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Motivating application - high-dim regression

genes

v

yi€e R& xj = (xj1,...,xjp) € X CRP, i=1,...,n

» n = sample size, p=number of predictors & p > n

> yi=x{B+ei, € ~N(O 0%
» In big data problems, dimensionality reduction is crucial
> sparsity in (8



Motivating application: Autism spectra-matrix

» Brain spectra covariance matrix for autism infected adults at
the National Taiwan University Hospital.

» Understand these patterns



Cov matrix estimation by Gaussian factor models

> yi= i .yip) =1, ., nwithn< p
yi=Mni+e€i, €~ Np(0,0'zlp), i=1...,n

» 7; € R¥ latent factors, A a p x k matrix of factor loadings
with kK < p

» With ; ~ Ng(0,1%), yi ~ Np(0,Q) with Q = AAT + o2,

» Unstructured Q has O(p?) free elements

> Regularized estimation of €2 via parsimonious factorization
» Still pk + 1 parameters, crucial to assume A(:, h) are sparse
» Connection to sparse PCA (Zou, Hastie & Tibshirani, 2006)



Image denoising using Dictionary learning

v

Closely related to sparse factor modeling approach
xi € RPi=1,... N - image patches, functional data etc
Instead of using a fixed basis - try to learn a dictionary

x; = On; +¢€, €~ N(O,O'ZID)

v Yy

v

© € RP*KX _ unknown dictionary (K > D usually)
7n; sparse coefficient vector

v

Original clean image Noisy image, 20.0983dB Denoised image, 29.4836dB




How to do inference in p > n setting 7

» Clearly classical methods such as maximum likelihood
estimation break down (Stein, 1955; James & Stein, 1961)

» Most common choice is to use regularization or thresholding
» Focus is on obtaining a sparse point estimate

» There is a vast literature on Lasso/L1 regularization
(Tibshirani, 1996) and variants

> In the regression setting, minimize

n

P
Y =X 07 +7)_ 1)l
j=1

i=1

» Resulting 6 contains exact zeros



Regularization

» Bridge (FF 93), SCAD (FL 01), Elastic net (ZH 05), Adaptive
Lasso (Z 06) and many others

» Very rich applied & theoretical literature
» Regularization approaches for large covariance estimation

» banding/tapering (BL 08, WP 10), thresholding (BL 08, RLZ
09, CL 11), banding/penalizing Cholesky factor (WP 03, RLZ
10), regularized PCA (JL 09, HT 06) and many others



Posterior uncertainty

» Simply obtaining a point estimate is insufficient in many
applications

> In small n, large p there will typically be substantial
uncertainty in ¢

» We would like to characterize uncertainty in inferences about
the impact of predictors & in predictions

» We start with a prior distribution ()

» Posterior distribution 7(6 | y") provides a probabilistic
characterization of uncertainty in ¢



Bayesian sparsity priors

v

Prior belief about sparsity in high-dim 6 = (61,...,6,)":

0j ~ (1 —m0)do + mog (")

do = point mass at zero, so pr(¢; =0) =1 — g
g(+) = prior density on the ‘signal’ coefficients

Empirical Bayes to estimate 7y (Johnstone & Silverman,
2004)

mo ~ beta(a, b) to allow uncertainty in model size (sparsity)
(Scott & Berger, 2010)

Minimax optimality of empirical Bayes & full posterior
(Johnstone & Silverman, 2004, Castillo & van der Vaart,
2012)



Shrinkage priors

» Appealing computationally & philosophically to relax
assumption of exact zeros

» Rich literature on continuous shrinkage priors - student-t (T
01), normal/Jeffreys (BM 04), Laplace (Bayes Lasso) (PC 08,
H 09), horseshoe (CPS 09), normal-gamma (GB 10, 12),
generalized double Pareto (ADL 12), bridge (PSW 12) etc

» Many penalized least squares estimators correspond to mode
of a Bayesian posterior (e.g., L1 = Laplace prior)



Global-local scale mixtures of Gaussians (Polson & Scott, 2010)

v

Essentially all shrinkage priors can be represented as

ind
GJN N(vajT)a ijga T~f

v

7 - global shrinkage toward zero, 1);'s - avoid over-shrinking
signals locally

» g exponential (Bayesian Lasso, Park & Casella, 2008; Hans,
2009)

» g gamma (normal-gamma, Griffin & Brown, 2010)
» g inverse-gamma (RVM, Tipping, 2001)

» g square root of half-Cauchy (Horseshoe, Carvalho et al.,
2009)



Global-local priors

‘Comparison of different priors
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Horseshoe (Carvalho, Polson and Scott, 2010, Biometrika)

v

0 | Aj, 7 ~ N(0,2372), A ~ Ca*(0,1),7 ~ Ca™(0,1)
The horseshoe prior has two interesting features that make it
particularly useful as a shrinkage prior for sparse problems.

v

v

Its flat, Cauchy-like tails allow strong signals to remain large
(that is, un-shrunk) a posteriori.

v

Yet its infinitely tall spike at the origin provides severe
shrinkage for the zero elements of 4.



Horseshoe for fixed 7

» Lety; =6;+¢,i=1,...,n¢ ~ N(0,1).

» Assume for now that 7 = 1, and define x; = 1/(1 + \?).

» kj is a random shrinkage coefficient, and can be interpreted as
the amount of weight that the posterior mean for 6; places on
0 once the data y have been observed.

)\2

E(0i|yi7)\l) 1+A

1
Yi+ 0=(1-ri)y
2 1+ X2

» Since «; € [0, 1], this is clearly finite, and so by Fubini's
Theorem

1
E@:ly) = /O (1= m)yim(ni | yi)dr
= (1—E(xi|y))yi-

» If \; ~ Cat(0,1), x; ~ Beta(1/2,1/2).



r; for various priors

Table 1. Priors for A; and k; associated with some common local shrinkage rules. For the
normal-exponential-gamma prior, it is assumed that d = 1. Densities are given up to constants.

Prior for 6, Density for A; Density for «;
Double-exponential A exp(—A2/2) I«c;2 exp{—1/(2«;)}

Cauchy At exp{1/(2A2)} K (1 = ) exp [/ 12/(1 — k)}]
Strawderman-Berger A (L+AH-32 K

Normal-exponential-gamma A (L4 a3~ k!

Normal-Jeffreys A k(L — k)t

Horseshoe (1+2)7! k(1 = k)2



Distribution of x; for various priors
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Strengths of the Horseshoe prior

» It is highly adaptive both to unknown sparsity and to
unknown signal-to-noise ratio.

> It is robust to large, outlying signals.
> It exhibits a strong form of multiplicity control by limiting the
number of spurious signals.

» The horseshoe shares one of the most appealing features of
Bayesian and empirical-Bayes model-selection techniques:
after a simple thresholding rule is applied, the horseshoe
exhibits an automatic penalty for multiple hypothesis testing.
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