Bayesian Statistics

Debdeep Pati
Florida State University

September 13, 2016

- In the DDE application, we assumed that we knew in advance that the probit model with pre-specified predictors was appropriate.
- There is typically substantial uncertainty in the model \& it is more realistic to suppose that there is a list of a priori plausible models.
- Typical Strategy: sequentially change model until a good fit is produced, and then base inferences/predictions on the final selected model.
- Strategy is flawed in ignoring uncertainty in the model selection process - leads to major bias in many cases.

Bayes Model Uncertainty

- Let $M \in \mathcal{M}$ denote a model index, with \mathcal{M} a list of possible models.
- To allow for model uncertainty, Bayesians first choose:
- A prior probability for each model: $P(M=m)=\pi_{m}, m \in M$.
- Priors for the coefficients within each model, $\pi\left(\theta_{m}\right), m \in M$.
- Given data, y, the posterior probability of model $M=m$ is

$$
\hat{\pi}_{m}=P(M=m \mid y)=\frac{\pi_{m} L_{m}(y)}{\sum_{l \in \mathcal{M}} \pi_{l} L_{l}(y)}
$$

where $L_{m}(y)=\int L\left(y \mid M=m, \theta_{m}\right) \pi\left(\theta_{m}\right) d \theta_{m}$ is the marginal likelihood for the model $M=m$.

Some comments

- In the absence of prior knowledge about which models in the list are more plausible, one often lets $\pi_{m}=1 /|\mathcal{M}|$, with $|\mathcal{M}|$ the number of models.
- The highest posterior probability model is then the model with the highest marginal likelihood.
- Unlike the maximized likelihood, the marginal likelihood has an implicit penalty for model complexity.
- This penalty is due to the integration across the prior, which is higher in larger models.
- The Bayes factor (BF) can be used as a summary of the weight of evidence in the data in favor of model m_{1} over model m_{2}.
- The BF for model m_{1} over m_{2} is defined as the ratio of posterior to prior odds, which is simply:

$$
B F_{12}=\frac{L_{1}(y)}{L_{2}(y)}
$$

a ratio of marginal likelihoods.

- Values of $B F_{12}>1$ suggest that model m_{1} is preferred, with the weight of evidence in favor of m_{1} increasing as $B F_{12}$ increases.

Bayesian model averaging

- Posterior model probabilities can be used for model selection and inferences.
- When focus is on prediction, BMA preferred to model selection (Madigan and Raftery, 1994)
- To predict y_{n+1} given x_{n+1}, BMA relies on:

$$
\begin{array}{r}
f\left(y_{n+1} \mid x_{n+1}, \mathbf{y}, \mathbf{x}\right)=\sum_{m \in \mathcal{M}} \hat{\pi}_{m} \int L\left(y_{n+1} \mid x_{n+1}, M=m, \theta_{m}\right) \\
\times \pi\left(\theta_{m} \mid M=m, \mathbf{y}, \mathbf{x}\right) d \theta_{m}
\end{array}
$$

where $\hat{\pi}_{m}=P(M=m \mid \mathbf{y}, \mathbf{x})$ is the posterior probability of the model.

- Computation of the posterior model probabilities requires calculation of the marginal likelihoods, $L_{m}(y)$
- These marginal likelihoods are not automatically produced by typical MCMC algorithms
- Routine implementations rely on the Laplace approximation (Tierney and Kadane, 1986; Raftery, 1996)
- In large model spaces, it is not feasible to do calculations for all the models, so search algorithms are used.
- Refer to Hoeting et al. (1999) for a tutorial on BMA

Bayesian variable selection

- Suppose we start with a vector of p candidate predictors, $x_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\prime}$.
- A very common type of model uncertainty corresponds to uncertainty in which predictors to include in the model.
- In this case, we end up with a list of 2^{p} different models, corresponding to each of the p candidate predictors being excluded or not.

Stochastic Search variable selection (SSVS)

- George and McCulloch $(1993,1997)$ proposed a Gibbs sampling approach for the variable selection problem.
- Similar approaches have been very widely used in applications.
- The SSVS idea will be illustrated through a return to the DDE and preterm birth application

Bayes Variable Selection in Probit Regression

- Earlier we focused on the model, $P\left(y_{i}=1 \mid x_{i}, \beta\right)=\Phi\left(x_{i}^{\prime} \beta\right)$, with y_{i} an indicator of premature delivery.
- Previously, we chose a $N_{7}(0,4 I)$ prior for β, assuming all 7 predictors were included.
- To account for uncertainty in subset selection, choose a mixture prior:

$$
\pi(\beta)=\prod_{j=1}^{p}\left\{\delta_{0}\left(\beta_{j}\right) p_{0 j}+\left(1-p_{0 j}\right) N\left(\beta_{j} ; 0, c_{j}^{2}\right)\right\}
$$

where $p_{0 j}$ is the prior probability of excluding the j-th predictor by setting its coefficient to 0

SSVS - Full conditional distributions

- Data augmentation Gibbs sampler described earlier easily adapted
- Sample from conditional posterior of β_{j}, for $j=1, \ldots, p$,

$$
\pi\left(\beta_{j} \mid \beta_{-j}, \mathbf{z}, \mathbf{y}, \mathbf{x}\right)=\hat{p}_{j} \delta_{0}\left(\beta_{j}\right)+\left(1-\hat{p}_{j}\right) \mathrm{N}\left(\beta_{j} ; E_{j}, V_{j}\right)
$$

where $V_{j}=\left(c_{j}^{-2}+X_{j}^{\prime} X_{j}\right)^{-1}, E_{j}=V_{j} X_{j}^{\prime}\left(\mathbf{z}-X_{-j} \beta_{-j}\right), X_{j}=j$ th column of $X, X_{-j}=X$ with j th column excluded, $\beta_{-j}=\beta$ with j th element excluded, and

$$
\hat{p}_{j}=\frac{p_{0 j}}{p_{0 j}+\left(1-p_{0 j}\right) \frac{\left.N 0 ; 0, c_{j}^{2}\right)}{N\left(0 ; E_{j}, V_{j}\right)}}
$$

is the conditional probability of $\beta_{j}=0$.

