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Background on factor models

I Massive dimensional vector of candidate predictors
encountered in many application areas.

I Factor models provide a convenient framework for dimension
reduction in large p, small n applications (West, 2003; Lucas
et al., 2006; Carvalho et al., 2008).

I Explain dependence among high dimensional observations
through fewer number of underlying factors.



Factor Models

I Dependence in the high dimension observations explained
partially through shared dependence on some latent factors

yi = Ληi + εi , cov(εi ) = Ω

I Λ: Factor loadings, ηi : factor corresponding to the ith
observation

I εi are idiosyncratic noise.



Principal component Analysis

I PCA is a orthogonal linear transformation to the data

I Transforms the data to a new coordinate system

I Greatest variance direction is the direction of the first
coordinate

I Centered n × p data matrix X

I Y TY = WΛW T ,

I Λ diagonal matrix of eigen values, columns of W
corresponding eigen vectors

I T = YW are the principal components



Motivating applications: High dimensional regression

I Develop accurate predictive models for health outcomes based
on high-dimensional biomarkers.

I zi ∈ < some continuous health outcome. xi ∈ <p−1 vector of
candidate predictors.

I Sparse factor model for yi = (zi , xi ) ∈ <p jointly.

I Regularized estimation of joint covariance matrix.

I Prediction and variable selection based on induced conditional
E (zi | xi ).



Motivating applications: Large covariance matrix
estimation

I Interest in modeling Cov(yi )

I Factor models provide a natural approach

I Cov(yi ) = ΛΛ′ + Ω

I Low rank + sparse decomposition



Motivating applications: Subspace estimation

I Interest in learning the low dimensional subspace on which yi s
lie

I Estimate Λ

I Considerably harder problem due to identifiability issues

I Can make Λ semi-orthogonal matrix

I Leads to Probabilistic Principal Component Analysis (PPCA)

I Still not enough for subspace estimation



Gaussian Linear Factor Models

I Jointly model yi ’s after normalizing as

yi = Ληi + εi , εi ∼ Np(0,Σ), i = 1, . . . , n,

I Λ is a p × k factor loadings matrix, ηi ∼ Nk(0, Ik) are latent
factors and εi idiosyncratic error with Σ = diag(σ2

1, . . . , σ
2
p).

I Marginalizing over the latent factors, yi ∼ Np(0,Ω) with
Ω = ΛΛT + Σ.



Bayesian factor models - recent developments

I Variable selection-type mixture prior on loadings (Lucas et al.,
2006; Carvalho et al., 2008).

I Recent work on latent feature models using the Indian buffet
process (Griffiths & Ghahramani, 2006; Thibaux & Jordan,
2007).

I Weighted versions have found applications in factor analysis
(Knowles & Ghahramani, 2007; Meeds et al., 2007; Rai &
Daumé, 2009).

I Parameter expansion to induce heavy-tailed default prior on
the loadings (Ghosh & Dunson, 2009).



Focus on Regression and Covariance matrix estimation

I Identifiability of the loadings not necessary in many
applications

I Variable selection-type mixture priors need many one-at-a-time
updates – mixes slowly and computationally challenging.

I Heavy-tailed shrinkage prior on loadings instead, loadings
increasingly shrunk to zero with column index.

I Allows block updating of loadings and selection of truncation
level.



Some notations

I ΘΛ to denote the collection of matrices Λ with p rows and
infinitely many columns such that ΛΛT is a p × p matrix with
all entries finite.

ΘΛ =

{
Λ = (λjh), j = 1, . . . , p, h = 1 . . . ,∞, max

1≤j≤p

∞∑
h=1

λ2
jh <∞

}



The MGPS prior (Bhattacharya & Dunson, 2011
(Biometrika)

I Proposed multiplicative gamma process shrinkage (MGPS)
prior on the loadings is given by

λjh | φjh, τh ∼ N(0, φ−1
jh τ

−1
h ), φjh ∼ G(ν/2, ν/2),

τh =
h∏

l=1

δl , δ1 ∼ G(a1, 1), δl ∼ G(a2, 1), l ≥ 2,

I τh is a global shrinkage parameter for the hth column,
stochastically increasing under the restriction a2 > 1.

I φjh’s are local shrinkage parameters for the elements in the
hth column, avoid over-shrinking the non-zero loadings in
later columns.



Truncation approximation error

I For computational purposes, approximate the infinite loadings
matrix with a finite matrix having few columns relative to p.

I We obtain theoretical bounds on the truncation approximation
error.

I Let (Λ,Σ) ∼ ΠΛ ⊗ ΠΣ and Ω = ΛΛT + Σ. We can
approximate Ω by ΩT = ΛTΛT

T + Σ.

Theorem
If a2 > 2, then for any ε > 0,

pr
{
d∞
(
Ω,ΩT

)
> ε
}
<

6pb

ε(1− a)
aT for T >

log{6pb/ε(1− a)}
log(1/a)

,

where b = E
(
δ−1

1

)
and a = E

(
δ−1

2

)
.



Choice of the truncation level

I Truncate the loadings matrix to have k∗ << p columns.
Posterior samples from approximated conditional posterior.

I How to chose an appropriate level of truncation?

I Redundant factors – correspond to columns of loadings whose
all elements are less than ε in magnitude.

I Effective factors – all non-redundant factors.



A possible approach

I Start with a conservative guess k̃ of k∗.

I At the tth iteration of the Gibbs sampler, define m(t) to be
the number of redundant columns in Λk̃ , whose all elements
are less than ε in magnitude(ε = 10−4 used as a default)

I Usual shrinkage priors on the loadings exhibit the phenomenon
of factor splitting.

I Our approach avoids this problem by shrinking increasingly in
later columns.

I Define k∗(t) = k̃ −m(t) to be the effective number of factors
at iteration t.



Adaptive Gibbs sampler

I Adapt the number of factors as the sampler progresses –
avoids specifying over-conservative initial guess.

I Designed to satisfy the diminishing adaptation condition of
Roberts & Rosenthal (2007). Discard redundant columns if
m(t) > 0, otherwise add a new column with additional
parameters drawn from the prior.

I Let k̃(t) be the truncation level at the tth iteration and
k∗(t) = k̃(t) −m(t) the effective number of factors.

I Estimate k∗ by the mode or median of the samples
{k∗(t)}Nt=B+1.



Covariance matrix estimation

I Set Ω(t) = Λ
(t)

k̃(t)
Λ

(t)′

k̃(t)
+ Σ(t).

I {Ω(t)}Nt=B+1 represent draws from the approximated marginal
posterior distribution of Ω given yi , i = 1, . . . , n.



Regression Coefficient Estimation

I Recall, after marginalizing out latent factors, yi ∼ Np(0,Ω)
with Ω = ΛΛT + Σ.

I E (zi | xi ) = xT
i β, with β = Ω−1

xx Ωzx , true regression
coefficients of z on x .

I Set β(t) = {Ω(t)
xx }−1 Ω

(t)
zx , where Ω

(t)
xx = Λ

(t)
x Λ

(t) T
x + Σ

(t)
xx

denote posterior samples at the tth iteration.

I Computation involves inverting k̃(t) × k̃(t) matrices at tth
iteration.

I Let β̂ denote the posterior mean of β. The proposed
formulation retains the non-zero elements of β while heavily
shrinks the rest toward zero.




