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Complicated Models: The linear model

I Yn×1 = Xn×pβp×1 + εn×1

I ε ∼ N(0, σ2In).

I What are the unknowns? (β and σ)

I Usually β ∼ N(β0,Σ0) and σ−2 ∼ IG(a, b)

I We want to find β, σ2 | Y
I But easier to find β | σ2,Y and σ2 | β,Y
I β | σ2,Y is a Normal distribution and σ2 | β,Y is an IG

distribution.

I How to use β | σ2,Y and σ2 | β,Y to sample from β, σ2 | Y ?



The linear model

I Likelihood:
L(y; x, β, τ) =

∏n
i=1(2πτ−1)1/2 exp{−τ/2(yi − x ′iβ)2}, where

τ = σ−2

I π(β, σ2) = Np(β;β0,Σ0)Ga(τ ; aτ , bτ ).

I The hyperparameters β0, Σ0 quantify our state of knowledge
about the regression parameters β prior to observing the data
from the current study

I In particular, β0 is our best guess for β before looking at the
current data & Σ0 expresses uncertainty in this guess



The linear model

I The prior for the error precision follows the gamma density

π(τ) =
baττ

Γ(aτ )
τ aτ−1 exp(−bττ)

which has expectation E (τ) = aτ/bτ and V (τ) = aτ/b
2
τ .

I Hyperparameters aτ , bτ are chosen to express knowledge
about τ .



The linear model

I After specifying the prior, we update the prior to incorporate
information in the likelihood using Bayes rule.

I This updating process yields the posterior distribution:

π(β, τ |y, x) =
π(β, τ)L(y; x, β, τ)∫

π(β, τ)L(y; x, β, τ)dβdτ
=
π(β, τ)L(y; x, β, τ)

π(y; x)

where π(y; x) is the marginal likelihood of the data (obtained
by integrating the likelihood across the prior for the
parameters)



The linear model

I The conditional posterior for the regression coefficients can be
derived as follows: π(β | y, x, τ)

I Let X ′ = [x1, · · · , xn].

π(β | y, x, τ) ∝ π(β)L(y; x, β, τ)

∝ exp{−1

2
(β − β0)′Σ−10 (β − β0)′}

× exp{−1

2

n∑
i=1

τ(yi − x ′i β)2}

∝ exp[−1

2
{β′(Σ−10 + τ

n∑
i=1

xix
′
i )β − 2β′(β0 + τ

n∑
i=1

xiyi )}]

∝ Np(β; β̂, Σ̂β),



The linear model

I Thus, the posterior distribution of β given τ is multivariate
normal.

I The posterior mean is

β̂ = E (β | τ, y, x) = Σ̂β(Σ−10 β0 + τX ′y)

I The posterior variance is

Σ̂β = V (β|τ, y, x) = (Σ−10 + τX ′X )−1

I Note that in the limiting case as the prior variance increases,
β̂ → (X ′X )−1X ′y , which is simply the least squares estimator
or MLE

I Hence, the posterior mean is shrunk back towards the prior
mean β0 to a degree dependent on the prior variance.



The linear model

I We can similarly derive the posterior distribution of τ :

π(τ | y, x, β) ∝ Ga(τ ; aτ +
n

2
, bτ +

1

2

n∑
i=1

(yi − x ′iβ)2)



Gibbs sampling



An example

I Suppose for example that we have a simple linear regression
model

yi = β0 + β1 dosei + εi , εi ∼ N(0, 1)

I We simulate data under the true model: β = (−1, 2), n = 25,
dosei ∼ Uniform(0, 1)

I We consider priors π(β) ∝ 1 & π(β) = N(0, I2).



Posterior



Some comments

I For a uniform prior on β posterior is centered on the least
squares estimator (specific to normal linear models)

I For an informative prior, posterior mean is shrunk back
towards prior mean and posterior variance decreases

I As sample size increases, the contribution of the prior is
swamped out by the likelihood

I Hence, as n→∞, the posterior will be centered on the MLE
regardless of the prior & frequentist/Bayes inferences will be
similar

I However, for finite samples, there can be substantial
differences

I Choosing a N(0, I ) prior results in a type of shrinkage
estimator



Some comments

I Since the result of Stein (1955) and James & Stein (1960)
(MLE is inadmissible for p ≥ 3), shrinkage estimators have
been very popular

I Choosing a N(0, κIp) prior for β, results in a ridge regression
(Hoerl and Kennard, 1970) estimator

I Hence, priors for the regression parameters having diagonal
covariance are commonly referred to as ridge regression priors.

I For a recent article on shrinkage estimators and properties,
refer to Maruyama & Strawderman (2005, Annals of Statistics
33, 1753-1770).



Latent variable for binary response models

I Yi binary response xi predictors, i = 1, . . . , n.

I Probit Model:

P(yi = 1 | xi , β) = Φ(x ′iβ)

I In toxicology studies, dose is the explanatory variable and
there exists a latent variable V denoting the minimum level of
dose needed to produce a response (i.e., tolerance)

I Under the second formulation, yi = 1 if x ′iβ > vi
I It follows that P(Y = 1 | xi ) = P(V ≤ x ′iβ).

I Note that the shape of the dose-response curve is determined
by the distribution function of V

I If V ∼ N(0, 1), then P(Y = 1 | xi ) = Φ(x ′iβ)



Example: Modeling the risk of preterm birth

I Let yi = 1 if preterm birth and yi = 0 if full-term birth

I xi = (1, ddei , xi3, . . . , xi7)′

I xi3, . . . , xi7 represent possible confounders
I β1 = intercept
I β2 = dde slope



Example: Modeling the risk of preterm birth

I Prior: π(β) = N(β0,Σβ)

I Likelihood:

L(y ;β, x) =
n∏

i=1

Φ(x ′iβ)yi{1− Φ(x ′iβ)}1−yi

I Posterior: π(β | y , x) ∝ π(β)L(y ;β, x)

I No closed form available for the normalizing constant.



Example: Modeling the risk of preterm birth

I Full conditional posterior distributions needed for Gibbs
sampling are not automatically available

I However, we can rely on a very useful data augmentation trick
proposed by Albert and Chib (1993):

I Augment observed data {yi , xi} with latent zi .

I Probit model can be expressed in hierarchical form as follows:

yi = 1(zi > 0), zi ∼ N(x ′iβ, 1)

I Marginalizing out zi , we obtain P(yi = 1 | xi , β) = Φ(x ′iβ).



Gibbs sampling steps

I Gibbs sampling relies on alternately sampling from full
conditional posterior distributions of unknown parameters

I After data augmentation, unknowns include latent data {zi}
and regression parameters β

I Full conditional posterior distributions:
I π(zi | y, x, β) = N(x ′i β) truncated below by zero if yi = 1 and

above by zero if yi = 0.
I π(β | z, y, x) = Np(β̂, Σ̂β), Σ̂β = (Σ−1β + X ′X )−1, β̂ =

Σ̂β(Σ−1β β0 + X ′z).


