Bayesian Statistics

Debdeep Pati
Florida State University

September 27, 2016

Dirichlet processes (Ferguson, 1973; 1974)

- As discussed last lecture, a simple conjugate prior for the bin probabilities corresponds to the Dirichlet distribution
- For example, we could let

$$
\begin{equation*}
\left\{P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right\} \sim \operatorname{Dir}\left\{\alpha P_{0}\left(B_{1}\right), \ldots, \alpha P_{0}\left(B_{k}\right)\right\} \tag{1}
\end{equation*}
$$

- P_{0} is a "base" probability measure providing an initial guess at $P \& \alpha$ is a prior concentration parameter
- Ferguson's idea: eliminate sensitivity to choice of B_{1}, \ldots, B_{k} \& induce a fully specified prior on P, through assuming (1) holds for all $B_{1}, \ldots, B_{k} \&$ all k.
- For Ferguson's specification to be coherent, there must exist an RPM P such that the probs assigned to any measurable partition B_{1}, \ldots, B_{k} by P is $\operatorname{Dir}\left\{\alpha P_{0}\left(B_{1}\right), \ldots, \alpha P_{0}\left(B_{k}\right)\right\}$
- The existence of such a P can be shown by verifying the Kolmogorov consistency conditions
- The first Kolmogorov condition is automatic, since (1) is defined free of the order of the sets
- The remaining condition relates to coherence across different partitions - e.g, if we form a new partition by taking unions of some of the sets in B_{1}, \ldots, B_{k} then the resulting probs assigned to this new partition must still be Dirichlet with the same form

Dirichlet process: a prior for the space of probability distributions

- A Dirichlet distribution is a distribution over the K-dimensional probability simplex:

$$
\Delta_{K}=\left\{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right): \pi_{k} \geq 0, \sum_{k=1}^{K} \pi_{k}=1\right\}
$$

- We say $\left(\pi_{1}, \ldots, \pi_{k}\right)$ is Dirichlet distributed $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ if

$$
p\left(\pi_{1}, \ldots, \pi_{k}\right)=\frac{\Gamma\left(\sum_{k} \lambda_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\lambda_{k}\right)} \prod_{k=1}^{n} \pi_{k}^{\lambda_{k}-1}
$$

- Equivalent to normalizing a set of independent gamma variables

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{k}\right) \stackrel{d}{=} & \frac{1}{\sum_{k} \gamma_{k}}\left(\gamma_{1}, \ldots, \gamma_{k}\right) \\
\gamma_{j} & \sim \operatorname{Gamma}\left(\lambda_{k}, \beta\right)
\end{aligned}
$$

Dirichlet distribution

Figure: Dirichlet distribution

Agglomerative \& Decimative properties of DP

- Combining entries by their sum

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \\
\left(\pi_{1}, \ldots, \pi_{i}+\pi_{j} \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{i}+\alpha_{j}, \ldots \alpha_{K}\right)
\end{aligned}
$$

- Decimating one entry into two

$$
\begin{aligned}
\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \\
\left(\tau_{1}, \tau_{2}\right) & \sim \operatorname{Diri}\left(\alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}\right) \\
\left(\pi_{1}, \ldots, \pi_{i} \tau_{1}, \pi_{i} \tau_{2}, \ldots, \pi_{K}\right) & \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}, \ldots, \alpha_{K}\right)
\end{aligned}
$$

Existence of Dirichlet process

- $\left(B_{1}^{\prime}, \ldots, B_{k^{\prime}}^{\prime}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ are measurable partitions
- $\left(B_{1}^{\prime}, \ldots, B_{k^{\prime}}^{\prime}\right)$ is a refinement of $\left(B_{1}, \ldots, B_{k}\right) \mathrm{s}$ with $B_{1}=\cup_{1}^{r_{1}} B_{j}^{\prime}, B_{2}=\cup_{r_{1}+1}^{r_{2}} B_{j}^{\prime}, \ldots B_{k}=\cup_{r_{k-1}+1}^{k^{\prime}} B_{j}^{\prime}$
- Then, the distribution of $P\left(B_{1}^{\prime}\right), \ldots, P\left(B_{k^{\prime}}^{\prime}\right)$ induces a distribution on

$$
\sum_{1}^{r_{1}} P\left(B_{j}^{\prime}\right), \sum_{r_{1}+1}^{r_{2}} P\left(B_{j}^{\prime}\right), \cdots, \sum_{r_{k-1}+1}^{k^{\prime}} P\left(B_{j}^{\prime}\right)
$$

which is equivalent to the distribution of $P\left(B_{1}\right), \ldots, P\left(B_{k}\right)$.

