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Motivating application - high-dim regression

I yi ∈ R & xi = (xi1, . . . , xip)′ ∈ X ⊂ Rp, i = 1, . . . , n

I n = sample size, p=number of predictors & p � n

I yi = xT
i β + εi , εi ∼ N(0, σ2)

I In big data problems, dimensionality reduction is crucial

I sparsity in β



Motivating application: Autism spectra-matrix

I Brain spectra covariance matrix for autism infected adults at
the National Taiwan University Hospital.

I Understand these patterns



Cov matrix estimation by Gaussian factor models

I yi = (yi1, . . . , yip)T, i = 1, . . . , n with n� p

yi = Ληi + εi , εi ∼ Np(0, σ2Ip), i = 1, . . . , n

I ηi ∈ Rk latent factors, Λ a p × k matrix of factor loadings
with k � p

I With ηi ∼ Nk(0, Ik), yi ∼ Np(0,Ω) with Ω = ΛΛT + σ2Ip.

I Unstructured Ω has O(p2) free elements

I Regularized estimation of Ω via parsimonious factorization

I Still pk + 1 parameters, crucial to assume Λ(:, h) are sparse

I Connection to sparse PCA (Zou, Hastie & Tibshirani, 2006)



Image denoising using Dictionary learning

I Closely related to sparse factor modeling approach
I xi ∈ RD , i = 1, . . . ,N - image patches, functional data etc
I Instead of using a fixed basis - try to learn a dictionary

xi = Θηi + εi , εi ∼ N(0, σ2ID)

I Θ ∈ RD×K - unknown dictionary (K � D usually)
I ηi sparse coefficient vector

Figure: noisy image reconstruction using dictionary learning



How to do inference in p � n setting ?

I Clearly classical methods such as maximum likelihood
estimation break down (Stein, 1955; James & Stein, 1961)

I Most common choice is to use regularization or thresholding

I Focus is on obtaining a sparse point estimate

I There is a vast literature on Lasso/L1 regularization
(Tibshirani, 1996) and variants

I In the regression setting, minimize

n∑
i=1

(yi − xTi θ)2 + τ

p∑
j=1

|θj |

I Resulting θ̂ contains exact zeros



Regularization

I Bridge (FF 93), SCAD (FL 01), Elastic net (ZH 05), Adaptive
Lasso (Z 06) and many others

I Very rich applied & theoretical literature

I Regularization approaches for large covariance estimation

I banding/tapering (BL 08, WP 10), thresholding (BL 08, RLZ
09, CL 11), banding/penalizing Cholesky factor (WP 03, RLZ
10), regularized PCA (JL 09, HT 06) and many others



Posterior uncertainty

I Simply obtaining a point estimate is insufficient in many
applications

I In small n, large p there will typically be substantial
uncertainty in θ̂

I We would like to characterize uncertainty in inferences about
the impact of predictors & in predictions

I We start with a prior distribution π(θ)

I Posterior distribution π(θ | yn) provides a probabilistic
characterization of uncertainty in θ



Bayesian sparsity priors

I Prior belief about sparsity in high-dim θ = (θ1, . . . , θp)T :

θj ∼ (1− π0)δ0 + π0g(·)

I δ0 = point mass at zero, so pr(θj = 0) = 1− π0
I g(·) = prior density on the ‘signal’ coefficients

I Empirical Bayes to estimate π0 (Johnstone & Silverman,
2004)

I π0 ∼ beta(a, b) to allow uncertainty in model size (sparsity)
(Scott & Berger, 2010)

I Minimax optimality of empirical Bayes & full posterior
(Johnstone & Silverman, 2004, Castillo & van der Vaart,
2012)



Shrinkage priors

I Appealing computationally & philosophically to relax
assumption of exact zeros

I Rich literature on continuous shrinkage priors - student-t (T
01), normal/Jeffreys (BM 04), Laplace (Bayes Lasso) (PC 08,
H 09), horseshoe (CPS 09), normal-gamma (GB 10, 12),
generalized double Pareto (ADL 12), bridge (PSW 12) etc

I Many penalized least squares estimators correspond to mode
of a Bayesian posterior (e.g., L1 ≡ Laplace prior)



Global-local scale mixtures of Gaussians (Polson & Scott, 2010)

I Essentially all shrinkage priors can be represented as

θj
ind∼ N(0, ψjτ), ψj ∼ g , τ ∼ f

I τ - global shrinkage toward zero, ψj ’s - avoid over-shrinking
signals locally

I g exponential (Bayesian Lasso, Park & Casella, 2008; Hans,
2009)

I g gamma (normal-gamma, Griffin & Brown, 2010)

I g inverse-gamma (RVM, Tipping, 2001)

I g square root of half-Cauchy (Horseshoe, Carvalho et al.,
2009)



Global-local priors

Common choices of the kernel K & associated penalty functions



Horseshoe (Carvalho, Polson and Scott, 2010, Biometrika)

I θj | λj , τ ∼ N(0, λ2j τ
2), λj ∼ Ca+(0, 1), τ ∼ Ca+(0, 1)

I The horseshoe prior has two interesting features that make it
particularly useful as a shrinkage prior for sparse problems.

I Its flat, Cauchy-like tails allow strong signals to remain large
(that is, un-shrunk) a posteriori.

I Yet its infinitely tall spike at the origin provides severe
shrinkage for the zero elements of θ.



Horseshoe for fixed τ

I Let yi = θi + εi , i = 1, . . . , n, εi ∼ N(0, 1).
I Assume for now that τ = 1, and define κi = 1/(1 + λ2i ).
I κi is a random shrinkage coefficient, and can be interpreted as

the amount of weight that the posterior mean for θi places on
0 once the data y have been observed.

E (θi | yi , λi ) =
λ2i

1 + λ2i
yi +

1

1 + λ2i
0 = (1− κi )yi

I Since κi ∈ [0, 1], this is clearly finite, and so by Fubini’s
Theorem

E (θi |y) =

∫ 1

0
(1− κi )yiπ(κi | yi )dκi

= (1− E (κi | yi ))yi .

I If λi ∼ Ca+(0, 1), κi ∼ Beta(1/2, 1/2).



κi for various priors



Distribution of κi for various priors



Strengths of the Horseshoe prior

I It is highly adaptive both to unknown sparsity and to
unknown signal-to-noise ratio.

I It is robust to large, outlying signals.

I It exhibits a strong form of multiplicity control by limiting the
number of spurious signals.

I The horseshoe shares one of the most appealing features of
Bayesian and empirical-Bayes model-selection techniques:
after a simple thresholding rule is applied, the horseshoe
exhibits an automatic penalty for multiple hypothesis testing.


	Motivation
	Bayesian approaches to sparsity



