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Motivation for joint probability models

I Increasing interest in high-dimensional data in broad
applications

I Focus may be on prediction, variable selection, inference on
dependence, etc

I Most literature focuses on yi = (yi1, . . . , yip)T ∈ <p

I Today’s focus: general class of flexible joint probability models
for high-dimensional categorical data



Motivation for joint probability models

I Flexible joint probability model for yi can be used directly to
predict a subset of the elements of yi given the other values

I Univariate & multivariate classification problems dealt with
automatically

I Accommodates higher order interactions automatically
without explicitly parameterizing these interactions

I Joint modeling of responses & predictors makes it easy to
handle missing data

I Adapted easily for joint nonparametric modeling for general
data types (functions, images, text, etc) by using the model
for latent class indices



Motivating application

I Modeling dependence of nucleotides within the
p53 transcription factor binding motif.

I p53 tumor-suppressor = short DNA sequence, regulates the
expression of genes involved in variety of cellular functions.

I A, C, G, T nucleotides at 20 positions for 574 sequences (Wei
et al. 2006).

I Flexibly characterize the dependence structure and test for
positional dependencies.

I Models of nucleotide sequences useful for finding gene
regulatory regions & for other uses



Recap: Modeling multivariate ordinal data

I Suppose we have yi ∈ {1, . . . ,C}, with the ordering in the
levels important

I For example, yi may measure severity of response, with yi = 1
mild, yi = 2 moderate, yi = 3 severe.

I Likelihood of data is multinomial:

n∏
i=1

C∏
j=1

π
I (yij=j)
ij

where πij = Pr(yi = j | xi )-how to model??



Recap: Ordinal Response Regression

I A typical approach is to let

Pr(yi ≤ j | xi ) = F (αj − x ′iβ),

where F (·) is a cdf

I Here, −∞ = α0 < α1 < . . . < αC−1 < αC =∞ characterize
the baseline distribution of the categorical response.

I For example, if we choose F (z) = Φ(z), then we obtain a
generalized probit model

I If we choose F (z) = 1/{1 + exp(−z)},then we obtain a
generalized logit model

I These models represent direct extensions of probit and logistic
regression models for binary response data.



Recap: Modeling multivariate nominal data

I yi = (yi1, . . . , yip)T , with yij ∈ {1, . . . , dj}.
I Generalized latent trait models (GTLM) accommodate

different data types (continuous, count, binary, ordinal).

I Define glm for each outcome with shared normal latent traits
in these models (Sammel et al., 1997; Moustaki & Knott,
2000; Dunson, 2000, 2003).

I Motivated by the nucleotide application, Barash et al. (2003)
used Bayes networks (BN) to explore models with varying
degrees of complexity.

I Even with very efficient model search algorithms, only feasible
to visit a tiny subset of the model space for moderate p.

I Difficult to define an appropriate penalty for model
complexity, overfitting tends to occur in practical examples.



Recap: Multivariate probit models

I Link each yij to an underlying continuous variable zij , with yij
assumed to arise via thresholding zij .

I When yij ∈ {0, 1}, a MVN on zi = (zi1, . . . , zip)T induces the
widely used multivariate probit model (Ashford and Sowden,
1970; Chib and Greenberg, 1998).

I Can accommodate nominal data with dj > 2 by introducing a
vector of variables zij = (zij1, . . . , zijdj )

T underlying yij with
yij = l if zijl = max zij :
multivariate multinomial probit model.

I Model zi as
∑p

j=1 dj dimensional Gaussian with covariance
matrix Σ.



Recap: Multivariate probit models

I A Gaussian latent variable needed for each level of the
response.

I The relationship between the dependence in the latent
variables and dependence in the observed categorical variables
is complex and difficult to interpret.

I Need to constrain at least p diagonal elements of Σ for
identifiability.

I Complicates sampling from the full conditional posterior of Σ.

I Zhang et al. (2006, 2008) used parameter-expanded MH for
posterior computation in multivariate multinomial probit
models.



