High-dimensional Bayes

Debdeep Pati
Florida State University

November 6, 2014

Background on factor models

- Massive dimensional vector of candidate predictors encountered in many application areas.
- Factor models provide a convenient framework for dimension reduction in large p, small n applications (West, 2003; Lucas et al., 2006; Carvalho et al., 2008).
- Explain dependence among high dimensional observations through fewer number of underlying factors.

Factor Models

- Dependence in the high dimension observations explained partially through shared dependence on some latent factors

$$
y_{i}=\Lambda \eta_{i}+\epsilon_{i}, \quad \operatorname{cov}\left(\epsilon_{i}\right)=\Omega
$$

- Λ : Factor loadings, η_{i} : factor corresponding to the ith observation
- ϵ_{i} are idiosyncratic noise.

Principal component Analysis

- PCA is a orthogonal linear transformation to the data
- Transforms the data to a new coordinate system
- Greatest variance direction is the direction of the first coordinate
- Centered $n \times p$ data matrix X
- $Y^{T} Y=W \wedge W^{T}$,
- Λ diagonal matrix of eigen values, columns of W corresponding eigen vectors
- $T=Y W$ are the principal components

Motivating applications: High dimensional regression

- Develop accurate predictive models for health outcomes based on high-dimensional biomarkers.
- $z_{i} \in \Re$ some continuous health outcome. $x_{i} \in \Re^{p-1}$ vector of candidate predictors.
- Sparse factor model for $y_{i}=\left(z_{i}, x_{i}\right) \in \Re^{p}$ jointly.
- Regularized estimation of joint covariance matrix.
- Prediction and variable selection based on induced conditional $E\left(z_{i} \mid x_{i}\right)$.

Motivating applications: Large covariance matrix estimation

- Interest in modeling $\operatorname{Cov}\left(y_{i}\right)$
- Factor models provide a natural approach
- $\operatorname{Cov}\left(y_{i}\right)=\Lambda \Lambda^{\prime}+\Omega$
- Low rank + sparse decomposition

Motivating applications: Subspace estimation

- Interest in learning the low dimensional subspace on which $y_{i} s$ lie
- Estimate Λ
- Considerably harder problem due to identifiability issues
- Can make Λ semi-orthogonal matrix
- Leads to Probabilistic Principal Component Analysis (PPCA)
- Still not enough for subspace estimation

Gaussian Linear Factor Models

- Jointly model y_{i} 's after normalizing as

$$
y_{i}=\Lambda \eta_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N_{p}(0, \Sigma), \quad i=1, \ldots, n
$$

- Λ is a $p \times k$ factor loadings matrix, $\eta_{i} \sim N_{k}\left(0, I_{k}\right)$ are latent factors and ϵ_{i} idiosyncratic error with $\Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right)$.
- Marginalizing over the latent factors, $y_{i} \sim N_{p}(0, \Omega)$ with $\Omega=\Lambda \Lambda^{\mathrm{T}}+\Sigma$.

Bayesian factor models - recent developments

- Variable selection-type mixture prior on loadings (Lucas et al., 2006; Carvalho et al., 2008).
- Recent work on latent feature models using the Indian buffet process (Griffiths \& Ghahramani, 2006; Thibaux \& Jordan, 2007).
- Weighted versions have found applications in factor analysis (Knowles \& Ghahramani, 2007; Meeds et al., 2007; Rai \& Daumé, 2009).
- Parameter expansion to induce heavy-tailed default prior on the loadings (Ghosh \& Dunson, 2009).

Focus on Regression and Covariance matrix estimation

- Identifiability of the loadings not necessary in many applications
- Variable selection-type mixture priors need many one-at-a-time updates - mixes slowly and computationally challenging.
- Heavy-tailed shrinkage prior on loadings instead, loadings increasingly shrunk to zero with column index.
- Allows block updating of loadings and selection of truncation level.

Some notations

- Θ_{\wedge} to denote the collection of matrices Λ with p rows and infinitely many columns such that $\Lambda \Lambda^{\mathrm{T}}$ is a $p \times p$ matrix with all entries finite.

$$
\Theta_{\Lambda}=\left\{\Lambda=\left(\lambda_{j h}\right), j=1, \ldots, p, h=1 \ldots, \infty, \max _{1 \leq j \leq p} \sum_{h=1}^{\infty} \lambda_{j h}^{2}<\infty\right\}
$$

The MGPS prior (Bhattacharya \& Dunson, 2011 (Biometrika)

- Proposed multiplicative gamma process shrinkage (MGPS) prior on the loadings is given by

$$
\begin{aligned}
& \lambda_{j h} \mid \phi_{j h}, \tau_{h} \sim N\left(0, \phi_{j h}^{-1} \tau_{h}^{-1}\right), \quad \phi_{j h} \sim \mathcal{G}(\nu / 2, \nu / 2), \\
& \tau_{h}=\prod_{l=1}^{h} \delta_{l}, \delta_{1} \sim \mathcal{G}\left(a_{1}, 1\right), \quad \delta_{l} \sim \mathcal{G}\left(a_{2}, 1\right), \quad l \geq 2
\end{aligned}
$$

- τ_{h} is a global shrinkage parameter for the h th column, stochastically increasing under the restriction $a_{2}>1$.
- $\phi_{j h}$'s are local shrinkage parameters for the elements in the h th column, avoid over-shrinking the non-zero loadings in later columns.

