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Incorporating constraints in NP Bayes

I Interest in relationship between a predictor x and response y
adjusting for covariates z .

I In epidemiology & toxicology studies, x = dose of a
potentially adverse exposure

I Biologically reasonable to assume that response distribution is
stochastically non-decreasing with x for any fixed z



Isotonic Regression

I In order to incorporate non-decreasing constraint, one may
consider an isotonic regression model

I Ramsay (1988) propose monotone regression splines - flexible
estimation of smoothly increasing regression curve

I In toxicology & epidemiology, interest in inferences on flat vs
increasing regions - flat corresponds to no effect of predictor



Isotonic Mean Regression → density regression

I Above methods focus on estimation of a non-decreasing
function, f (x), subject to f (x) ≤ f (x ′), for all x < x ′.

I Typically, f (x) = mean regression function, with residual
distribution constant with x

I Casady & Cryer (1976) - isotonic quantile estimator

I Our focus: allow conditional distribution, f (y |x), to change
flexibly with x subject to non-increasing stochastic order



Application - DDE & Preterm Birth



Application - DDE & Preterm Birth

I Interest - how distribution of a continuous health response
changes with a discrete / continuous predictor

I yi = gestational age at delivery, xi =level of DDE in maternal
serum, zi =potential confounders

I As exposure increases, distribution of gestational age at
delivery stochastic non-increasing

I How to nonparametrically model such changes and conduct
hypothesis tests



Modeling of Stochastic Ordering

I Initially consider case with two unknown distributions, P1 and
P2 defined on X with P1 - P2.

I Bayesian estimation considered by Gelfand & Kottas (01) -
used products of independent DP components

I Our Goals:

1. Flexible Prior on set CE of stochastically ordered distributions
2. Efficient MCMC approach for computation
3. Methods for hypothesis testing



Hoff (2003, Biometrika) Formulation

I Goal is to choose a prior for (P1, . . . ,PK ) ∈ CE

I CE = weakly closed convex set with extreme points
{(δs) : s = (s1, . . . , sK ) ∈ SK}

I SK = {(s1, . . . , sK ) ∈ XK : si ≤ sj∀(i , j) ∈ E}, with E
pre-specified matrix defining ordering

I Main Result: DP prior on SK induces prior on CE



Restricted Dependent DP (Dunson & Peddada, 07)

I Hoff (03) does not allow continuous distributions,
computation is difficult & no allowance for hypothesis testing

I Applying Sethuraman (94) & Hoff (03), we define restricted
dependent DP (rDDP) priors for (P1, . . . ,PK ) ∈ CE :

Pk(·) =
∞∑
h=1

πhδΘhk
, Θh = (Θh1, . . . ,ΘhK ) ∼ Q0

with Q0 a base measure on SK & {πh} = typical DP weights

I rDDP modifies DDP (MacEachern, 99) to use restricted Q0



Two Group Example

I (P1,P2) ∼ rDDP(αQ0) implies:

P1 =
∞∑
h=1

πhδΘh1
, P2 =

∞∑
h=1

πhδΘh2

I (Θh1,Θh2) ∼ Q0, with Q0(Θh1 ≤ Θh2) = 1

I For example, Q0 = truncated bivariate normal

I To limit bias & facilitate testing, allow probability mass on the
boundary by choosing Q0 to correspond to:

f (Θ1,Θ2) = f1(Θ1){π0δ0(Θ2 −Θ1) + (1− π0)f2(Θ2 −Θ1).

where f1 a density on R and f2 is a density supported on R+



One draw from the rDDP



rDDP Mixtures

I We can use (P1, . . . ,PK ) as a collection of mixture
distributions to obtain a class of rDDPM models

I Let gk(y) =
∫
K (y , µ)dPk(µ) denote the density in group k,

with K (·) a kernel satisfying monotone stochastic order

I Integral operator induces mapping from CE → LE , with
(P1, . . . ,PK ) ∈ CE&(g1, . . . , gK ) ∈ LE .

I For normal K (·), LE contains all K × 1 collections of densities
satisfying partial ordering E in its closure



One draw from the rDDPM



Hypothesis Testing - 2 Group Case

I Hypothesis testing of equalities in distributions, g1, g2, against
stochastically ordered alternatives

I Differences in g1, g2 controlled through differences in mixture
distributions P1,P2

I In two group case, focus on interval null based on TV distance

d12 = max
B∈B
|P1(B)− P2(B)|

I With βh = Θ2h −Θ1h,
d12 =

∑∞
h=1 πh1(βh>0) ∼ Beta(α(1− π0), απ0)

I Hypotheses: H0 : d12 ≤ ε,H1 : d12 > ε.