Background on factor models

I When yi ∈ <p, factor models useful for dimension reduction
(West 03; Carvalho et al. 08; Bhattacharya & Dunson 10)

I Explain dependence among high dimensional observations
through k << p underlying factors.

I The Gaussian linear factor model is most commonly used,

yi = µ+ Ληi + εi , εi ∼ Np(0,Σ), i = 1, . . . , n,

I Λ is a p × k factor loadings matrix, ηi ∼ Nk(0, Ik) are latent
factors. Marginally, yi ∼ Np(0,Ω) with Ω = ΛΛT + Σ.

I Easily adapted to accommodate binary & ordered categorical
y ′ijs through use of underlying variables



Motivation

I Aim to explain dependence among the high-dimensional
nominal variables in terms of relatively few latent factors.

I Similar to Gaussian factor models, but factors on simplex
more natural here.

I Joint distribution of yi induced by our model corresponds to a
PARAFAC decomposition (De Lathauwer et al., 2000) of
probability tensors.

I Related to mixed membership models, such as latent Dirichlet
allocation (Blei et al. 2003) for topic modeling, also Pritchard
et al. (2000, 2003).



Product multinomial models for MOC data (Dunson &
Xing, 2009 JASA)

I Focus on p = 2, so that data for subject i consist of a pair of
categorical variables, xi = (xi1, xi2)′.

I Results in a d1 × d2 contingency table with cell one can let
(c1, c2) containing the count

∑n
i=1 1(xi1 = c1, xi2 = c2), for

c1 = 1, . . . , d1 and c2 = 1, . . . , d2.

I Our focus is on parsimonious modeling of the cell
probabilities, π = {πc1c2}, with πc1c2 = Pr(xi1 = c1, xi2 = c2).

I Reduce d1d2 − 1 free parameters.

I Let ψ(1), ψ(2) ∈ Sd1−1 × Sd2−1
I One simple way is to have Pr(xi1 = c1) = ψ

(1)
c1 and

Pr(xi2 = c2) = ψ
(2)
c2 with xi1 and xi2 independent.

I In this case, we obtain πc1c2 = ψ
(1)
c1 ψ

(2)
c2 .

I Highly parsimonious d1 + d2 − 2 free parameters.



Product multinomial models for MOC data (Dunson &
Xing, 2009 JASA)

I Overly restrictive

I Latent structure analysis (Lazarsfeld and Henry 1968;
Goodman 1974)

I Relies on the finite mixture specification

Pr(xi1 = c1, xi2 = c2) = πc1c2 =
k∑

h=1

νhψ
(1)
hc1
ψ
(2)
hc2

where ν = (ν1, . . . , νk)′ is a vector of mixture probabilities,

I zi ∈ {1, . . . , k} denotes a latent class index,

I Pr(xi1 = c1 | zi = h) = ψ
(1)
hc1

is the probability of xi1 = c1 in
class h,

I Pr(xi2 = c2 | zi = h) = ψ
(2)
hc1

is the probability of xi2 = c2 in
class h

I xi1 and xi2 are conditionally independent given zi .



Basic facts about tensors

I Let Πd1...dp = set of probability tensors, with π ∈ Πd1...dp →

π =
{
πc1...cp ≥ 0, cj = 1, . . . , dj , j = 1, . . . , p :

d1∑
c1=1

. . .

dp∑
cp=1

πc1...cp = 1
}

I A decomposed tensor (Kolda, 2001) D = u(1) ⊗ u(2) . . .⊗ u(p), or

elementwise, Dc1...cp = u
(1)
c1 u

(2)
c2 . . . u

(p)
cp .

I PARAFAC rank (Harshman, 1970) – minimal r such that D is a
sum of r decomposed tensors.



