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Dirichlet processes (Ferguson, 1973; 1974)

I As discussed last lecture, a simple conjugate prior for the bin
probabilities corresponds to the Dirichlet distribution

I For example, we could let

{P(B1), ...,P(Bk)} ∼ Dir{αP0(B1), . . . , αP0(Bk)} (1)

I P0 is a “base” probability measure providing an initial guess
at P & α is a prior concentration parameter

I Ferguson’s idea: eliminate sensitivity to choice of B1, . . . ,Bk

& induce a fully specified prior on P, through assuming (1)
holds for all B1, . . . ,Bk & all k .



Dirichlet processes (Ferguson, 1973; 1974)

I For Ferguson’s specification to be coherent, there must exist
an RPM P such that the probs assigned to any measurable
partition B1, . . . ,Bk by P is Dir{αP0(B1), . . . , αP0(Bk)}

I The existence of such a P can be shown by verifying the
Kolmogorov consistency conditions

I The first Kolmogorov condition is automatic, since (1) is
defined free of the order of the sets

I The remaining condition relates to coherence across different
partitions - e.g, if we form a new partition by taking unions of
some of the sets in B1, . . . ,Bk then the resulting probs
assigned to this new partition must still be Dirichlet with the
same form



Dirichlet process: a prior for the space of probability
distributions

I A Dirichlet distribution is a distribution over the
K-dimensional probability simplex:

∆K = {(π1, π2, . . . , πk) : πk ≥ 0,
K∑

k=1

πk = 1}

I We say (π1, . . . , πk) is Dirichlet distributed (λ1, λ2, . . . , λk) if

p(π1, . . . , πk) =
Γ(
∑

k λk)∏K
k=1 Γ(λk)

n∏
k=1

πλk−1
k

I Equivalent to normalizing a set of independent gamma
variables

(π1, . . . , πk)
d
=

1∑
k γk

(γ1, . . . , γk)

γj ∼ Gamma(λk , β)



Dirichlet distribution

Figure: Dirichlet distribution



Agglomerative & Decimative properties of DP

I Combining entries by their sum

(π1, . . . , πK ) ∼ Diri(α1, . . . , αK )

(π1, . . . , πi + πj . . . , πK ) ∼ Diri(α1, . . . , αi + αj , . . . αK )

I Decimating one entry into two

(π1, . . . , πK ) ∼ Diri(α1, . . . , αK )

(τ1, τ2) ∼ Diri(αiβ1, αiβ2)

(π1, . . . , πiτ1, πiτ2, . . . , πK ) ∼ Diri(α1, . . . , αiβ1, αiβ2, . . . , αK )



Existence of Dirichlet process

I (B ′1, . . . ,B
′
k ′) and (B1, . . . ,Bk) are measurable partitions

I (B ′1, . . . ,B
′
k ′) is a refinement of (B1, . . . ,Bk)s with

B1 = ∪r11 B ′j ,B2 = ∪r2r1+1B
′
j , . . .Bk = ∪k ′rk−1+1B

′
j

I Then, the distribution of P(B ′1), . . . ,P(B ′k ′) induces a
distribution on

r1∑
1

P(B ′j ),

r2∑
r1+1

P(B ′j ), · · · ,
k ′∑

rk−1+1

P(B ′j )

which is equivalent to the distribution of P(B1), . . . ,P(Bk).

I Ferguson shows this condition is sufficient for Kolmogorov
consistency



Moment properties of the DP

I Let P ∼ DP(α,P0) denote that the probability measure P on
(Ω,B) is assigned a Dirichlet process (DP) prior with scalar
precision α > 0 and base probability measure P0

I From the definition of the Dirichlet process & properties of
the Dirichlet, we have

P(B) ∼ beta[αP0(B), α{1− P0(B)}], for allB ∈ B.

I Hence, we have E{P(B)} = P0(B), for all B ∈ B, so that the
prior for P is centered on P0

I In addition, we have

V {P(B)} =
P0(B){1− P0(B)}

1 + α
, for allB ∈ B,

so that α is a precision parameter controlling the variance



Large Support of the DP

I Let Q ∈ P denote a fixed probability measure on (Ω,B
I From proposition 3 in Ferguson (1973), for any positive

integer k, measurable sets B1, . . . ,Bk and ε > 0,

P{|P(Bi )− Q(Bi )| < ε} for i = 1, . . . , k} > 0.

I The topology of pointwise convergence corresponds to
Pn → P,iff every B ∈ B,Pn(B)→ P(B).

I Under this topology, the support of the DP contains all
probability measures whose support is contained in the
support of P0.



