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Incorporating constraints in NP Bayes

> Interest in relationship between a predictor x and response y
adjusting for covariates z.

» In epidemiology & toxicology studies, x = dose of a
potentially adverse exposure

> Biologically reasonable to assume that response distribution is
stochastically non-decreasing with x for any fixed z



Isotonic Regression

> In order to incorporate non-decreasing constraint, one may
consider an isotonic regression model

» Ramsay (1988) propose monotone regression splines - flexible
estimation of smoothly increasing regression curve

> In toxicology & epidemiology, interest in inferences on flat vs
increasing regions - flat corresponds to no effect of predictor



Isotonic Mean Regression — density regression

» Above methods focus on estimation of a non-decreasing
function, f(x), subject to f(x) < f(x’), for all x < x'.

» Typically, f(x) = mean regression function, with residual
distribution constant with x

» Casady & Cryer (1976) - isotonic quantile estimator

» Our focus: allow conditional distribution, f(y|x), to change
flexibly with x subject to non-increasing stochastic order



Application - DDE & Preterm Birth

DDE <15 mg/L [15,30)
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Application - DDE & Preterm Birth

» Interest - how distribution of a continuous health response
changes with a discrete / continuous predictor

> y; = gestational age at delivery, x; =level of DDE in maternal
serum, z; =potential confounders

» As exposure increases, distribution of gestational age at
delivery stochastic non-increasing

» How to nonparametrically model such changes and conduct
hypothesis tests



Modeling of Stochastic Ordering

» Initially consider case with two unknown distributions, P; and
P, defined on X with P; = Ps.

» Bayesian estimation considered by Gelfand & Kottas (01) -
used products of independent DP components
» Qur Goals:

1. Flexible Prior on set Cg of stochastically ordered distributions
2. Efficient MCMC approach for computation
3. Methods for hypothesis testing



Hoff (2003, Biometrika) Formulation

v

Goal is to choose a prior for (Py,...,Px) € Cg

v

Ce = weakly closed convex set with extreme points
{(0s) : s =(s1,--.,5x) € Sk}

Sk = {(s1,...,s¢) € XK 15, < s¥(i,j) € E}, with E
pre-specified matrix defining ordering

v

v

Main Result: DP prior on Sk induces prior on Cg



Restricted Dependent DP (Dunson & Peddada, 07)

» Hoff (03) does not allow continuous distributions,
computation is difficult & no allowance for hypothesis testing

» Applying Sethuraman (94) & Hoff (03), we define restricted
dependent DP (rDDP) priors for (P1,...,Pk) € Cg:

Pe() =Y mhle,, On=(On,....,Onm) ~ Qo
h=1

with Qp a base measure on Sk & {m,} = typical DP weights
» rDDP modifies DDP (MacEachern, 99) to use restricted Qp



Two Group Example

(P1, Py) ~ rDDP(aQp) implies:

v

oo oo
Pr=> mhle,. P2=) mhle,
h=1 h=1

v

(©h1,Om2) ~ Qo, with Qu(Op < Opp) =1

For example, Qy = truncated bivariate normal

v

v

To limit bias & facilitate testing, allow probability mass on the
boundary by choosing @ to correspond to:

f(@l, @2) = fl(el){ﬂ'o(go(ez — @1) + (1 — 7T0)f2(@2 — @1).

where f; a density on R and £, is a density supported on R



One draw from

the rDDP
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rDDP Mixtures

» We can use (Pi, ..., Pk) as a collection of mixture
distributions to obtain a class of rDDPM models

» Let gk(y) = [ K(y, it)dPk(p) denote the density in group k,
with K(- ) a kernel satisfying monotone stochastic order

> Integral operator induces mapping from Cg — Lg, with
(P1,...,Pk) € Ce&(g1,-.-,8k) € LE.

» For normal K(-), Lg contains all K x 1 collections of densities
satisfying partial ordering E in its closure



One draw from the rDDPM




Hypothesis Testing - 2 Group Case

» Hypothesis testing of equalities in distributions, g1, g», against
stochastically ordered alternatives

» Differences in gy, g» controlled through differences in mixture
distributions Py, P>

> In two group case, focus on interval null based on TV distance
dip = Pi(B) — P»(B
12 = max|P1(B) — P2(B)|

> With S, = ©2, — O1,
dip = 220:1 Whl(ﬁh>0) ~ Beta(a(l — 7T0), 0471'0)
» Hypotheses: Hp : dip <€, Hy : dip > €.



Multiple Groups & Computation

» Extensions to multiple groups & censored data are trivial

» Posterior computation can proceed via a highly-efficient &
simple blocked Gibbs sampler (Ishwaran & James, 01)

» We ran a simulation study to assess frequentist operating
characteristics



Simulation study (K = 2)

v

Case 1: Both Group 1 and Group 2 generated from f(y) =
0.2N(y; —2.5,771) + 0.7N(y;0,771) + 0.1N(y; 1.5,771),

T=23

v

Case 2: Change the component-specific means
(—2.4,0.4,2.2).

Simulated 100 datasets under three sample sizes, 10,25 and
100.

