Bayes methods for categorical data

November 18, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Increasing interest in high-dimensional data in broad applications
- Focus may be on prediction, variable selection, inference on dependence, etc
- Most literature focuses on $y_i = (y_{i1}, \ldots, y_{ip})^T \in \Re^p$
- Today's focus: general class of <u>flexible</u> joint probability models for high-dimensional categorical data

Motivation for joint probability models

- Flexible joint probability model for y_i can be used directly to predict a subset of the elements of y_i given the other values
- Univariate & multivariate classification problems dealt with automatically
- Accommodates higher order interactions automatically without explicitly parameterizing these interactions
- Joint modeling of responses & predictors makes it easy to handle missing data
- Adapted easily for joint nonparametric modeling for general data types (functions, images, text, etc) by using the model for latent class indices

Motivating application

- Modeling dependence of nucleotides within the p53 transcription factor binding motif.
- p53 tumor-suppressor = short DNA sequence, regulates the expression of genes involved in variety of cellular functions.
- A, C, G, T nucleotides at 20 positions for 574 sequences (Wei et al. 2006).

- Flexibly characterize the dependence structure and test for positional dependencies.
- Models of nucleotide sequences useful for finding gene regulatory regions & for other uses

Recap: Modeling multivariate ordinal data

- Suppose we have y_i ∈ {1,..., C}, with the ordering in the levels important
- ▶ For example, y_i may measure severity of response, with y_i = 1 mild, y_i = 2 moderate, y_i = 3 severe.
- Likelihood of data is multinomial:

$$\prod_{i=1}^{n}\prod_{j=1}^{C}\pi_{ij}^{I(y_{ij}=j)}$$

where $\pi_{ij} = Pr(y_i = j \mid x_i)$ -how to model??

Recap: Ordinal Response Regression

A typical approach is to let

$$Pr(y_i \leq j \mid x_i) = F(\alpha_j - x'_i\beta),$$

where $F(\cdot)$ is a cdf

- ► Here, -∞ = α₀ < α₁ < ... < α_{C-1} < α_C = ∞ characterize the baseline distribution of the categorical response.
- For example, if we choose F(z) = Φ(z), then we obtain a generalized probit model
- If we choose F(z) = 1/{1 + exp(−z)}, then we obtain a generalized logit model
- These models represent direct extensions of probit and logistic regression models for binary response data.

Recap: Modeling multivariate nominal data

- $y_i = (y_{i1}, \ldots, y_{ip})^T$, with $y_{ij} \in \{1, \ldots, d_j\}$.
- Generalized latent trait models (GTLM) accommodate different data types (continuous, count, binary, ordinal).
- Define glm for each outcome with shared normal latent traits in these models (Sammel et al., 1997; Moustaki & Knott, 2000; Dunson, 2000, 2003).
- Motivated by the nucleotide application, Barash et al. (2003) used Bayes networks (BN) to explore models with varying degrees of complexity.
- Even with very efficient model search algorithms, only feasible to visit a tiny subset of the model space for moderate p.
- Difficult to define an appropriate penalty for model complexity, overfitting tends to occur in practical examples.

Recap: Multivariate probit models

- Link each y_{ij} to an underlying continuous variable z_{ij}, with y_{ij} assumed to arise via thresholding z_{ij}.
- When y_{ij} ∈ {0,1}, a MVN on z_i = (z_{i1},..., z_{ip})^T induces the widely used multivariate probit model (Ashford and Sowden, 1970; Chib and Greenberg, 1998).
- ► Can accommodate nominal data with d_j > 2 by introducing a vector of variables z_{ij} = (z_{ij1},..., z_{ijdj})^T underlying y_{ij} with y_{ij} = l if z_{ijl} = max z_{ij} : multivariate multinomial probit model.
- Model z_i as ∑^p_{j=1} d_j dimensional Gaussian with covariance matrix Σ.

(日) (同) (三) (三) (三) (○) (○)

Recap: Multivariate probit models

- A Gaussian latent variable needed for each level of the response.
- The relationship between the dependence in the latent variables and dependence in the observed categorical variables is complex and difficult to interpret.
- ► Need to constrain at least p diagonal elements of ∑ for identifiability.
- Complicates sampling from the full conditional posterior of Σ.
- Zhang et al. (2006, 2008) used parameter-expanded MH for posterior computation in multivariate multinomial probit models.

・ロト・日本・モート モー うへぐ

Background on factor models

- When y_i ∈ ℜ^p, factor models useful for dimension reduction (West 03; Carvalho et al. 08; Bhattacharya & Dunson 10)
- Explain dependence among high dimensional observations through k << p underlying factors.
- The Gaussian linear factor model is most commonly used,

$$y_i = \mu + \Lambda \eta_i + \epsilon_i, \quad \epsilon_i \sim N_p(0, \Sigma), \quad i = 1, \dots, n,$$

- ∧ is a p × k factor loadings matrix, η_i ~ N_k(0, I_k) are latent factors. Marginally, y_i ~ N_p(0, Ω) with Ω = ΛΛ^T + Σ.
- Easily adapted to accommodate binary & ordered categorical y'_{ij}s through use of underlying variables

- Aim to explain dependence among the high-dimensional nominal variables in terms of relatively few latent factors.
- Similar to Gaussian factor models, but factors on simplex more natural here.
- Joint distribution of y_i induced by our model corresponds to a <u>PARAFAC</u> decomposition (De Lathauwer et al., 2000) of probability tensors.
- Related to mixed membership models, such as latent Dirichlet allocation (Blei et al. 2003) for topic modeling, also Pritchard et al. (2000, 2003).