Conjugacy

I Let P ∼ DP(α,P0) and let yi ∼ P i.i.d (following standard
practice in using P to denote both the probability measure
and its corresponding distribution)

I For any measurable partition B1, . . . ,Bk , we have

{P(B1), . . . ,P(Bk) | y1, . . . , yn} ∼

Diri

{
αP0(B1) +

n∑
i=1

I (yi ∈ B1), . . . , αP0(Bk) +
n∑

i=1

I (yi ∈ Bk)

}

I From this & the above development, it is straightforward to
obtain

(P | y1, . . . , yn) ∼ DP

(
αP0 +

∑
i

δyi

)



Posterior of the DP

I The updated precision parameter is α + n, so that α is in
some sense a prior sample size

I The posterior expectation of P is defined as

E{P(B) | y} =
α

α + n
P0(B) +

n

α + n

∑
i

1

n
δyi

I Hence, the Bayes estimator of P under squared error loss is
the empirical measure with equal masses at the data points
shrunk towards the base measure.



Bayesian Bootstrap

I Note that in the limit as α→ 0 we obtain the posterior,

(P | yn) ∼ DP

( n∑
i=1

δyi

)

I This limiting posterior is known as the Bayesian bootstrap

I Samples from the Bayesian bootstrap correspond to discrete
distributions supported at the observed data points with
Dirichlet distributed weights

I Compared with the typical Efron bootstrap, the Bayesian
bootstrap leads to smoothing of the weights



Dirichlet process (Ferguson 1973)

I Let Θ be a measurable space, G0 be a probability measure
(base) on Θ and α > 0 is (precision / concentration).

I G ∼ DP(· | G0, α) if for all A1, . . . ,Ak finite partitions of Θ,

(G (A1),G (A2), . . . ,G (AK )) ∼ Dir(αG0(A1), . . . , αG0(AK ))

Figure: DP



G ∼ DP(· | G0, α): What does it look like

I {G (B) : B ∈ B} is a stochastic process
I Samples from DP are discrete with probability one. In fact,

G (θ) =
∞∑
k=1

πkδθk (θ), θk ∼ G0

I E (G ) = G0

I As α→∞,G looks more like G0

Figure: DP realizations



Representations of Dirichlet process

I Posterior Dirichlet process

[
G ∼ DP(· | α,G0)

θ | G ∼ G

]
⇔
[ θ ∼ G0

G | θ ∼ DP

(
·, α + 1, αG0+δθ

α+1

) ]

I Pólya Urn Scheme

θ′ | θ,G0 =

∫
[θ′ | G ][G | θ]dG =

∫
G [G | θ]dG =

αG0 + δθ
α + 1

θn | θ1, . . . , θn−1,G0 ∼
αG0 +

∑n−1
i=1 δθi

α + n − 1



Chinese Restaurant process

I This shows the clustering effect explicitly.

I Restaurant has infinitely many tables k = 1, . . ..

I Tables have values θk drawn from G0.

I Customers are indexed by i = 1, . . . with values φi .

I K = total number of occupied tables so far.

I n = total number of customers so far.

I nk = number of customers seated at table k .



Chinese Restaurant process

Figure: CRP



Relationship between CRP and DP

I DP is a distribution over distributions

I DP results in discrete distributions, so if you draw n points
you are likely to get repeated values

I A DP induces a partitioning of the n points e.g.
(134)(25)⇔ φ1 = φ3 = φ4 6= φ2 = φ5

I CRP is the corresponding distribution over partitions



Stick Breaking construction for G ∼ DP(·, α,G0)

Stick-Breaking Formula

πk = βk
∏
l=1

(1− βl), βk ∼ Beta(1, α),

θ∗k ∼ G0,G =
∞∑
k=1

πkδθ∗k

Stick Breaking



Sketch of the proof (Sethuraman, 1994)

I Recall the posterior process[
G ∼ DP(· | α,G0)

θ | G ∼ G

]
⇔
[ θ ∼ G0

G | θ ∼ DP

(
·, α + 1, αG0+δθ

α+1

) ]

I Consider a partition (θ,Θ\θ) of Θ. We have

(G (θ),G (Θ\θ)) ∼ Diri

{
(α + 1)

αG0 + δθ
α + 1

(θ), (α + 1)
αG0 + δθ
α + 1

(Θ\θ)

}
= Beta(1, α)

I G has a point mass located at θ:

G = βδθ + (1− β)G ′, β ∼ Beta(1, α)

and G ′ is the renormalized probability measure with the point mass
removed.

I What is G ′?



Sketch of the proof : What is G’

I Consider a further partition of (θ,A1, . . . ,AK ) of Θ.

(G (θ),G (A1), . . . ,G (AK )) = (β, (1− β)G ′(A1), . . . , (1− β)G ′(AK ))

∼ Diri(1, αG0(A1), . . . , αG0(AK ))

I Renomalizing

(G ′(A1), . . . ,G ′(AK )) | θ = Diri(αG0(A1), . . . , αG0(AK ))

G ′ ∼ DP(·, α,G0)



Sketch of the proof

G ∼ DP(·, α,G0)

G = β1δθ∗1 + (1− β1)G1

G = β1δθ∗1 + (1− β1)(β2δθ∗2 + (1− β2)G2)

...

G =
∞∑
k=1

πkδθ∗k

where πk = β
∏

l=1(1− βl), βk ∼ Beta(1, α), θ∗k ∼ G0.


