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Robust shrinkage of the sparse signals

I Consider y ∼ N(θ, 1)

I A representation of the posterior mean.

I A normal likelihood of known variance p(y − θ).

I The prior for the mean is π(θ).

I Marginal density m(y) =
∫
p(y − θ)π(θ)dθ.

I For one sample of y ,

E (θ | y) = y +
d

dy
logm(y)



Why Horseshoe is robust to outlying signals?

I The following result speaks to the horseshoe’s robustness to
large outlying signals.

Theorem
Suppose y ∼ N(θ, 1). Let m(y) denote the predictive density
under the horseshoe prior for known scale parameter τ <∞, i.e.
where (θ | λ) ∼ N(0, τ2λ2) and λ ∼ Ca+(0, 1). Let E (θ | y)
denote the posterior mean. Then lim|y |→∞ d logm(y)/dy = 0.

I This is NOT true for Bayesian Lasso given by

θj | τ ∼ DE (τ)⇔ θj | τ, ψj ∼ N(0, ψjτ
2), ψj ∼ Exp(1/2)



Comparison with Other Bayes Estimators

I In sparse situations, posterior learning τ allows most noise
observations to be shrunk very near zero.

I Yet this small value of τ will not inhibit the estimation of
large signals

I Under the double-exponential prior, for example, small values
of τ can also lead to strong shrinkage near the origin.

I This shrinkage, however, can severely compromise
performance in the tails.



Double exponential score function

I For DE, smaller value of τ may reduce the risk at the origin,

I But do so at the expense of increased risk in the tails
|E (θi | yi )− yi | ≈

√
2/τ for large yi .



Simulation study

I Ten standard normal observations were simulated for each of
1000 means: 10 signals of mean 10, 90 signals of mean 2 and
900 noise of mean 0.

I Two models were then fit to this data: one that used
independent horseshoe priors and one that used independent
double-exponential priors.



Simulation study

The double-exponential prior tends to shrink small observations
not enough, and the larger observations too much.



Dirichlet-Laplace prior - motivation

I A large subclass of global-local (GL) priors fail to concentrate
sufficiently well around sparse vectors

I Horseshoe can perform well in highly sparse situations, but
not that well when the number of signals is relatively large
compared to the dimension

I Global-local priors mimic point mass mixtures marginally

I Investigate analogy jointly

I Point mass priors equiv. to (i) draw s ∼ Bino(p, π0) (ii) draw
a subset S of size s uniformly (iii) set θj = 0 for all j /∈ S and
(iv) draw θj , j ∈ S i.i.d. from g(·)

I Aim to mimic the joint structure implied by point mass priors



Dirichlet Laplace prior & properties

I We propose a simple dependent modification leading to
optimal concentration & efficient computation

θj ∼ DE(φjτ), φ = (φ1, . . . , φp)T ∈ Sp−1, τ > 0

I Constraining φ to the simplex crucial - allows for dependence

I We let φ ∼ Diri(α, . . . , α) - α < 1 favors small # dominant
values with remaining ≈ 0

I Normal scale mixture rep: θj ∼ N(0, ψjφ
2
j τ

2), ψj ∼ Exp(1/2)

I Spike at zero controlled by α - use U(0, 1) prior or fix at 1/p



Prior draws from |θj | , j = 1, . . . , 900

I α = 1/2

I α = 1/10



Improved prior concentration reflected in the posterior

Draw y ∼ N250(θ0, I250) with θ0[1 : 10] = 7, θ0[11 : 250] = 0. Blue dots: entries of y , red dots: posterior
median of θ, bars: point wise 95% credible intervals



Increase sample size



Simulation study

I We ran a simulation to assess the performance of our new
approach vs Bayes lasso & a host of other methods

I 100 simulation replicates

I Each replicate - one observation y ∼ Np(θ0, Ip)

I θ0 sparse: θ0[1 : q] = A, θ0[q + 1, p] = 0

I Show results for q = 10, A = 7

I We cheated on behalf of the frequentist Lasso & selected the
penalty that produced the lowest MSE



Simulation study
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