Nonnegative tensor factorizations

I Dunson & Xing (2009) decompose probability tensor π as

πc1...cp =
k∑

h=1

νhψ
(1)
hc1
. . . ψ

(p)
hcp

(1)

where νh = pr(zi = h), and ψ
(j)
h ∈ Sdj−1.

I (1) is a form of non-negative PARAFAC decomposition



Infinite Mixture of Product Multinomials

I Although any multivariate categorical data distribution can be
expressed as above for for a sufficiently large k, a number of
practical issues arise in the implementation.

I Firstly, it is not straightforward to obtain a well-justified
approach for estimation of k.

I Because the data are often very sparse with most of the cells
in the d1 · · · dp contingency table being empty, a unique
maximum likelihood estimate of the parameters often does
not exist even when a modest k is chosen.

I Such problems may lead one to choose a very small k , which
may be insufficient

I Follow a Bayesian nonparametric approach



Infinite Mixture of Product Multinomials

I We propose to induce a prior, π ∼ P through the following
specification

π =
∞∑
h=1

νhΨh, Ψh = ψ
(1)
h ⊗ · · · ⊗ ψ

(p)
h

ψ
(j)
h ∼ P0j , independently for j = 1, . . . , p; h = 1, . . . ,∞
ν ∼ Q.

I P0j is a probability measure on Sdj−1.

I Q is a probability measure on the countably infinite
probability simplex, S∞.



Choice of prior for P0j and Q

I P0j may correspond to a Dirichlet measure with

ψ
(j)
h ∼ Diri(aj1, . . . , ajcj )

I Q corresponds to a Dirichlet process
∑

h πhδh where
πh = Vh

∏
l<h(1− Vl) with Vh ∼ beta(1, α) independently for

h = 1, . . . ,∞ where α > 0 is a precision parameter
characterizing Q.



Testing and Inferences

I Interest to test for independence of the elements of
xi = (xi1, . . . , xip)′.

I In the motif application, considerable debate on the
appropriateness of the independence assumption

I Under our proposed formulation, the null hypothesis of
independence is nested within a nonparametric alternative
that accommodates a sequence of models of increasing
complexity including the saturated model.

I In particular, the independence model corresponds to
H0 : ν1 = 1.

I As noted in Berger and Sellke (1987), interval null hypotheses
are often preferred to point null hypotheses.



Testing and Inferences

I Motivated by this reasoning and by computational consid-
erations, we focus instead on the interval null

H0 : ν∗ > 1− ε, ν∗ = max{νh, h = 1, . . . , k∗}

I Fix ε > 0 (usually 0.05)



Measures of association for nominal data

I Infer dependence structure from pairwise dependencies
between yij and yij ′ for j 6= j ′ ∈ {1, . . . , p}

I Pairwise Cramer’s V association matrix ρ = (ρjj ′)

ρ2jj ′ =
1

min{dj , dj ′} − 1

dj∑
cj=1

dj′∑
cj′=1

(πcjcj′ − ψ̄
(j)
cj ψ̄

(j ′)
cj′ )2

ψ̄
(j)
cj ψ̄

(j ′)
cj′

with ψ̄
(j)
l =

∑k∗

h=1 νhψ
(j)
hl .

I ρjj ′ ranges from 0 to 1, with ρjj ′ ≈ 0 when xij and xij ′ are
independent.



Measures of association for nominal data

I Posterior distribution of ρjj ′ for all (j , j ′) pairs based on the
output of the Gibbs sampler.

I Construct recommend reporting a p × p association matrix,
with the elements corresponding to posterior means for each
ρjj ′ .

I In addition, we can calculate posterior probabilities and Bayes
factors for local null hypotheses, H1,jj ′ : ρjj ′ > ε from the
Gibbs sampler output.



Simulation studies

I Simulated data consisted of A, C, G, T nucleotides
(dj = d = 4) at p = 20 positions for n = 100 sequences.

I 2 settings: generate the nucleotides (1) independently, and
(2) assuming dependence in locations 2, 4, 12, and 14.



Simulation studies



Simulation studies
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