
Nonparametric Bayesian Statistics

Debdeep Pati
Florida State University

October 21, 2014



Incorporating constraints in NP Bayes

I Interest in relationship between a predictor x and response y
adjusting for covariates z .

I In epidemiology & toxicology studies, x = dose of a
potentially adverse exposure

I Biologically reasonable to assume that response distribution is
stochastically non-decreasing with x for any fixed z



Isotonic Regression

I In order to incorporate non-decreasing constraint, one may
consider an isotonic regression model

I Ramsay (1988) propose monotone regression splines - flexible
estimation of smoothly increasing regression curve

I In toxicology & epidemiology, interest in inferences on flat vs
increasing regions - flat corresponds to no effect of predictor



Isotonic Mean Regression → density regression

I Above methods focus on estimation of a non-decreasing
function, f (x), subject to f (x) ≤ f (x ′), for all x < x ′.

I Typically, f (x) = mean regression function, with residual
distribution constant with x

I Casady & Cryer (1976) - isotonic quantile estimator

I Our focus: allow conditional distribution, f (y |x), to change
flexibly with x subject to non-increasing stochastic order



Application - DDE & Preterm Birth



Application - DDE & Preterm Birth

I Interest - how distribution of a continuous health response
changes with a discrete / continuous predictor

I yi = gestational age at delivery, xi =level of DDE in maternal
serum, zi =potential confounders

I As exposure increases, distribution of gestational age at
delivery stochastic non-increasing

I How to nonparametrically model such changes and conduct
hypothesis tests



Modeling of Stochastic Ordering

I Initially consider case with two unknown distributions, P1 and
P2 defined on X with P1 - P2.

I Bayesian estimation considered by Gelfand & Kottas (01) -
used products of independent DP components

I Our Goals:

1. Flexible Prior on set CE of stochastically ordered distributions
2. Efficient MCMC approach for computation
3. Methods for hypothesis testing



Hoff (2003, Biometrika) Formulation

I Goal is to choose a prior for (P1, . . . ,PK ) ∈ CE

I CE = weakly closed convex set with extreme points
{(δs1 , . . . , δsK ) : (s1, . . . , sK ) ∈ SK}

I SK = {(s1, . . . , sK ) ∈ XK : si ≤ sj∀(i , j) ∈ E}, with E
pre-specified matrix defining ordering

I Main Result: DP prior on SK induces prior on CE



Restricted Dependent DP (Dunson & Peddada, 07)

I Hoff (03) does not allow continuous distributions,
computation is difficult & no allowance for hypothesis testing

I Applying Sethuraman (94) & Hoff (03), we define restricted
dependent DP (rDDP) priors for (P1, . . . ,PK ) ∈ CE :

Pk(·) =
∞∑
h=1

πhδΘhk
, Θh = (Θh1, . . . ,ΘhK ) ∼ Q0

with Q0 a base measure on SK & {πh} = typical DP weights

I rDDP modifies DDP (MacEachern, 99) to use restricted Q0



Two Group Example

I (P1,P2) ∼ rDDP(αQ0) implies:

P1 =
∞∑
h=1

πhδΘh1
, P2 =

∞∑
h=1

πhδΘh2

I (Θh1,Θh2) ∼ Q0, with Q0(Θh1 ≤ Θh2) = 1

I For example, Q0 = truncated bivariate normal

I To limit bias & facilitate testing, allow probability mass on the
boundary by choosing Q0 to correspond to:

f (Θ1,Θ2) = f1(Θ1){π0δ0(Θ2 −Θ1) + (1− π0)f2(Θ2 −Θ1).

where f1 a density on R and f2 is a density supported on R+



One draw from the rDDP



rDDP Mixtures

I We can use (P1, . . . ,PK ) as a collection of mixture
distributions to obtain a class of rDDPM models

I Let gk(y) =
∫
K (y , µ)dPk(µ) denote the density in group k,

with K (·) a kernel satisfying monotone stochastic order

I Integral operator induces mapping from CE → LE , with
(P1, . . . ,PK ) ∈ CE&(g1, . . . , gK ) ∈ LE .

I For normal K (·), LE contains all K × 1 collections of densities
satisfying partial ordering E in its closure



One draw from the rDDPM



Hypothesis Testing - 2 Group Case

I Hypothesis testing of equalities in distributions, g1, g2, against
stochastically ordered alternatives

I Differences in g1, g2 controlled through differences in mixture
distributions P1,P2

I In two group case, focus on interval null based on TV distance

d12 = max
B∈B
|P1(B)− P2(B)|

I With βh = Θ2h −Θ1h,
d12 =

∑∞
h=1 πh1(βh>0) ∼ Beta(α(1− π0), απ0)

I Hypotheses: H0 : d12 ≤ ε,H1 : d12 > ε.



Justification for Hypothesis Formulation

I Basing hypothesis tests on d12 appealing for simple prior
elicitation & posterior computation

I Can choose π0 to assign 0.5 probability to the null hypothesis.

I Theorem 1. Let Gk(B) =
∫
B gk(y)dy , k = 1, 2 with

gk(y) =
∫
K (y , s)dPk(s). Then, H0 : d12 ≤ ε implies

max
y∈Y
|G2(y ,∞)− G1(y ,∞)| ≤ ε



Multiple Groups & Computation

I Extensions to multiple groups & censored data are trivial

I Posterior computation can proceed via a highly-efficient &
simple blocked Gibbs sampler (Ishwaran & James, 01)

I We ran a simulation study to assess frequentist operating
characteristics



Simulation results (2 groups, null hypothesis true)



Simulation results (2 groups, alternative hypothesis true)


