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True model unknown

I In the DDE application, we assumed that we knew in advance
that the probit model with pre-specified predictors was
appropriate.

I There is typically substantial uncertainty in the model & it is
more realistic to suppose that there is a list of a priori
plausible models.

I Typical Strategy: sequentially change model until a good fit is
produced, and then base inferences/predictions on the final
selected model.

I Strategy is flawed in ignoring uncertainty in the model
selection process - leads to major bias in many cases.



Bayes Model Uncertainty

I Let M ∈M denote a model index, with M a list of possible
models.

I To allow for model uncertainty, Bayesians first choose:
I A prior probability for each model: P(M = m) = πm,m ∈ M.
I Priors for the coefficients within each model, π(θm),m ∈ M.

I Given data, y , the posterior probability of model M = m is

π̂m = P(M = m | y) =
πmLm(y)∑
l∈M πlLl(y)

where Lm(y) =
∫
L(y | M = m, θm)π(θm)dθm is the marginal

likelihood for the model M = m.



Some comments

I In the absence of prior knowledge about which models in the
list are more plausible, one often lets πm = 1/|M|, with |M|
the number of models.

I The highest posterior probability model is then the model with
the highest marginal likelihood.

I Unlike the maximized likelihood, the marginal likelihood has
an implicit penalty for model complexity.

I This penalty is due to the integration across the prior, which
is higher in larger models.



Bayes factors

I The Bayes factor (BF) can be used as a summary of the
weight of evidence in the data in favor of model m1 over
model m2.

I The BF for model m1 over m2 is defined as the ratio of
posterior to prior odds, which is simply:

BF12 =
L1(y)

L2(y)

a ratio of marginal likelihoods.

I Values of BF12 > 1 suggest that model m1 is preferred, with
the weight of evidence in favor of m1 increasing as BF12
increases.



Bayesian model averaging

I Posterior model probabilities can be used for model selection
and inferences.

I When focus is on prediction, BMA preferred to model
selection (Madigan and Raftery, 1994)

I To predict yn+1 given xn+1, BMA relies on:

f (yn+1 | xn+1, y, x) =
∑
m∈M

π̂m

∫
L(yn+1 | xn+1,M = m, θm)

×π(θm | M = m, y, x)dθm

where π̂m = P(M = m | y, x) is the posterior probability of
the model.



Bayesian model averaging

I Computation of the posterior model probabilities requires
calculation of the marginal likelihoods, Lm(y)

I These marginal likelihoods are not automatically produced by
typical MCMC algorithms

I Routine implementations rely on the Laplace approximation
(Tierney and Kadane, 1986; Raftery, 1996)

I In large model spaces, it is not feasible to do calculations for
all the models, so search algorithms are used.

I Refer to Hoeting et al. (1999) for a tutorial on BMA



Bayesian variable selection

I Suppose we start with a vector of p candidate predictors,
xi = (xi1, . . . , xip)′.

I A very common type of model uncertainty corresponds to
uncertainty in which predictors to include in the model.

I In this case, we end up with a list of 2p different models,
corresponding to each of the p candidate predictors being
excluded or not.



Stochastic Search variable selection (SSVS)

I George and McCulloch (1993, 1997) proposed a Gibbs
sampling approach for the variable selection problem.

I Similar approaches have been very widely used in applications.

I The SSVS idea will be illustrated through a return to the
DDE and preterm birth application



Bayes Variable Selection in Probit Regression

I Earlier we focused on the model, P(yi = 1 | xi , β) = Φ(x ′iβ),
with yi an indicator of premature delivery.

I Previously, we chose a N7(0, 4I ) prior for β, assuming all 7
predictors were included.

