Nonparametric Bayesian Statistics

Debdeep Pati Florida State University

October 21, 2014

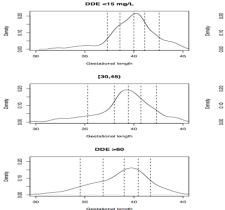
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

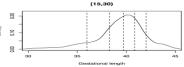
- Interest in relationship between a predictor x and response y adjusting for covariates z.
- In epidemiology & toxicology studies, x = dose of a potentially adverse exposure
- Biologically reasonable to assume that response distribution is stochastically non-decreasing with x for any fixed z

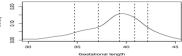
- In order to incorporate non-decreasing constraint, one may consider an isotonic regression model
- Ramsay (1988) propose monotone regression splines flexible estimation of smoothly increasing regression curve
- In toxicology & epidemiology, interest in inferences on flat vs increasing regions - flat corresponds to no effect of predictor

- ► Above methods focus on estimation of a non-decreasing function, f(x), subject to f(x) ≤ f(x'), for all x < x'.</p>
- Typically, f(x) = mean regression function, with residual distribution constant with x
- Casady & Cryer (1976) isotonic quantile estimator
- Our focus: allow conditional distribution, f(y|x), to change flexibly with x subject to non-increasing stochastic order

Application - DDE & Preterm Birth







◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Interest how distribution of a continuous health response changes with a discrete / continuous predictor
- ▶ y_i = gestational age at delivery, x_i =level of DDE in maternal serum, z_i =potential confounders
- As exposure increases, distribution of gestational age at delivery stochastic non-increasing
- How to nonparametrically model such changes and conduct hypothesis tests

- ▶ Initially consider case with two unknown distributions, P_1 and P_2 defined on \mathcal{X} with $P_1 \preceq P_2$.
- Bayesian estimation considered by Gelfand & Kottas (01) used products of independent DP components
- Our Goals:
 - 1. Flexible Prior on set C_E of stochastically ordered distributions

- 2. Efficient MCMC approach for computation
- 3. Methods for hypothesis testing

- Goal is to choose a prior for $(P_1, \ldots, P_K) \in C_E$
- C_E = weakly closed convex set with extreme points { $(\delta_{s_1}, \ldots, \delta_{s_K}) : (s_1, \ldots, s_K) \in S_K$ }
- S_K = {(s₁,..., s_K) ∈ X^K : s_i ≤ s_j∀(i, j) ∈ E}, with E pre-specified matrix defining ordering

• Main Result: DP prior on S_K induces prior on C_E

- Hoff (03) does not allow continuous distributions, computation is difficult & no allowance for hypothesis testing
- ► Applying Sethuraman (94) & Hoff (03), we define restricted dependent DP (rDDP) priors for (P₁,..., P_K) ∈ C_E:

$$P_k(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{\Theta_{hk}}, \quad \Theta_h = (\Theta_{h1}, \dots, \Theta_{hK}) \sim Q_0$$

with Q_0 a base measure on $S_K \& \{\pi_h\} = \text{typical DP weights}$ \blacktriangleright rDDP modifies DDP (MacEachern, 99) to use restricted Q_0

Two Group Example

• $(P_1, P_2) \sim rDDP(\alpha Q_0)$ implies:

$$P_1 = \sum_{h=1}^{\infty} \pi_h \delta_{\Theta_{h1}}, \quad P_2 = \sum_{h=1}^{\infty} \pi_h \delta_{\Theta_{h2}}$$

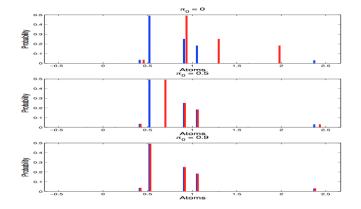
•
$$(\Theta_{h1}, \Theta_{h2}) \sim Q_0$$
, with $Q_0(\Theta_{h1} \leq \Theta_{h2}) = 1$

- For example, $Q_0 =$ truncated bivariate normal
- To limit bias & facilitate testing, allow probability mass on the boundary by choosing Q₀ to correspond to:

 $f(\Theta_1, \Theta_2) = f_1(\Theta_1) \{ \pi_0 \delta_0(\Theta_2 - \Theta_1) + (1 - \pi_0) f_2(\Theta_2 - \Theta_1).$

where f_1 a density on \mathbb{R} and f_2 is a density supported on \mathbb{R}^+

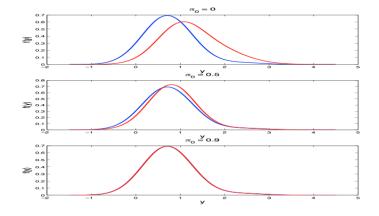
One draw from the rDDP



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- ► We can use (P₁,..., P_K) as a collection of mixture distributions to obtain a class of rDDPM models
- ► Let $g_k(y) = \int K(y,\mu) dP_k(\mu)$ denote the density in group k, with $K(\cdot)$ a kernel satisfying monotone stochastic order
- ▶ Integral operator induces mapping from $C_E \to \mathcal{L}_E$, with $(P_1, \ldots, P_K) \in C_E \& (g_1, \ldots, g_K) \in \mathcal{L}_E$.
- ► For normal K(·), L_E contains all K × 1 collections of densities satisfying partial ordering E in its closure

One draw from the rDDPM



◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Hypothesis Testing - 2 Group Case

- Hypothesis testing of equalities in distributions, g₁, g₂, against stochastically ordered alternatives
- Differences in g₁, g₂ controlled through differences in mixture distributions P₁, P₂
- In two group case, focus on interval null based on TV distance

$$d_{12} = \max_{B \in \mathcal{B}} |P_1(B) - P_2(B)|$$

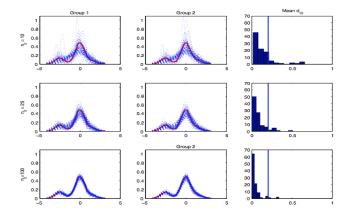
- With $\beta_h = \Theta_{2h} \Theta_{1h}$, $d_{12} = \sum_{h=1}^{\infty} \pi_h \mathbf{1}_{(\beta_h > 0)} \sim \text{Beta}(\alpha(1 - \pi_0), \alpha \pi_0)$
- Hypotheses: $H_0: d_{12} \leq \epsilon, H_1: d_{12} > \epsilon$.

- Basing hypothesis tests on d₁₂ appealing for simple prior elicitation & posterior computation
- Can choose π_0 to assign 0.5 probability to the null hypothesis.
- ▶ Theorem 1. Let $G_k(B) = \int_B g_k(y) dy$, k = 1, 2 with $g_k(y) = \int K(y, s) dP_k(s)$. Then, $H_0: d_{12} \le \epsilon$ implies

 $\max_{y\in\mathcal{Y}}|G_2(y,\infty)-G_1(y,\infty)|\leq\epsilon$

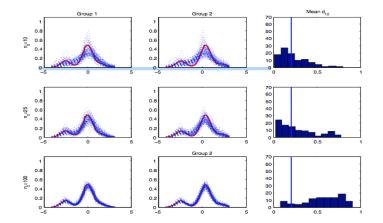
- Extensions to multiple groups & censored data are trivial
- Posterior computation can proceed via a highly-efficient & simple blocked Gibbs sampler (Ishwaran & James, 01)
- We ran a simulation study to assess frequentist operating characteristics

Simulation results (2 groups, null hypothesis true)



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Simulation results (2 groups, alternative hypothesis true)



▲ロト ▲圖ト ▲画ト ▲画ト 二直 - の久(で)