High-dimensional Bayes

Debdeep Pati
Florida State University

October 30, 2014

- $\theta_{j} \mid \lambda_{j}, \tau \sim N\left(0, \lambda_{j}^{2} \tau^{2}\right), \lambda_{j} \sim \mathrm{Ca}^{+}(0,1), \tau \sim \mathrm{Ca}^{+}(0,1)$
- The horseshoe prior has two interesting features that make it particularly useful as a shrinkage prior for sparse problems.
- Its flat, Cauchy-like tails allow strong signals to remain large (that is, un-shrunk) a posteriori.
- Yet its infinitely tall spike at the origin provides severe shrinkage for the zero elements of θ.

Horseshoe for fixed τ

- Let $y_{i}=\theta_{i}+\epsilon_{i}, i=1, \ldots, n, \epsilon_{i} \sim N(0,1)$.
- Assume for now that $\tau=1$, and define $\kappa_{i}=1 /\left(1+\lambda_{i}^{2}\right)$.
- κ_{i} is a random shrinkage coefficient, and can be interpreted as the amount of weight that the posterior mean for θ_{i} places on 0 once the data y have been observed.

$$
E\left(\theta_{i} \mid y_{i}, \lambda_{i}\right)=\frac{\lambda_{i}^{2}}{1+\lambda_{i}^{2}} y_{i}+\frac{1}{1+\lambda_{i}^{2}} 0=\left(1-\kappa_{i}\right) y_{i}
$$

- Since $\kappa_{i} \in[0,1]$, this is clearly finite, and so by Fubini's Theorem

$$
\begin{aligned}
E\left(\theta_{i} \mid y\right) & =\int_{0}^{1}\left(1-\kappa_{i}\right) y_{i} \pi\left(\kappa_{i} \mid y_{i}\right) d \kappa_{i} \\
& =\left(1-E\left(\kappa_{i} \mid y_{i}\right)\right) y_{i}
\end{aligned}
$$

- If $\lambda_{i} \sim \mathrm{Ca}^{+}(0,1), \kappa_{i} \sim \operatorname{Beta}(1 / 2,1 / 2)$.

κ_{i} for various priors

Table 1. Priors for λ_{i} and κ_{i} associated with some common local shrinkage rules. For the normal-exponential-gamma prior, it is assumed that $d=1$. Densities are given up to constants.

Prior for θ_{i}
Double-exponential
Cauchy
Strawderman-Berger
Normal-exponential-gamma
Normal-Jeffreys
Horseshoe

Density for λ_{i}
$\lambda_{i} \exp \left(-\lambda_{i}^{2} / 2\right)$
$\lambda_{i}^{-2} \exp \left\{1 /\left(2 \lambda_{i}^{2}\right)\right\}$
$\lambda_{i}\left(1+\lambda_{i}^{2}\right)^{-3 / 2}$
$\lambda_{i}\left(1+\lambda_{i}^{2}\right)^{-(c+1)}$
λ_{i}^{-1}
$\left(1+\lambda_{i}^{2}\right)^{-1}$

Density for κ_{i}
$\kappa_{i}^{-2} \exp \left\{-1 /\left(2 \kappa_{i}\right)\right\}$
$\kappa_{i}^{-1 / 2}\left(1-\kappa_{i}\right)^{-3 / 2} \exp \left[-\kappa_{i} /\left\{2 /\left(1-\kappa_{i}\right)\right\}\right]$
$\kappa_{i}^{-1 / 2}$
κ_{i}^{c-1}
$\kappa_{i}^{-1}\left(1-\kappa_{i}\right)^{-1}$
$\kappa_{i}^{-1 / 2}\left(1-\kappa_{i}\right)^{-1 / 2}$

Distribution of κ_{i} for various priors

Strengths of the Horseshoe prior

- It is highly adaptive both to unknown sparsity and to unknown signal-to-noise ratio.
- It is robust to large, outlying signals.
- One can do variable selection by thresholding κ_{i}.

Horseshoe density

- The density $\pi_{H}\left(\theta_{i}\right)$ is not expressible in closed form, but very tight upper and lower bounds in terms of elementary functions are available.

Theorem
The Horseshoe prior satisfies the following:

1. $\lim _{\theta \rightarrow 0} \pi_{H}(\theta)=\infty$.
2. For $\theta \neq 0$,

$$
\frac{K}{2} \log \left(1+\frac{4}{\theta^{2}}\right)<\pi_{H}(\theta)<K \log \left(1+\frac{2}{\theta^{2}}\right)
$$

where $K=1 / \sqrt{2 \pi^{3}}$.

Comparison with various priors

Fig. 1. Comparison of the horseshoe (solid), Cauchy (dotted) and double-exponential (dashed) densities.

Properties of Horseshoe

- It is symmetric about zero.
- It has heavy, Cauchy like tails that decay like θ_{i}^{2}.
- It has an infinitely tall spike at 0 , in the sense that the density approaches infinity logarithmically fast asfrom either side.
- The priors flat tails allow each θ_{i} to be large if the data warrant such a conclusion, and yet its infinitely tall spike at zero means that the estimate can also be quite severely shrunk.