SSVS - Comments

- After convergence, generates samples of models, corresponding to subsets of the set of p candidate predictors, from the posterior distribution.
- Based on a large number of SSVS iterations, we can estimate posterior probabilities for each of the models.
- For example, the full model may appear in 10% of the samples collected after convergence, so that model would be assigned posterior probability of 0.10 .
- To summarize, one can present a table of the top 10 or 100 models
- Potentially more useful to calculate marginal inclusion probabilities.

Samples from the posterior (normal prior)

Samples from the posterior (SSVS)

- Samples congregate on 0 for the regression coefficient for predictors that are not as important.
- Such samples correspond to models with that predictor excluded.
- Even though the prior probabilities of exclusion are the same, posterior probabilities vary greatly for the different predictors.

Posterior summaries - Normal prior Analysis

Parameter	Mean	Median	SD	95\% credible interval
β_{1}	-1.08	-1.08	0.04	$(-1.16,-1.01)$
β_{2}	0.17	0.17	0.03	$(0.12,0.23)$
β_{3}	-0.13	-0.13	0.04	$(-0.2,-0.05)$
β_{4}	0.11	0.11	0.03	$(0.05,0.18)$
β_{5}	-0.02	-0.02	0.03	$(-0.08,0.05)$
β_{6}	-0.08	-0.08	0.04	$(-0.15,-0.02)$
β_{7}	0.05	0.06	0.06	$(-0.07,0.18)$

Posterior summaries - Mixture prior Analysis

Parameter	Mean	Median	SD	$95 \% \mathrm{CI}$	$\operatorname{Pr}\left(\beta_{j}=0 \mid\right.$ data
β_{1}	-1.05	-1.05	0.03	$(-1.12,-0.99)$	0.00
β_{2}	0.18	0.18	0.03	$(0.12,0.23)$	0.00
β_{3}	-0.08	-0.09	0.06	$(-0.19,0.00)$	0.36
β_{4}	0.05	0.00	0.06	$(0.00,0.16)$	0.50
β_{5}	0.00	0.00	0.01	$(0.00,0.00)$	0.98
β_{6}	-0.02	0.00	0.04	$(-0.13,0.00)$	0.72
β_{7}	0.01	0.00	0.02	$(0.00,0.1)$	0.93

	$\widehat{\pi}_{m}$	Model Indicator
1	0.24981301421092	1100000
2	0.225878833208676	1111000
3	0.196958364497632	1111010
4	0.139865370231862	1110000
5	0.0363999002742458	1100010
6	0.0304163550236849	1101000
7	0.0274245823984044	1110010
8	0.0206930939915233	1100001
9	0.0177013213662428	1111001
10	0.012216404886562	1110001

SSVS - Comments

- In 4,000 Gibbs iterations only $26 / 128=20.3 \%$ of the models were visited
- There wasnt a single dominant model, but none of the models excluded the intercept or DDE slope.
- All of the better models included the 3rd \& 5th of the 5 possible confounders

Some Limitations of SSVS

- High autocorrelation in model search - sampling from conditional posterior given other predictors currently in model
- No guarantee of finding the best model - may remain for long intervals in local regions of the model space
- As the number of predictors increases, model space enormous - convergence of MCMC may be effectively impossible
- May obtain poor estimates of posterior model probabilities most models are never visited \& many are only visited once

Issues in Large Model Spaces

- Results from SSVS can be difficult to interpret - there may be 100 s or 1000 s of models with very similar posterior probabilities
- Makes it clear that it is problematic to base inferences on any one selected model in a large model space
- Seldom enough information in the data to definitively conclude in favor of one model
- This issue is swept under the rug by optimization-based approaches
- Critical to account for model uncertainty in inferences

Marginal Inclusion Probabilities

- As posterior model probabilities are not very helpful, one often focuses instead on marginal inclusion probabilities
- Provides a weight of evidence that a predictor should be included
- Can be artificially small if there are several correlated predictors - correlated predictors are big problem in general!
- Even in the absence of correlation, Bayes multiplicity adjustments can lead to smallish inclusion probabilities for important predictors

Some Comments on Multiplicity Adjustments

- If independent Bernoulli priors are chosen for the variable inclusion indicators, no adjustment for multiplicity
- In such a case, one gets more and more false positives as the number of candidate predictors increases
- A Bayes adjustment for multiplicity can proceed by including dependence in the hypotheses
- Most common approach is to choose a beta hyperprior for probability of including a variable

Multiplicity Adjustments (Continued)

- If a beta hyperprior is chosen, then the incorporation of a large number of "null" predictors, will lead to updating
- The inclusion probability will then have a posterior that is increasing concentrated near zero
- The more null predictors that are included, the more one needs overwhelming evidence in the data to assign a high inclusion probability to an important predictor.
- Tends to lead to very small inclusion probabilities for the vast majority of predictors, with the small number of important predictors assigned probabilities higher but not close to one.

