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Complicated Models: The linear model

> Yix1 = XoxpBpx1 + €nx1

» ¢~ N(0,021,).

» What are the unknowns? (/3 and o)

» Usually 8 ~ N(fo,%o) and =2 ~ IG(a, b)
» We want to find 3,02 | Y

» But easier to find 3| 02, Y and 02 | B, Y

» 3|02, Y is a Normal distribution and o2 | 3, Y is an IG
distribution.

» How to use 3| 02, Y and 02 | 3, Y to sample from 3,02 | Y?



The linear model

> Likelihood:
L(y;x,3,7) = [[1_,2nr )2 exp{—7/2(y; — x/3)?}, where
T=0"2

> 77(6) 0-2) = Np(ﬁ; Bo, ZO)Ga(T; ar, bT)

» The hyperparameters By, o quantify our state of knowledge
about the regression parameters 3 prior to observing the data
from the current study

» In particular, 5y is our best guess for 3 before looking at the
current data & X expresses uncertainty in this guess



The linear model

» The prior for the error precision follows the gamma density

a
bTT ar—1

(1) = @7‘ exp(—b-7)

which has expectation E(7) = a,/b, and V(7) = a,/b2.

» Hyperparameters a,, b, are chosen to express knowledge
about 7.



The linear model

» After specifying the prior, we update the prior to incorporate
information in the likelihood using Bayes rule.

» This updating process yields the posterior distribution:

(B, T)Lyix, B.7) (B, 7)L(yix, B, 7)
(B, T)L(y; x, B, T)dBdT m(y; x)

where 7(y; x) is the marginal likelihood of the data (obtained
by integrating the likelihood across the prior for the
parameters)

w(8.7lyx) =



The linear model

» The conditional posterior for the regression coefficients can be
derived as follows: 7(5 |y, x, )

» Let X' = [xq, -, xp].

(B 1y, %7)

m(B)L(y:x, B,7)
exp{ 3 (5 — o) T3 (5 — o)’}

n

exp{— D (i~ B

i=1
expl— 5 (F/(55" + 73 xixf)6 — 26 (o + 73 xayi)}]
i=1 i=1
NP(/B; Bv zﬂ)v



The linear model

>

Thus, the posterior distribution of 3 given 7 is multivariate
normal.

The posterior mean is

B=EQB|7y.x) =325y B0 +7X'y)

The posterior variance is

S5=V(BImy,x) = (It +7X'X)71

Note that in the limiting case as the prior variance increases,
B — (X'X)~1X"y, which is simply the least squares estimator
or MLE

Hence, the posterior mean is shrunk back towards the prior
mean [ to a degree dependent on the prior variance.



The linear model

» We can similarly derive the posterior distribution of 7:

LIRS S o e
(7 |y, ) o Ga(riar + 5, br + 5 ,-E_;(y' x/B)?)



Gibbs sampling

f(b | o2=03 ,Y)




An example

» Suppose for example that we have a simple linear regression
model

yi = Po + P1dose; + €, ¢; ~ N(0,1)

» We simulate data under the true model: 5 = (—1,2), n = 25,
dose; ~ Uniform(0, 1)

» We consider priors 7(3) o< 1 & 7(5) = N(0, k).
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Some comments

» For a uniform prior on 3 posterior is centered on the least
squares estimator (specific to normal linear models)

» For an informative prior, posterior mean is shrunk back
towards prior mean and posterior variance decreases

> As sample size increases, the contribution of the prior is
swamped out by the likelihood

» Hence, as n — oo, the posterior will be centered on the MLE
regardless of the prior & frequentist/Bayes inferences will be
similar

» However, for finite samples, there can be substantial
differences

» Choosing a N(0,/) prior results in a type of shrinkage
estimator



Some comments

» Since the result of Stein (1955) and James & Stein (1960)
(MLE is inadmissible for p > 3), shrinkage estimators have
been very popular

» Choosing a N(0, kly,) prior for /3, results in a ridge regression
(Hoerl and Kennard, 1970) estimator

» Hence, priors for the regression parameters having diagonal
covariance are commonly referred to as ridge regression priors.

» For a recent article on shrinkage estimators and properties,
refer to Maruyama & Strawderman (2005, Annals of Statistics
33, 1753-1770).



Latent variable for binary response models

> Y; binary response x; predictors, i =1,...,n.
> Probit Model:

P(yi=1]x,5) = ®(xiB)

» In toxicology studies, dose is the explanatory variable and
there exists a latent variable V' denoting the minimum level of
dose needed to produce a response (i.e., tolerance)

» Under the second formulation, y; = 1 if x/5 > v;

> It follows that P(Y =1 x;) = P(V < x/B).

» Note that the shape of the dose-response curve is determined
by the distribution function of V

» If V ~ N(0,1), then P(Y =1 x;) = ®(x/3)



Example: Modeling the risk of preterm birth

> Let y; = 1 if preterm birth and y; = 0 if full-term birth

xi = (1, ddej, xi3, . . ., xi7)’

Xi3, ..., Xj7 represent possible confounders
31 = intercept

(> = dde slope

vV vy VvVYyy



Example: Modeling the risk of preterm birth

» Prior: ©(8) = N(Bo, X3)
> Likelihood:
L(y; B,x) = [ [ @(xB)" {1 — d(x/B)}'
i=1
» Posterior: w(3 | y,x) oc w(B)L(y; 3, x)

v

No closed form available for the normalizing constant.



Example: Modeling the risk of preterm birth

» Full conditional posterior distributions needed for Gibbs
sampling are not automatically available

» However, we can rely on a very useful data augmentation trick
proposed by Albert and Chib (1993):

» Augment observed data {y;, x;} with latent z;.

» Probit model can be expressed in hierarchical form as follows:

yi=1(z > 0),z ~ N(x{3,1)

» Marginalizing out z;, we obtain P(y; = 1| x;, 5) = ®(x/3).



Gibbs sampling steps

» Gibbs sampling relies on alternately sampling from full
conditional posterior distributions of unknown parameters
» After data augmentation, unknowns include latent data {z;}
and regression parameters 3
» Full conditional posterior distributions:
» 7m(z; | y,x,8) = N(x/3) truncated below by zero if y; =1 and
above by zero if y; =0. A
> W(ﬁ | z,y,x) = NP(6725)725 = (ZEI +X/X)_176 =
S5(55 B0 + X'z).



