Bayesian Statistics

Debdeep Pati
Florida State University

February 22, 2016

Getting Started with Modeling

- As motivation, lets start with the relatively simple setting $y_{i} \sim f$ i.i.d
- The goal is to obtain a Bayes estimate of the density f
- From a frequentist perspective, a very common strategy is to rely on a simple histogram.
- Assume for simplicity we have pre-specified knots

$$
\begin{gathered}
\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{k}\right)^{\prime} \\
\xi_{0}<\xi_{1}<\cdots<\xi_{k-1}<\xi_{k} \text { and } y_{i} \in\left[\xi_{0}, \xi_{k}\right]
\end{gathered}
$$

Bayesian Histograms

- The model for the density is as follows

$$
f(y)=\sum_{h=1}^{k} 1\left(\xi_{h-1}<y \leq \xi_{h}\right) \frac{\pi_{h}}{\left(\xi_{h}-\xi_{h-1}\right)}, y \in \mathbb{R}
$$

- To allow unknown numbers and locations of knots ξ, we can choose a prior for these quantities and use RJMCMC for posterior computation
- Focusing instead on fixed knots, we complete a Bayes specification with a prior for the probabilities

Dirichlet prior

- Assume a $\operatorname{Dirichlet}\left(a_{1}, \ldots, a_{k}\right)$ prior for π,

$$
\frac{\prod_{h=1}^{k} \Gamma\left(a_{h}\right)}{\Gamma\left(\sum_{h=1}^{k} a_{h}\right)} \prod_{h=1} \pi_{h}^{a_{h}-1}
$$

- The hyperparameter vector can be re-expressed as $a=\alpha \pi_{0}$, where $E(\pi)=\pi_{0}=\left\{a_{1} / \sum_{h} a_{h}, \ldots, a_{k} / \sum_{h} a_{h}\right\}$ is the prior mean
- The posterior distribution of π is then calculated as

$$
\begin{aligned}
& \qquad \begin{aligned}
\left(\pi \mid y^{n}\right) & \propto \prod_{h=1}^{k} \pi_{h}^{a_{h}-1} \prod_{i: y_{i} \in\left(\xi_{h-1}, \xi_{h}\right)} \frac{\pi_{h}}{\xi_{h}-\xi_{h-1}} \\
& \propto \prod_{h=1} \pi_{h}^{a_{h}+n_{h}-1} \\
\stackrel{\mathcal{D}}{=} & \operatorname{Diri}\left(a_{1}+n_{1}, \ldots, a_{k}+n_{k}\right)
\end{aligned} \\
& \text { where } n_{h}=\sum_{i} 1\left(\xi_{h-1}<y_{i} \leq \xi_{h}\right) .
\end{aligned}
$$

Simulation Experiment

- To evaluate the Bayes histogram method, I simulated data from a mixture of two betas,

$$
f(y)=0.75 \operatorname{beta}(y ; 1,5)+0.25 \operatorname{beta}(y ; 20,2) .
$$

for $n=100$ samples were obtained from this density

- Assuming data between $[0,1]$ and choosing a 10 equally-spaced knots, we applied the Bayes histogram approach
- The true density and Bayes posterior mean are plotted on the next slide

Bayes Histogram Estimate for Simulation Example

- Procedure is really easy in that we have conjugacy
- Results very sensitive to knots \& allowing free knots is computationally demanding
- In addition, even averaging over random knots we tend to get bumps in the density estimate as an artifact
- Allows prior information to be included in frequentist histogram estimates easily
- Dirichlet prior perhaps not best choice due to lack of smoothing across adjacent bins

Is this approach nonparametric?

- I would say no - we have a flexible parametric model
- Including free knots leads to a nonparametric specification in which any density can be accurately approximated \& we can obtain large support
- The fixed knot Bayesian histogram approach does not have (full) weak support on the set of densities wrt to Lesbesgue measure.

The trouble with histograms?

- Histograms have the unappealing characteristics of bin sensitivity \& approximating a smooth density with piecewise constants
- In addition, extending histograms to multiple dimensions \& to include predictors is problematic due to an explosion of the number of bins needed
- To be realistic we need to account for uncertainty in the number \& locations of bins, but this is a pain computationally
- Can we define a model that bypasses the need to explicitly specify bins?

