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True model unknown

» In the DDE application, we assumed that we knew in advance
that the probit model with pre-specified predictors was
appropriate.

» There is typically substantial uncertainty in the model & it is
more realistic to suppose that there is a list of a priori
plausible models.

» Typical Strategy: sequentially change model until a good fit is
produced, and then base inferences/predictions on the final
selected model.

» Strategy is flawed in ignoring uncertainty in the model
selection process - leads to major bias in many cases.



Bayes Model Uncertainty

» Let M € M denote a model index, with M a list of possible
models.
» To allow for model uncertainty, Bayesians first choose:
» A prior probability for each model: P(M = m) = m,,,m € M.
» Priors for the coefficients within each model, 7(6,,), m € M.

» Given data, y, the posterior probability of model M = m is
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where Lp,(y) = [L(y | M = m,0,)7(0)d0,, is the marginal

likelihood for the model M = m.



Some comments

> In the absence of prior knowledge about which models in the
list are more plausible, one often lets 7w, = 1/| M|, with |M]|
the number of models.

» The highest posterior probability model is then the model with
the highest marginal likelihood.

» Unlike the maximized likelihood, the marginal likelihood has
an implicit penalty for model complexity.

» This penalty is due to the integration across the prior, which
is higher in larger models.



Bayes factors

» The Bayes factor (BF) can be used as a summary of the
weight of evidence in the data in favor of model m; over
model m».

» The BF for model m; over m» is defined as the ratio of
posterior to prior odds, which is simply:

BFi, =
2 Lo(y)

a ratio of marginal likelihoods.

> Values of BF1p > 1 suggest that model m; is preferred, with
the weight of evidence in favor of my increasing as BFi»
increases.



Bayesian model averaging

» Posterior model probabilities can be used for model selection
and inferences.

» When focus is on prediction, BMA preferred to model
selection (Madigan and Raftery, 1994)

> To predict y,+1 given x,4+1, BMA relies on:

f()’n+1 ‘ Xn+1aYaX) = Z ﬁm/L(yn+1 | Xn41, M = m, em)
meM
XT(Om | M= m,y,x)d0p,

where 7, = P(M = m | y, x) is the posterior probability of
the model.



Bayesian model averaging

» Computation of the posterior model probabilities requires
calculation of the marginal likelihoods, L,(y)

» These marginal likelihoods are not automatically produced by
typical MCMC algorithms

» Routine implementations rely on the Laplace approximation
(Tierney and Kadane, 1986; Raftery, 1996)

> In large model spaces, it is not feasible to do calculations for
all the models, so search algorithms are used.

> Refer to Hoeting et al. (1999) for a tutorial on BMA



Bayesian variable selection

» Suppose we start with a vector of p candidate predictors,
xi = (Xi1, .-, Xip)-

» A very common type of model uncertainty corresponds to
uncertainty in which predictors to include in the model.

> In this case, we end up with a list of 2P different models,
corresponding to each of the p candidate predictors being
excluded or not.



Stochastic Search variable selection (SSVS)

» George and McCulloch (1993, 1997) proposed a Gibbs
sampling approach for the variable selection problem.

» Similar approaches have been very widely used in applications.

» The SSVS idea will be illustrated through a return to the
DDE and preterm birth application



Bayes Variable Selection in Probit Regression

» Earlier we focused on the model, P(y; =1 | x;, 3) = ®(x/),
with y; an indicator of premature delivery.

» Previously, we chose a N7(0,4/) prior for 3, assuming all 7
predictors were included.

» To account for uncertainty in subset selection, choose a
mixture prior:

7(8) = [ T{00(B1)po; + (1 = poy)N(5;:0, 1)}

where py; is the prior probability of excluding the j-th
predictor by setting its coefficient to 0



SSVS - Full conditional distributions

» Data augmentation Gibbs sampler described earlier easily
adapted

» Sample from conditional posterior of 3; , for j =1,...,p,
m(B8j | B—j»2,¥,%) = Bido(Bj) + (1 — pj)N(B;; Ej, Vj)

where V; = (2 + X[X)) %, £ = ViX[(z = X_jj). X = ]
th column of X, X_; = X with j th column excluded, 5_; = 3
with j th element excluded, and

i = Poj
J N0;0,c?)
poj + (1 = Poj) NwiE v

is the conditional probability of 3; = 0.



SSVS - Comments

» After convergence, generates samples of models,
corresponding to subsets of the set of p candidate predictors,
from the posterior distribution.

» Based on a large number of SSVS iterations, we can estimate
posterior probabilities for each of the models.