Product multinomial models for MOC data (Dunson & Xing, 2009 JASA)

- ► Focus on p = 2, so that data for subject i consist of a pair of categorical variables, x_i = (x_{i1}, x_{i2})'.
- ▶ Results in a d₁ × d₂ contingency table with cell one can let (c1, c2) containing the count ∑ⁿ_{i=1} 1(x_{i1} = c₁, x_{i2} = c₂), for c₁ = 1,..., d₁ and c₂ = 1,..., d₂.
- ► Our focus is on parsimonious modeling of the cell probabilities, π = {π_{c1c2}}, with π_{c1c2} = Pr(x_{i1} = c₁, x_{i2} = c₂).
- Reduce $d_1d_2 1$ free parameters.
- Let $\psi^{(1)}, \psi^{(2)} \in \mathcal{S}_{d_1-1} \times \mathcal{S}_{d_2-1}$
- One simple way is to have $Pr(x_{i1} = c_1) = \psi_{c_1}^{(1)}$ and $Pr(x_{i2} = c_2) = \psi_{c_2}^{(2)}$ with x_{i1} and x_{i2} independent.
- In this case, we obtain $\pi_{c_1c_2} = \psi_{c_1}^{(1)}\psi_{c_2}^{(2)}$.
- Highly parsimonious $d_1 + d_2 2$ free parameters.

Product multinomial models for MOC data (Dunson & Xing, 2009 JASA)

- Overly restrictive
- Latent structure analysis (Lazarsfeld and Henry 1968; Goodman 1974)
- Relies on the finite mixture specification

$$Pr(x_{i1} = c_1, x_{i2} = c_2) = \pi_{c_1 c_2} = \sum_{h=1}^k \nu_h \psi_{hc_1}^{(1)} \psi_{hc_2}^{(2)}$$

where $\nu = (\nu_1, \dots, \nu_k)'$ is a vector of mixture probabilities, $z_i \in \{1, \dots, k\}$ denotes a latent class index,

- $Pr(x_{i1} = c_1 \mid z_i = h) = \psi_{hc_1}^{(1)}$ is the probability of $x_{i1} = c_1$ in class h,
- ► $Pr(x_{i2} = c_2 | z_i = h) = \psi_{hc_1}^{(2)}$ is the probability of $x_{i2} = c_2$ in class h
- ▶ x_{i1} and x_{i2} are conditionally independent given z_i .

▶ Let $\Pi_{d_1...d_p}$ = set of probability tensors, with $\pi \in \Pi_{d_1...d_p}$ →

$$\pi = \left\{ \pi_{c_1 \dots c_p} \ge 0, \ c_j = 1, \dots, d_j, j = 1, \dots, p \ : \ \sum_{c_1 = 1}^{d_1} \dots \sum_{c_p = 1}^{d_p} \pi_{c_1 \dots c_p} = 1
ight\}$$

- ► A decomposed tensor (Kolda, 2001) $\mathbf{D} = \mathbf{u}^{(1)} \otimes \mathbf{u}^{(2)} \dots \otimes \mathbf{u}^{(p)}$, or elementwise, $D_{c_1...c_p} = u_{c_1}^{(1)} u_{c_2}^{(2)} \dots u_{c_p}^{(p)}$.
- <u>PARAFAC</u> rank (Harshman, 1970) minimal r such that D is a sum of r decomposed tensors.

▶ Dunson & Xing (2009) decompose probability tensor π as

$$\pi_{c_1...c_p} = \sum_{h=1}^{k} \nu_h \lambda_{hc_1}^{(1)} \dots \lambda_{hc_p}^{(p)}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\nu_h = \operatorname{pr}(z_i = h)$, and $\lambda_h^{(j)} \in \mathcal{S}_{d_j-1}$.

▶ (1) is a form of *n*on-negative PARAFAC decomposition

Infinite Mixture of Product Multinomials

- Although any multivariate categorical data distribution can be expressed as above for for a sufficiently large k, a number of practical issues arise in the implementation.
- Firstly, it is not straightforward to obtain a well-justified approach for estimation of k.
- Because the data are often very sparse with most of the cells in the d₁ ··· d_p contingency table being empty, a unique maximum likelihood estimate of the parameters often does not exist even when a modest k is chosen.
- Such problems may lead one to choose a very small k, which may be insufficient

Follow a Bayesian nonparametric approach

Infinite Mixture of Product Multinomials

► We propose to induce a prior, π ~ P through the following specification

$$\begin{split} \pi &= \sum_{h=1}^{\infty} \nu_h \Psi_h, \quad \Psi_h = \psi_h^{(1)} \otimes \cdots \otimes \psi_h^{(p)} \\ \psi_h^{(j)} &\sim P_{0j}, \text{ independently for } j = 1, \dots, p; h = 1, \dots, \infty \\ \nu &\sim Q. \end{split}$$

- P_{0j} is a probability measure on S_{d_j-1} .
- ► Q is a probability measure on the countably infinite probability simplex, S_∞.

P_{0j} may correspond to a Dirichlet measure with

 $\psi_h^{(j)} \sim \mathsf{Diri}(a_{j1}, \ldots, a_{jc_j})$

• Q corresponds to a Dirichlet process $\sum_{h} \pi_h \delta_h$ where $\pi_h = V_h \prod_{l < h} (1 - V_l)$ with $V_h \sim \text{beta}(1, \alpha)$ independently for $h = 1, \dots, \infty$ where $\alpha > 0$ is a precision parameter characterizing Q.