Histograms \& RPMs

- Suppose the sample space is $\Omega \&$ we partition Ω into Borel subsets B_{1}, \ldots, B_{k}
- If $\Omega=\mathbb{R}$, then B_{1}, \ldots, B_{k} are simply non-overlapping intervals partitioning the real line into a finite number of bins
- Letting P denote the unknown probability measure over (Ω, \mathcal{B}), the probabilities allocated to the bins is

$$
\left\{P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right\}=\left\{\int_{B_{1}} f(y) d y, \ldots, \int_{B_{k}} f(y) d y\right\}
$$

- If P is a random probability measure (RPM), then these bin probs are random variables

Dirichlet processes (Ferguson, 1973; 1974)

- As discussed last lecture, a simple conjugate prior for the bin probabilities corresponds to the Dirichlet distribution
- For example, we could let

$$
\begin{equation*}
\left\{P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right\} \sim \operatorname{Dir}\left\{\alpha P_{0}\left(B_{1}\right), \ldots, \alpha P_{0}\left(B_{k}\right)\right\} \tag{1}
\end{equation*}
$$

- P_{0} is a "base" probability measure providing an initial guess at $P \& \alpha$ is a prior concentration parameter
- Ferguson's idea: eliminate sensitivity to choice of B_{1}, \ldots, B_{k} \& induce a fully specified prior on P, through assuming (1) holds for all $B_{1}, \ldots, B_{k} \&$ all k.
- For Ferguson's specification to be coherent, there must exist an RPM P such that the probs assigned to any measurable partition B_{1}, \ldots, B_{k} by P is $\operatorname{Dir}\left\{\alpha P_{0}\left(B_{1}\right), \ldots, \alpha P_{0}\left(B_{k}\right)\right\}$
- The existence of such a P can be shown by verifying the Kolmogorov consistency conditions
- The first Kolmogorov condition is automatic, since (1) is defined free of the order of the sets
- The remaining condition relates to coherence across different partitions - e.g, if we form a new partition by taking unions of some of the sets in B_{1}, \ldots, B_{k} then the resulting probs assigned to this new partition must still be Dirichlet with the same form

Dirichlet process: a prior for the space of probability distributions

- A Dirichlet distribution is a distribution over the K-dimensional probability simplex:

$$
\Delta_{K}=\left\{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right): \pi_{k} \geq 0, \sum_{k=1}^{K} \pi_{k}=1\right\}
$$

- We say $\left(\pi_{1}, \ldots, \pi_{k}\right)$ is Dirichlet distributed $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ if

$$
p\left(\pi_{1}, \ldots, \pi_{k}\right)=\frac{\Gamma\left(\sum_{k} \lambda_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\lambda_{k}\right)} \prod_{k=1}^{n} \pi_{k}^{\lambda_{k}-1}
$$

- Equivalent to normalizing a set of independent gamma variables

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{k}\right) \stackrel{d}{=} & \frac{1}{\sum_{k} \gamma_{k}}\left(\gamma_{1}, \ldots, \gamma_{k}\right) \\
\gamma_{j} & \sim \operatorname{Gamma}\left(\lambda_{k}, \beta\right)
\end{aligned}
$$

Dirichlet distribution

Figure: Dirichlet distribution

Agglomerative \& Decimative properties of DP

- Combining entries by their sum

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \\
\left(\pi_{1}, \ldots, \pi_{i}+\pi_{j} \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{i}+\alpha_{j}, \ldots \alpha_{K}\right)
\end{aligned}
$$

- Decimating one entry into two

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \\
\left(\tau_{1}, \tau_{2}\right) & \sim \operatorname{Diri}\left(\alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}\right) \\
\left(\pi_{1}, \ldots, \pi_{i} \tau_{1}, \pi_{i} \tau_{2}, \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}, \ldots, \alpha_{K}\right)
\end{aligned}
$$

Existence of Dirichlet process

- $\left(B_{1}^{\prime}, \ldots, B_{k^{\prime}}^{\prime}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ are measurable partitions
- $\left(B_{1}^{\prime}, \ldots, B_{k^{\prime}}^{\prime}\right)$ is a refinement of $\left(B_{1}, \ldots, B_{k}\right) \mathrm{s}$ with $B_{1}=\cup_{1}^{r_{1}} B_{j}^{\prime}, B_{2}=\cup_{r_{1}+1}^{r_{2}} B_{j}^{\prime}, \ldots B_{k}=\cup_{r_{k-1}+1}^{k^{\prime}} B_{j}^{\prime}$
- Then, the distribution of $P\left(B_{1}^{\prime}\right), \ldots, P\left(B_{k^{\prime}}^{\prime}\right)$ induces a distribution on

$$
\sum_{1}^{r_{1}} P\left(B_{j}^{\prime}\right), \sum_{r_{1}+1}^{r_{2}} P\left(B_{j}^{\prime}\right), \cdots, \sum_{r_{k-1}+1}^{k^{\prime}} P\left(B_{j}^{\prime}\right)
$$

which is equivalent to the distribution of $P\left(B_{1}\right), \ldots, P\left(B_{k}\right)$.

- Ferguson shows this condition is sufficient for Kolmogorov consistency