» For example, the full model may appear in 10% of the
samples collected after convergence, so that model would be
assigned posterior probability of 0.10.

» To summarize, one can present a table of the top 10 or 100
models

» Potentially more useful to calculate marginal inclusion
probabilities.



Samples from the posterior (normal prior)
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Samples from the posterior (SSVS)
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Comments

» Samples congregate on 0 for the regression coefficient for
predictors that are not as important.

» Such samples correspond to models with that predictor
excluded.

» Even though the prior probabilities of exclusion are the same,
posterior probabilities vary greatly for the different predictors.



Posterior summaries - Normal prior Analysis

Parameter Mean Median SD 95% credible interval

By 1.08  -1.08 0.04 (-1.16, -1.01)
Bs 0.17 017  0.03 (0.12, 0.23)
Bs 0.13 -0.13  0.04 (-0.2, -0.05)
Ba 0.11  0.11  0.03 (0.05, 0.18)
Bs 0.02 -0.02 0.03 (-0.08, 0.05)
Bs 0.08 -0.08 0.04 (-0.15, -0.02)

Br 0.05 0.06 0.06 (-0.07, 0.18)




Posterior summaries - Mixture prior Analysis

Parameter Mean Median SD 95% CI Pr(8; = 0| data
51 -1.05  -1.05 0.03 (-1.12, -0.99) 0.00
B2 0.18 0.18 0.03 (0.12, 0.23) 0.00
B3 -0.08 -0.09 0.06 (-0.19, 0.00) 0.36
B4 0.05 0.00 0.06 (0.00, 0.16) 0.50
Bs 0.00 0.00 0.01 (0.00, 0.00) 0.98
Bs -0.02 0.00 0.04 (-0.13, 0.00) 0.72
Br 0.01 0.00 0.02 (0.00, 0.1) 0.93




Posterior probabilities of visited models

T Model Indicator
1 0.24981301421092 1100000
2 0.225878833208676 1111000
3 0.196958364497632 1111010
4 0.139865370231862 1110000
5 0.0363999002742458 1100010
6 0.0304163550236849 1101000
7 1
8 1
9 1
1

0.0274245823984044 110010
0.0206930939915233 100001
0.0177013213662428 111001
10 0.012216404886562 110001




SSVS - Comments

» In 4,000 Gibbs iterations only 26/128 = 20.3% of the models
were visited

» There wasnt a single dominant model, but none of the models
excluded the intercept or DDE slope.

» All of the better models included the 3rd & 5th of the 5
possible confounders



Some Limitations of SSVS

» High autocorrelation in model search - sampling from
conditional posterior given other predictors currently in model

» No guarantee of finding the best model - may remain for long
intervals in local regions of the model space

» As the number of predictors increases, model space enormous
- convergence of MCMC may be effectively impossible

» May obtain poor estimates of posterior model probabilities -
most models are never visited & many are only visited once



Issues in Large Model Spaces

» Results from SSVS can be difficult to interpret - there may be
100s or 1000s of models with very similar posterior
probabilities

» Makes it clear that it is problematic to base inferences on any
one selected model in a large model space

» Seldom enough information in the data to definitively
conclude in favor of one model

» This issue is swept under the rug by optimization-based
approaches

» Critical to account for model uncertainty in inferences



Marginal Inclusion Probabilities

> As posterior model probabilities are not very helpful, one often
focuses instead on marginal inclusion probabilities

» Provides a weight of evidence that a predictor should be
included

» Can be artificially small if there are several correlated
predictors - correlated predictors are big problem in general!
» Even in the absence of correlation, Bayes multiplicity

adjustments can lead to smallish inclusion probabilities for
important predictors



Some Comments on Multiplicity Adjustments

» If independent Bernoulli priors are chosen for the variable
inclusion indicators, no adjustment for multiplicity

» In such a case, one gets more and more false positives as the
number of candidate predictors increases

» A Bayes adjustment for multiplicity can proceed by including
dependence in the hypotheses

» Most common approach is to choose a beta hyperprior for
probability of including a variable



Multiplicity Adjustments (Continued)

» If a beta hyperprior is chosen, then the incorporation of a
large number of “null” predictors, will lead to updating

» The inclusion probability will then have a posterior that is
increasing concentrated near zero

» The more null predictors that are included, the more one
needs overwhelming evidence in the data to assign a high
inclusion probability to an important predictor.

» Tends to lead to very small inclusion probabilities for the vast
majority of predictors, with the small number of important
predictors assigned probabilities higher but not close to one.



