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Motivation for joint probability models

> Increasing interest in high-dimensional data in broad
applications

» Focus may be on prediction, variable selection, inference on
dependence, etc

» Most literature focuses on y; = (i1, ..., yip) | € RP

» Today's focus: general class of flexible joint probability models
for high-dimensional categorical data



Motivation for joint probability models

> Flexible joint probability model for y; can be used directly to
predict a subset of the elements of y; given the other values

» Univariate & multivariate classification problems dealt with
automatically

» Accommodates higher order interactions automatically
without explicitly parameterizing these interactions

» Joint modeling of responses & predictors makes it easy to
handle missing data

» Adapted easily for joint nonparametric modeling for general
data types (functions, images, text, etc) by using the model
for latent class indices



Motivating application

» Modeling dependence of nucleotides within the
p53 transcription factor binding motif.

> p53 tumor-suppressor = short DNA sequence, regulates the
expression of genes involved in variety of cellular functions.

» A, C, G, T nucleotides at 20 positions for 574 sequences (Wei
et al. 2006).

» Flexibly characterize the dependence structure and test for
positional dependencies.

» Models of nucleotide sequences useful for finding gene
regulatory regions & for other uses



Recap: Modeling multivariate ordinal data

» Suppose we have y; € {1,..., C}, with the ordering in the
levels important

» For example, y; may measure severity of response, with y; =1
mild, y; = 2 moderate, y; = 3 severe.

» Likelihood of data is multinomial:

ITER

i=1j=1

where 7;; = Pr(y; = j | x;)-how to model??



v

: Ordinal Response Regression

A typical approach is to let

Pr(y: <j | xi) = F(a; — x;B),

where F(-) is a cdf

Here, —co =g < a1 < ... < ac_1 < a¢c = 0o characterize
the baseline distribution of the categorical response.

For example, if we choose F(z) = ®(z), then we obtain a
generalized probit model

If we choose F(z) =1/{1+ exp(—z)},then we obtain a
generalized logit model

These models represent direct extensions of probit and logistic
regression models for binary response data.



Recap: Modeling multivariate nominal data

> yi= (v, ayip)Tv with yjj € {1,....d;}.
» Generalized latent trait models (GTLM) accommodate
different data types (continuous, count, binary, ordinal).

> Define gIm for each outcome with shared normal latent traits
in these models (Sammel et al., 1997; Moustaki & Knott,
2000; Dunson, 2000, 2003).

» Motivated by the nucleotide application, Barash et al. (2003)
used Bayes networks (BN) to explore models with varying
degrees of complexity.

» Even with very efficient model search algorithms, only feasible
to visit a tiny subset of the model space for moderate p.

» Difficult to define an appropriate penalty for model
complexity, overfitting tends to occur in practical examples.



Recap: Multivariate probit models

» Link each yj; to an underlying continuous variable z;;, with y;
assumed to arise via thresholding z;;.

» When y; € {0,1}, a MVN on z = (z1,...,2p)" induces the
widely used multivariate probit model (Ashford and Sowden,
1970; Chib and Greenberg, 1998).

» Can accommodate nominal data with d; > 2 by introducing a
vector of variables zj = (zj1, ..., zjq,) " underlying y;; with
yij = 1'if zijj = max zj; :
multivariate multinomial probit model.

» Model z; as Zle d; dimensional Gaussian with covariance
matrix .



Recap: Multivariate probit models

v

A Gaussian latent variable needed for each level of the
response.

» The relationship between the dependence in the latent
variables and dependence in the observed categorical variables
is complex and difficult to interpret.

» Need to constrain at least p diagonal elements of X for
identifiability.
» Complicates sampling from the full conditional posterior of %.

» Zhang et al. (2006, 2008) used parameter-expanded MH for
posterior computation in multivariate multinomial probit
models.



Background on factor models

» When y; € RP, factor models useful for dimension reduction
(West 03; Carvalho et al. 08; Bhattacharya & Dunson 10)

» Explain dependence among high dimensional observations
through k << p underlying factors.

» The Gaussian linear factor model is most commonly used,
Yi=p+MNni+e, €~ p(O,Z), i=1,...,n,

» Ais a p x k factor loadings matrix, n; ~ Ni(0, Ix) are latent
factors. Marginally, y; ~ N,(0,Q) with Q = AAT + %

» Easily adapted to accommodate binary & ordered categorical
yjs through use of underlying variables



> Aim to explain dependence among the high-dimensional
nominal variables in terms of relatively few latent factors.

» Similar to Gaussian factor models, but factors on simplex
more natural here.

» Joint distribution of y; induced by our model corresponds to a
PARAFAC decomposition (De Lathauwer et al., 2000) of
probability tensors.

> Related to mixed membership models, such as latent Dirichlet
allocation (Blei et al. 2003) for topic modeling, also Pritchard
et al. (2000, 2003).



Product multinomial models for MOC data (Dunson &

Xing, 2009 JASA)

» Focus on p = 2, so that data for subject / consist of a pair of
categorical variables, x; = (x1, xj2)’.

» Results in a di x db contingency table with cell one can let
(c1, c2) containing the count "7 ; 1(xj1 = c1, X2 = ), for
a=1...,dvand o =1,...,d>.

» Our focus is on parsimonious modeling of the cell
probabilities, m = {7¢,c, }, with 7, = Pr(xi1 = c1, X2 = ).

» Reduce d1d2 — 1 free parameters.

» Let M) 93 € Sy 1 x Sy,_1

» One simple way is to have Pr(xj = c1) = w((_-ll) and
Pr(xi» = &) = zpﬁf) with x;1 and x;» independent.

