[0,1]9 x {0,1}.

» Denote by Px, the probability distribution of X; and by Px y
the joint distribution of (X;, Y;) and P®" the joint distribution
of {(X;,Yi),i =1,...,n} and E®" denotes the expectation
w.rt P®n,

» The goal of a classification is to predict the label Y given the
value of X, i.e. to provide a decision rule f : [0,1]¢ — {0,1}.
The class of decision rules is denoted by F.

» The performance of a decision rule f is measured by the
misclassification error

R(f) := P(Y # (X))

and corresponding empirical version

1 n
Ra(f) = D Lvitr(x)-
i=1



Applications of Gaussian processes- Classification

» Of particular interest is the optimal decision rule
f*(X) = 1{77()()21/2} where 77(X) = P(Y =1 ’ X = X).

» The parameter 7 is usually estimated from the data
necessitating the next definition. An empirical classifier is a
random mapping i 2" — F. Its accuracy can be
characterized by excess risk

E(fa) = EX"{R(T2) = R(F)}.

Theorem
The decision rule f* is a minimizer of the risk R(f) over all
decision rules f € F.



Applications of Gaussian processes- Classification

Lemma
For any empirical decision rule f,,
E(fy) = E®n f[o,lld |2n(x) — 1“{?,,(x)7éf*(x)}PX(X)dX'

» We define two metrics on F,
> d(f, %) = Joge lireozre 0y Px (x)dx

> dy(F, %) = Jio.age 1201(%) = L lgr(y e )y Px(X)dx. dy(F, )
is actually a pseudo-metric as it satisfies all the axioms except
that d(f1,L) =0 = A =1.



Modeling 7(x)

» We will consider Z = [0,1]¢ x {0,1}. For 5 : [0,1]¢ — [0, 1],
consider

yi | xi ~ Ber{n(xj)},

» Assume 7(x) = ®(f(x)) and f ~ GP(0, c). Consider three
different classifiers based on the posterior distribution of 7.

1.

2.

Plug-in classifiers: 7(x) = Li(x)>1/2, Where 7)(x) is posterior
mean / median.

Hybrid Plug-in Empirical Risk Minimizer (ERM)
classifiers: fjery is the maximizer of the posterior density
R,,(f) ‘ Yo", X, f(X) = 1ﬁERM(X)>1/2

. Bayes estimate with respect to loss d,(f, f*):

'AC(X) = 1{r|(n(x)>1/2\ yn,Xn)>1/2}-