I To account for uncertainty in subset selection, choose a
mixture prior:

π(β) =

p∏
j=1

{δ0(βj)p0j + (1− p0j)N(βj ; 0, c2j )}

where p0j is the prior probability of excluding the j-th
predictor by setting its coefficient to 0



SSVS - Full conditional distributions

I Data augmentation Gibbs sampler described earlier easily
adapted

I Sample from conditional posterior of βj , for j = 1, . . . , p,

π(βj | β−j , z, y, x) = p̂jδ0(βj) + (1− p̂j)N(βj ;Ej ,Vj)

where Vj = (c−2j + X ′jXj)
−1,Ej = VjX

′
j (z− X−jβ−j),Xj = j

th column of X , X−j = X with j th column excluded, β−j = β
with j th element excluded, and

p̂j =
p0j

p0j + (1− p0j)
N0;0,c2j )

N(0;Ej ,Vj )

is the conditional probability of βj = 0.



SSVS - Comments

I After convergence, generates samples of models,
corresponding to subsets of the set of p candidate predictors,
from the posterior distribution.

I Based on a large number of SSVS iterations, we can estimate
posterior probabilities for each of the models.

I For example, the full model may appear in 10% of the
samples collected after convergence, so that model would be
assigned posterior probability of 0.10.

I To summarize, one can present a table of the top 10 or 100
models

I Potentially more useful to calculate marginal inclusion
probabilities.



Samples from the posterior (normal prior)



Samples from the posterior (SSVS)



Comments

I Samples congregate on 0 for the regression coefficient for
predictors that are not as important.

I Such samples correspond to models with that predictor
excluded.

I Even though the prior probabilities of exclusion are the same,
posterior probabilities vary greatly for the different predictors.



Posterior summaries - Normal prior Analysis



Posterior summaries - Mixture prior Analysis



Posterior probabilities of visited models



SSVS - Comments

I In 4,000 Gibbs iterations only 26/128 = 20.3% of the models
were visited

I There wasnt a single dominant model, but none of the models
excluded the intercept or DDE slope.

I All of the better models included the 3rd & 5th of the 5
possible confounders



Some Limitations of SSVS

I High autocorrelation in model search - sampling from
conditional posterior given other predictors currently in model

I No guarantee of finding the best model - may remain for long
intervals in local regions of the model space

I As the number of predictors increases, model space enormous
- convergence of MCMC may be effectively impossible

I May obtain poor estimates of posterior model probabilities -
most models are never visited & many are only visited once



Issues in Large Model Spaces

I Results from SSVS can be difficult to interpret - there may be
100s or 1000s of models with very similar posterior
probabilities

I Makes it clear that it is problematic to base inferences on any
one selected model in a large model space

I Seldom enough information in the data to definitively
conclude in favor of one model

I This issue is swept under the rug by optimization-based
approaches

I Critical to account for model uncertainty in inferences



Marginal Inclusion Probabilities

I As posterior model probabilities are not very helpful, one often
focuses instead on marginal inclusion probabilities

I Provides a weight of evidence that a predictor should be
included

I Can be artificially small if there are several correlated
predictors - correlated predictors are big problem in general!

I Even in the absence of correlation, Bayes multiplicity
adjustments can lead to smallish inclusion probabilities for
important predictors



Some Comments on Multiplicity Adjustments

I If independent Bernoulli priors are chosen for the variable
inclusion indicators, no adjustment for multiplicity

I In such a case, one gets more and more false positives as the
number of candidate predictors increases

I A Bayes adjustment for multiplicity can proceed by including
dependence in the hypotheses

I Most common approach is to choose a beta hyperprior for
probability of including a variable



Multiplicity Adjustments (Continued)

I If a beta hyperprior is chosen, then the incorporation of a
large number of “null” predictors, will lead to updating

I The inclusion probability will then have a posterior that is
increasing concentrated near zero

I The more null predictors that are included, the more one
needs overwhelming evidence in the data to assign a high
inclusion probability to an important predictor.

I Tends to lead to very small inclusion probabilities for the vast
majority of predictors, with the small number of important
predictors assigned probabilities higher but not close to one.


