High-dimensional Bayes

Debdeep Pati Florida State University

October 30, 2014

Horseshoe (Carvalho, Polson and Scott, 2010, Biometrika)

- $\blacktriangleright \ \theta_j \mid \lambda_j, \tau \sim \textit{N}(0, \lambda_j^2 \tau^2), \lambda_j \sim \mathsf{Ca}^+(0, 1), \tau \sim \mathsf{Ca}^+(0, 1)$
- ► The horseshoe prior has two interesting features that make it particularly useful as a shrinkage prior for sparse problems.
- ▶ Its flat, Cauchy-like tails allow strong signals to remain large (that is, un-shrunk) a posteriori.
- ▶ Yet its infinitely tall spike at the origin provides severe shrinkage for the zero elements of θ .

Horseshoe for fixed au

- ▶ Let $y_i = \theta_i + \epsilon_i$, i = 1, ..., n, $\epsilon_i \sim N(0, 1)$.
- Assume for now that $\tau = 1$, and define $\kappa_i = 1/(1 + \lambda_i^2)$.
- \triangleright κ_i is a random shrinkage coefficient, and can be interpreted as the amount of weight that the posterior mean for θ_i places on 0 once the data γ have been observed.

$$E(\theta_i \mid y_i, \lambda_i) = \frac{\lambda_i^2}{1 + \lambda_i^2} y_i + \frac{1}{1 + \lambda_i^2} 0 = (1 - \kappa_i) y_i$$

▶ Since $\kappa_i \in [0,1]$, this is clearly finite, and so by Fubini's Theorem

$$E(\theta_i|y) = \int_0^1 (1-\kappa_i)y_i\pi(\kappa_i|y_i)d\kappa_i$$

= $(1-E(\kappa_i|y_i))y_i$.

▶ If $\lambda_i \sim \mathsf{Ca}^+(0,1)$, $\kappa_i \sim \mathsf{Beta}(1/2,1/2)$.

κ_i for various priors

Table 1. Priors for λ_i and κ_i associated with some common local shrinkage rules. For the normal-exponential-gamma prior, it is assumed that d=1. Densities are given up to constants.

Prior for θ_i	Density for λ_i	Density for κ_i
Double-exponential	$\lambda_i \exp(-\lambda_i^2/2)$	$\kappa_i^{-2} \exp\left\{-1/(2\kappa_i)\right\}$
Cauchy	$\lambda_i^{-2} \exp\{1/(2\lambda_i^2)\}$	$\kappa_i^{-1/2} (1 - \kappa_i)^{-3/2} \exp\left[-\kappa_i / \{2/(1 - \kappa_i)\}\right]$
Strawderman-Berger	$\lambda_i (1 + \lambda_i^2)^{-3/2}$	$\kappa_i^{-1/2}$
Normal-exponential-gamma	$\lambda_i (1 + \lambda_i^2)^{-(c+1)}$	κ_i^{c-1}
Normal-Jeffreys	λ_i^{-1}	$\kappa_i^{-1}(1-\kappa_i)^{-1}$
Horseshoe	$(1+\lambda_i^2)^{-1}$	$\kappa_i^{-1/2} (1 - \kappa_i)^{-1/2}$

Distribution of κ_i for various priors

Strengths of the Horseshoe prior

- It is highly adaptive both to unknown sparsity and to unknown signal-to-noise ratio.
- ▶ It is robust to large, outlying signals.
- ▶ One can do variable selection by thresholding κ_i .

Horseshoe density

▶ The density $\pi_H(\theta_i)$ is not expressible in closed form, but very tight upper and lower bounds in terms of elementary functions are available.

Theorem

The Horseshoe prior satisfies the following:

- 1. $\lim_{\theta\to 0} \pi_H(\theta) = \infty$.
- 2. For $\theta \neq 0$,

$$\frac{\mathcal{K}}{2}\log\left(1+\frac{4}{\theta^2}\right) < \pi_{H}(\theta) < \mathcal{K}\log\left(1+\frac{2}{\theta^2}\right).$$

where
$$K = 1/\sqrt{2\pi^3}$$
.

Comparison with various priors

Fig. 1. Comparison of the horseshoe (solid), Cauchy (dotted) and double-exponential (dashed) densities.

Properties of Horseshoe

- It is symmetric about zero.
- ▶ It has heavy, Cauchy like tails that decay like θ_i^2 .
- ▶ It has an infinitely tall spike at 0, in the sense that the density approaches infinity logarithmically fast asfrom either side.
- ▶ The priors flat tails allow each θ_i to be large if the data warrant such a conclusion, and yet its infinitely tall spike at zero means that the estimate can also be quite severely shrunk.