Multiple Groups & Computation

I Extensions to multiple groups & censored data are trivial

I Posterior computation can proceed via a highly-efficient &
simple blocked Gibbs sampler (Ishwaran & James, 01)

I We ran a simulation study to assess frequentist operating
characteristics



Simulation study (K = 2)

I Case 1: Both Group 1 and Group 2 generated from f (y) =
0.2N(y ;−2.5, τ−1) + 0.7N(y ; 0, τ−1) + 0.1N(y ; 1.5, τ−1),
τ = 3

I Case 2: Change the component-specific means
(−2.4, 0.4, 2.2).

I Simulated 100 datasets under three sample sizes, 10, 25 and
100.

I Fix ε, choose π0 such that P(d12 < ε) = 0.5.



Simulation results (Case 1)



Simulation results (Case 2)



Sensitivity to ε



DNA Repair Studies Application

I Interest in identifying genes predictive of DNA repair rates for
individuals in Environmental Genome Project

I Frequency of strand breaks on individual cell level measured at
baseline, after induced damage & after repair

I Initially study assessed impact of dose of H2O2 & repair time
using samples of 100 cells from single subject



DNA Repair Studies Application

I Batches of cells were exposed to 0, 5, 20, 50 or 100µ mol of
H2O2 (hydrogen peroxide)

I DNA damage was then measured in individual cells after
allowing a repair time of 0, 60 or 90 min.

I xi for cell i : Olive tail moment, surrogate of the frequency of
DNA strand-breaks obtained using the comet assay.

I Let ai ∈ {1, . . . ,K} be a group index denoting the level of
H2O2 and repair time for cell i .

I The value of ai for each dose × repair time value is shown in
Fig. 3.

I The total sample size is 1400, with 100 observation per group
except for groups 9 and 13, which had 50.



DNA Repair Studies Application

I Among cells with zero repair time, DNA damage should be
nondecreasing with the dose of H2O2.

I In addition, within a given dose level, DNA damage should be
non-increasing with repair time.

I we make the ordering assumption illustrated in Fig. 3 using a
directed graph, with arrows pointing towards stochastically
larger groups.

I We wish to assess whether or not DNA damage continues to
increase at higher levels of H2O2 exposure, and investigate
whether or not damage is significantly reduced across each
increment of the repair time.



Directed graph indicating stochastic order



Results for Genotoxicity Application



Discussion

I Bayesian method for testing differences among groups against
stochastically ordered alternatives

I Also allows estimation of densities (or pmfs) in each group

I Covariates can be included & approach can be embedded in
hierarchical model (allowing censoring, missing data,
multivariate observations of latent variable, etc)

I Allow stochastic ordering with continuous predictors?



Stochastic Ordering with Continuous Predictors (Wang &
Dunson, 07)

I Generalize estimation & testing methods to continuous
predictors

I Let PX = {(Px , x ∈ X ) : Px ∈ P, x ∈ X}, P = set of
probability measures on B(U),U ,X = subsets of R

I Need to define a prior for PX with support on

CX = {(Px , x ∈ X ) ∈ PX : Px - Px ′ , x ≤ x ′, x , x ′ ∈ X}.

I How to accomplish, while having simple computation &
hypothesis testing?



Mixing over Extreme Points

I Lemma 1 - CX = weakly closed convex set → any elements of
CX expressed as mixture over the extreme points

I Lemma 2 - the extreme points of CX are
ex{CX } = {(δs(x), x ∈ X ) : s ∈ SX }, where SX=space of
non-decreasing functions

I Theorem 1: For any P ∈ CX there exists a mixture measure
Q such that (Px , x ∈ X ) =

∫
SX (δs(x) : x ∈ X )dQ(s).

I Prior for Q on SX induces prior for P on CX !



Proposed rDDP Mixture Model

I Motivated by this theory, we choose the rDDP prior:

Px =
∞∑
h=1

πhδΘh(x),

where θh ∼ Q0 and Q0 has support on SX .

I The “atoms” in the Dirichlet process correspond to
non-decreasing stochastic processes

I Monotone splines (Ramsay, 1988) for the functional atoms

I Letting f (y |x) =
∫
N(y ;µ, σ2)dPx(µ),obtain a method for

isotonic density regression



Local & Global Hypothesis Testing

I We consider the following local null and alternative:

H0(x , x ′) : dTV (x , x ′) < ε vs.H1(x , x ′) : dTV (x , x ′) ≥ ε,

with dTV (x , x ′) = supy∈R|Fx(y)− Fx ′(y)|
I Local null H0(x , x ′)→ effectively no change between x and x ′

I Global null formulated as intersections of local nulls

I H0(0, x) = ∩x ′<xH0(x , x ′).



Simulation Study

I To assess performance, we ran a simulation study with 200
datasets have size n = 500

I The response variable y was generated from a mixture of two
normals, with no association for x ∈ [0, 0.3] & a non-linear
association in x ∈ [0.3, 0.7]

I Two normal components had different polynomial regressions
in the mean



Simulation Study Results - Conditional Densities



Simulation Study Results - local testing