Truncation approximation error

- For computational purposes, approximate the infinite loadings matrix with a finite matrix having few columns relative to p.
- We obtain theoretical bounds on the truncation approximation error.
- Let $(\Lambda, \Sigma) \sim \Pi_{\Lambda} \otimes \Pi_{\Sigma}$ and $\Omega=\Lambda \Lambda^{\mathrm{T}}+\Sigma$. We can approximate Ω by $\Omega_{T}=\Lambda_{T} \Lambda_{T}^{T}+\Sigma$.

Theorem
If $a_{2}>2$, then for any $\epsilon>0$,

$$
\operatorname{pr}\left\{d_{\infty}\left(\Omega, \Omega_{T}\right)>\epsilon\right\}<\frac{6 p b}{\epsilon(1-a)} a^{T} \text { for } T>\frac{\log \{6 p b / \epsilon(1-a)\}}{\log (1 / a)}
$$

where $b=E\left(\delta_{1}^{-1}\right)$ and $a=E\left(\delta_{2}^{-1}\right)$.

Choice of the truncation level

- Truncate the loadings matrix to have $k^{*} \ll p$ columns. Posterior samples from approximated conditional posterior.
- How to chose an appropriate level of truncation?
- Redundant factors - correspond to columns of loadings whose all elements are less than ϵ in magnitude.
- Effective factors - all non-redundant factors.

A possible approach

- Start with a conservative guess \tilde{k} of k^{*}.
- At the t th iteration of the Gibbs sampler, define $m^{(t)}$ to be the number of redundant columns in $\Lambda_{\tilde{k}}$, whose all elements are less than ϵ in magnitude $\left(\epsilon=10^{-4}\right.$ used as a default)
- Usual shrinkage priors on the loadings exhibit the phenomenon of factor splitting.
- Our approach avoids this problem by shrinking increasingly in later columns.
- Define $k^{*(t)}=\tilde{k}-m^{(t)}$ to be the effective number of factors at iteration t.

Adaptive Gibbs sampler

- Adapt the number of factors as the sampler progresses avoids specifying over-conservative initial guess.
- Designed to satisfy the diminishing adaptation condition of Roberts \& Rosenthal (2007). Discard redundant columns if $m^{(t)}>0$, otherwise add a new column with additional parameters drawn from the prior.
- Let $\tilde{k}^{(t)}$ be the truncation level at the t th iteration and $k^{*(t)}=\tilde{k}^{(t)}-m^{(t)}$ the effective number of factors.
- Estimate k^{*} by the mode or median of the samples $\left\{k^{*(t)}\right\}_{t=B+1}^{N}$.

Covariance matrix estimation

- Set $\Omega^{(t)}=\Lambda_{\tilde{k}^{(t)}}^{(t)} \Lambda_{\tilde{k}^{(t)}}^{(t)^{\prime}}+\Sigma^{(t)}$.
- $\left\{\Omega^{(t)}\right\}_{t=B+1}^{N}$ represent draws from the approximated marginal posterior distribution of Ω given $y_{i}, i=1, \ldots, n$.

Regression Coefficient Estimation

- Recall, after marginalizing out latent factors, $y_{i} \sim N_{p}(0, \Omega)$ with $\Omega=\Lambda \Lambda^{\mathrm{T}}+\Sigma$.
- $E\left(z_{i} \mid x_{i}\right)=x_{i}^{\mathrm{T}} \beta$, with $\beta=\Omega_{x x}^{-1} \Omega_{z x}$, true regression coefficients of z on x.
- Set $\beta^{(t)}=\left\{\Omega_{x x}^{(t)}\right\}^{-1} \Omega_{z x}^{(t)}$, where $\Omega_{x x}^{(t)}=\Lambda_{x}^{(t)} \Lambda_{x}^{(t) \mathrm{T}}+\Sigma_{x x}^{(t)}$ denote posterior samples at the tth iteration.
- Computation involves inverting $\tilde{k}^{(t)} \times \tilde{k}^{(t)}$ matrices at tth iteration.
- Let $\hat{\beta}$ denote the posterior mean of β. The proposed formulation retains the non-zero elements of β while heavily shrinks the rest toward zero.

