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Horseshoe (Carvalho, Polson and Scott, 2010, Biometrika)
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0 | Aj, 7 ~ N(0,2372), A ~ Ca*(0,1),7 ~ Ca™(0,1)
The horseshoe prior has two interesting features that make it
particularly useful as a shrinkage prior for sparse problems.

v

v

Its flat, Cauchy-like tails allow strong signals to remain large
(that is, un-shrunk) a posteriori.
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Yet its infinitely tall spike at the origin provides severe
shrinkage for the zero elements of 4.



Horseshoe for fixed 7

» Lety; =6;+¢,i=1,...,n¢ ~ N(0,1).

» Assume for now that 7 = 1, and define x; = 1/(1 + \?).

» kj is a random shrinkage coefficient, and can be interpreted as
the amount of weight that the posterior mean for 6; places on
0 once the data y have been observed.
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» Since «; € [0, 1], this is clearly finite, and so by Fubini's
Theorem

1
E@:ly) = /O (1= m)yim(ni | yi)dr
= (1—E(xi|y))yi-

» If \; ~ Cat(0,1), x; ~ Beta(1/2,1/2).



r; for various priors

Table 1. Priors for A; and k; associated with some common local shrinkage rules. For the
normal-exponential-gamma prior, it is assumed that d = 1. Densities are given up to constants.

Prior for 6, Density for A; Density for «;
Double-exponential A exp(—A2/2) I«c;2 exp{—1/(2«;)}

Cauchy At exp{1/(2A2)} K (1 = ) exp [/ 12/(1 — k)}]
Strawderman-Berger A (L+AH-32 K

Normal-exponential-gamma A (L4 a3~ k!

Normal-Jeffreys A k(L — k)t

Horseshoe (1+2)7! k(1 = k)2



Distribution of x; for various priors
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Strengths of the Horseshoe prior

» It is highly adaptive both to unknown sparsity and to
unknown signal-to-noise ratio.

> It is robust to large, outlying signals.

» One can do variable selection by thresholding «;.



Horseshoe density

» The density m1(0;) is not expressible in closed form, but very
tight upper and lower bounds in terms of elementary functions
are available.

Theorem
The Horseshoe prior satisfies the following:

1. |imgﬂo 7TH(9) = OQ.
2. For6 #0,

K 4 2
Elog (1—}—(92) < 7(0) < Klog (1+92>.

where K = 1/v/273.



Comparison with various priors
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Fig. 1. Comparison of the horseshoe (solid), Cauchy (dotted) and double-exponential (dashed) densities.



Properties of Horseshoe

> It is symmetric about zero.
» It has heavy, Cauchy like tails that decay like 9,-2.

» It has an infinitely tall spike at 0, in the sense that the density
approaches infinity logarithmically fast asfrom either side.

» The priors flat tails allow each 6; to be large if the data
warrant such a conclusion, and yet its infinitely tall spike at
zero means that the estimate can also be quite severely
shrunk.