> In this case, we obtain 7., = 1/1C1 g)

» Highly parsimonious di 4+ d» — 2 free parameters.



Product multinomial models for MOC data (Dunson &

Xing, 2009 JASA)

> Overly restrictive

» Latent structure analysis (Lazarsfeld and Henry 1968;
Goodman 1974)

» Relies on the finite mixture specification

k
1) (2
Pr(xi1 = c1,Xj2 = @) = Teje, = Z Vh@bl(,ciﬁbf,cz
h=1
where v = (v1,..., k) is a vector of mixture probabilities,
» z; € {1,..., k} denotes a latent class index,
> Pr(xiy =1 | z = h) = u}.) is the probability of x;1 = c1 in
class h,
> Pr(xi2 = c2 | z = h) = ) is the probability of xi = ¢ in
class h
> xj1 and xjp are conditionally independent given z;.



Basic facts about tensors

> Let Iy, 4, = set of probability tensors, with m € My, 4, —

d; dp
7T:{7TC1_“CPZO,C'J':].,...7C]'j,_j:1,...7pZ Z...qumcpzl}

=1 cp=1

> A decomposed tensor (Kolda, 2001) D = uD @u® . @ulP, or

) n @
elementwise, D, .o, = u((cl) u£2) . ugf).

» PARAFAC rank (Harshman, 1970) — minimal r such that D is a
sum of r decomposed tensors.




Nonnegative tensor factorizations

» Dunson & Xing (2009) decompose probability tensor 7 as
. 1
Teycp = Z Vhw/(wz cee 7/}/(72 (1)
h=1

where v, = pr(z; = h), and w,(,j) € Sd;-1-
» (1) is a form of non-negative PARAFAC decomposition



Infinite Mixture of Product Multinomials

> Although any multivariate categorical data distribution can be
expressed as above for for a sufficiently large k, a number of
practical issues arise in the implementation.

> Firstly, it is not straightforward to obtain a well-justified
approach for estimation of k.

» Because the data are often very sparse with most of the cells
in the d; - - - d, contingency table being empty, a unique
maximum likelihood estimate of the parameters often does
not exist even when a modest k is chosen.

» Such problems may lead one to choose a very small k, which
may be insufficient

> Follow a Bayesian nonparametric approach



Infinite Mixture of Product Multinomials

» We propose to induce a prior, ™ ~ P through the following
specification

T = ZVth Wh=¢§,1)®~-®1/)§,p)
h—=1

wﬁ,j) ~ Pyj, independently forj =1,...,p;h=1,...,00
v o~ Q.

> Po; is a probability measure on Sy, 1.

> @ is a probability measure on the countably infinite
probability simplex, Sx.



Choice of prior for Py; and Q

» Pp; may correspond to a Dirichlet measure with

1/)/(;’) ~ Diri(ajl, SN ajcj)

» Q corresponds to a Dirichlet process ), w40, where
= Vi [[;-p(1 = Vi) with V}, ~ beta(1, ) independently for
h=1,...,00 where & > 0 is a precision parameter
characterizing Q.



Testing and Inferences

> Interest to test for independence of the elements of
Xi = (Xi1, .-, Xip).

» In the motif application, considerable debate on the
appropriateness of the independence assumption

» Under our proposed formulation, the null hypothesis of
independence is nested within a nonparametric alternative
that accommodates a sequence of models of increasing
complexity including the saturated model.

» In particular, the independence model corresponds to
Hyo:11 =1.

» As noted in Berger and Sellke (1987), interval null hypotheses
are often preferred to point null hypotheses.



Testing and Inferences

» Motivated by this reasoning and by computational consid-
erations, we focus instead on the interval null

HO:ve >1—€, wve=max{vp,h=1,... k.}

» Fix ¢ > 0 (usually 0.05)



Measures of association for nominal data

» Infer dependence structure from pairwise dependencies
between y;; and y; for j # j € {1,...,p}
» Pairwise Cramer’s V association matrix p = (pjj/)

70")\2

2 - CJC/ wcj cjr )
Py =
Y mln{d‘” d } a 1 CZ].C/Z—l QpCj wCJ/

R e .
with 1/1,(’) = r Vhwg,).

» pjir ranges from 0 to 1, with p;» =~ 0 when x;; and x;; are
independent.



Measures of association for nominal data

» Posterior distribution of pj; for all (j,,") pairs based on the
output of the Gibbs sampler.

» Construct recommend reporting a p X p association matrix,
with the elements corresponding to posterior means for each
Pjj’-

» In addition, we can calculate posterior probabilities and Bayes

factors for local null hypotheses, Hy ji : pjj» > € from the
Gibbs sampler output.



Simulation studies

» Simulated data consisted of A, C, G, T nucleotides
(dj = d = 4) at p = 20 positions for n = 100 sequences.

» 2 settings: generate the nucleotides (1) independently, and
(2) assuming dependence in locations 2, 4, 12, and 14.



Simulation studies
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Figure 1. Histograms of estimated posterior probabilities of H in each of the 100 simulations under (a) case 1 (no positional dependence—H(

is true) and (b) case 2 (positional dependence—H] is true).



Simulation studies
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Figure 2. Results of simulation case 2—percentages of simulations for which (a) Pr(h'wrlx) > (.95, and (b) the Xie and Geng (2008) method
estimated an association between positions j, /. The true model has dependence in positions 2, 4, 12, and 14.



	Connections with tensor decompositions