Fix €, choose g such that P(di2 <€) = 0.5.

v

v



Simulation results (Case 1
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Simulation results (Case
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Sensitivity to €

Table 1. Simulation study. Summary statistics of d\, across the simulations for each
sample size. Results shown are means with 95% empirical confidence limits in

parentheses
Common pr(d,, < € |data)
Case sample size dyy € =001 €=1005 e=01
1 10 0-140 0.67 0.72 0.75
(0-028, 0-614) (0-17, 0.86) (0-18,0.91) (0-22,093)
1 25 0.085 0.72 0.78 081
(0011, 0-299) (0:19,0-89) (0:22,0.94) (0-28, 0:96)
1 100 0-044 0.79 0-85 0-89
(0-003, 0-215) (0-28, 0.94) (0-30,0.99) (0-42, 1.00)
2 10 0.233 0.55 0-60 063
(0-029, 0-660) (0-10, 0-82) (010, 0.91) (0-10, 0:93)
2 25 0.278 0.46 0-51 0.54
(0032, 0.765) (0.02,0-84) (002, 0-87) (0-06, 0:91)
2 100 0-560 013 015 018

(0-091, 0-884) (0:00,0-74) (0-00, 0-79) (0-00, 0-83)



DNA Repair Studies Application

> Interest in identifying genes predictive of DNA repair rates for
individuals in Environmental Genome Project

» Frequency of strand breaks on individual cell level measured at
baseline, after induced damage & after repair

» Initially study assessed impact of dose of H,O, & repair time
using samples of 100 cells from single subject



DNA Repair Studies Application

» Batches of cells were exposed to 0,5,20,50 or 1001 mol of
H> O, (hydrogen peroxide)

» DNA damage was then measured in individual cells after
allowing a repair time of 0,60 or 90 min.

» x; for cell i: Olive tail moment, surrogate of the frequency of
DNA strand-breaks obtained using the comet assay.

» Let a; € {1,..., K} be a group index denoting the level of
H>O5 and repair time for cell J.

» The value of a; for each dose x repair time value is shown in
Fig. 3.

» The total sample size is 1400, with 100 observation per group
except for groups 9 and 13, which had 50.



DNA Repair Studies Application

» Among cells with zero repair time, DNA damage should be
nondecreasing with the dose of H>O;.

> In addition, within a given dose level, DNA damage should be
non-increasing with repair time.

> we make the ordering assumption illustrated in Fig. 3 using a
directed graph, with arrows pointing towards stochastically
larger groups.

» We wish to assess whether or not DNA damage continues to
increase at higher levels of H>O, exposure, and investigate
whether or not damage is significantly reduced across each
increment of the repair time.



Directed graph indicating stochastic order

Dose Group
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Repair Time
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Fig. 3. Genotoxicity application. Directed graph illustrating order
restriction. Arrows point towards stochastically larger groups. Pos-
terior probabilities of Hi; are shown.



Results for Genotoxicity Application

60 minutes repair 0 minutes repair

90 minues repair

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

0.8
0.8
0.4
0.2

0mmH,0, 20 mm HO, 100 mm H,0,
0.8 0.8
" 0.6 0.6
" 0.4 f~n o4l s~
AVa'S
> Vala W\ -
R 0.2 =y LRI Y
o a
o] 5 10 o 5 10 o 5 10
0.8
]
0.6
0.4
> W
2 0.2 N
o
] 5 10 o 5 10
a8 08
0.6 0.6
0.4 0.4
N \
b 0.2 0.2 N
N W o
= ° o =
0 5 10 5 10 o 5 10



Discussion

» Bayesian method for testing differences among groups against
stochastically ordered alternatives

» Also allows estimation of densities (or pmfs) in each group

» Covariates can be included & approach can be embedded in
hierarchical model (allowing censoring, missing data,
multivariate observations of latent variable, etc)

» Allow stochastic ordering with continuous predictors?



Stochastic Ordering with Continuous Predictors (Wang &

Dunson, 07)

» Generalize estimation & testing methods to continuous
predictors

» Let Py = {(Px,x € X): PreP,x € X}, P =set of
probability measures on B(U/),U, X = subsets of R

> Need to define a prior for Py with support on

Cy ={(Px,x €X)€EPx: Py 3 Pu,x <x' x,x € X}.

» How to accomplish, while having simple computation &
hypothesis testing?



Mixing over Extreme Points

» Lemma 1 - Cy = weakly closed convex set — any elements of
Cx expressed as mixture over the extreme points

» Lemma 2 - the extreme points of Cy are
ex{Cx} = {(ds(x),x € X) : s € Sx}, where Sy=space of
non-decreasing functions

» Theorem 1: For any P € Cy there exists a mixture measure
@ such that (Px,x € X) = [ (0s(x) : x € X)dQ(s).
» Prior for @ on Sy induces prior for P on Cy!



Proposed rDDP Mixture Model

» Motivated by this theory, we choose the rDDP prior:

Py = Zﬂ-h5@h(x)’
h=1

where 0, ~ Qp and Qg has support on Sy.

» The "“atoms” in the Dirichlet process correspond to
non-decreasing stochastic processes

» Monotone splines (Ramsay, 1988) for the functional atoms

» Letting (y|x) = [ N(y; 1, 0%)dPx(p),0btain a method for
isotonic density regression



Local & Global Hypothesis Testing

» We consider the following local null and alternative:
Ho(x,x') : drv(x,x") < e wvs.Hi(x,x") : drv(x,x') > e,

with dTV(X7X/) - Supy€R|FX(Y) - FX’(y)‘
Local null Hy(x, x") — effectively no change between x and x’

v

v

Global null formulated as intersections of local nulls
Ho(O,X) = ﬁX/<XH0(X,X/).

v



Simulation Study

> To assess performance, we ran a simulation study with 200
datasets have size n = 500

» The response variable y was generated from a mixture of two
normals, with no association for x € [0,0.3] & a non-linear
association in x € [0.3,0.7]

» Two normal components had different polynomial regressions
in the mean



Simulation Study Results - Conditional Densities
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Simulation Study Results - local testing

Pr(H1(0, x) | data)
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