- Ferguson shows this condition is sufficient for Kolmogorov consistency

Moment properties of the DP

- Let $P \sim \mathrm{DP}\left(\alpha, P_{0}\right)$ denote that the probability measure P on (Ω, \mathcal{B}) is assigned a Dirichlet process (DP) prior with scalar precision $\alpha>0$ and base probability measure P_{0}
- From the definition of the Dirichlet process \& properties of the Dirichlet, we have

$$
P(B) \sim \operatorname{beta}\left[\alpha P_{0}(B), \alpha\left\{1-P_{0}(B)\right\}\right], \text { for all } B \in \mathcal{B}
$$

- Hence, we have $E\{P(B)\}=P_{0}(B)$, for all $B \in \mathcal{B}$, so that the prior for P is centered on P_{0}
- In addition, we have

$$
V\{P(B)\}=\frac{P_{0}(B)\left\{1-P_{0}(B)\right\}}{1+\alpha}, \text { for all } B \in \mathcal{B}
$$

so that α is a precision parameter controlling the variance

Large Support of the DP

- Let $Q \in \mathcal{P}$ denote a fixed probability measure on (Ω, \mathcal{B})
- From proposition 3 in Ferguson (1973), for any positive integer k, measurable sets B_{1}, \ldots, B_{k} and $\epsilon>0$,

$$
\left.P\left\{\left|P\left(B_{i}\right)-Q\left(B_{i}\right)\right|<\epsilon\right\} \text { for } i=1, \ldots, k\right\}>0 .
$$

- The topology of pointwise convergence corresponds to $P_{n} \rightarrow P$, iff every $B \in \mathcal{B}, P_{n}(B) \rightarrow P(B)$.
- Under this topology, the support of the DP contains all probability measures whose support is contained in the support of P_{0}.

Conjugacy

- Let $P \sim \operatorname{DP}\left(\alpha, P_{0}\right)$ and let $y_{i} \sim P$ i.i.d (following standard practice in using P to denote both the probability measure and its corresponding distribution)
- For any measurable partition B_{1}, \ldots, B_{k}, we have

$$
\begin{array}{r}
\left\{P\left(B_{1}\right), \ldots, P\left(B_{k}\right) \mid y_{1}, \ldots, y_{n}\right\} \sim \\
\operatorname{Diri}\left\{\alpha P_{0}\left(B_{1}\right)+\sum_{i=1}^{n} I\left(y_{i} \in B_{1}\right), \ldots, \alpha P_{0}\left(B_{k}\right)+\sum_{i=1}^{n} I\left(y_{i} \in B_{k}\right)\right\}
\end{array}
$$

- From this \& the above development, it is straightforward to obtain

$$
\left(P \mid y_{1}, \ldots, y_{n}\right) \sim \operatorname{DP}\left(\alpha P_{0}+\sum_{i} \delta_{y_{i}}\right)
$$

Posterior of the DP

- The updated precision parameter is $\alpha+n$, so that α is in some sense a prior sample size
- The posterior expectation of P is defined as

$$
E\{P(B) \mid y\}=\frac{\alpha}{\alpha+n} P_{0}(B)+\frac{n}{\alpha+n} \sum_{i} \frac{1}{n} \delta_{y_{i}}
$$

- Hence, the Bayes estimator of P under squared error loss is the empirical measure with equal masses at the data points shrunk towards the base measure.

Bayesian Bootstrap

- Note that in the limit as $\alpha \rightarrow 0$ we obtain the posterior,

$$
\left(P \mid y^{n}\right) \sim D P\left(\sum_{i=1}^{n} \delta_{y_{i}}\right)
$$

- This limiting posterior is known as the Bayesian bootstrap
- Samples from the Bayesian bootstrap correspond to discrete distributions supported at the observed data points with Dirichlet distributed weights
- Compared with the typical Efron bootstrap, the Bayesian bootstrap leads to smoothing of the weights

Dirichlet process (Ferguson 1973)

- Let Θ be a measurable space, G_{0} be a probability measure (base) on Θ and $\alpha>0$ is (precision / concentration).
- $G \sim D P\left(\cdot \mid G_{0}, \alpha\right)$ if for all A_{1}, \ldots, A_{k} finite partitions of Θ, $\left(G\left(A_{1}\right), G\left(A_{2}\right), \ldots, G\left(A_{K}\right)\right) \sim \operatorname{Dir}\left(\alpha G_{0}\left(A_{1}\right), \ldots, \alpha G_{0}\left(A_{K}\right)\right)$

Figure: DP

- $\{G(B): B \in \mathcal{B}\}$ is a stochastic process
- Samples from DP are discrete with probability one. In fact,

$$
G(B)=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}}(B), \theta_{k} \sim G_{0}
$$

- $E(G)=G_{0}$
- As $\alpha \rightarrow \infty, G$ looks more like G_{0}

Figure: DP realizations

Representations of Dirichlet process

- Posterior Dirichlet process

$$
\left[\begin{array}{c}
G \sim D P\left(\cdot \mid \alpha, G_{0}\right) \\
\theta \mid G \sim G
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
\theta \sim G_{0} \\
G \left\lvert\, \theta \sim D P\left(\cdot, \alpha+1, \frac{\alpha G_{0}+\delta_{\theta}}{\alpha+1}\right)\right.
\end{array}\right]
$$

- Pólya Urn Scheme

$$
\begin{aligned}
\theta^{\prime} \mid \theta, G_{0} & =\int\left[\theta^{\prime} \mid G\right][G \mid \theta] d G=\int G[G \mid \theta] d G=\frac{\alpha G_{0}+\delta_{\theta}}{\alpha+1} \\
\theta_{n} & \mid \theta_{1}, \ldots, \theta_{n-1}, G_{0} \sim \frac{\alpha G_{0}+\sum_{i=1}^{n-1} \delta_{\theta_{i}}}{\alpha+n-1}
\end{aligned}
$$

Chinese Restaurant process

- This shows the clustering effect explicitly.
- Restaurant has infinitely many tables $k=1, \ldots$.
- Tables have values θ_{k} drawn from G_{0}.
- Customers are indexed by $i=1, \ldots$ with values ϕ_{i}.
- $K=$ total number of occupied tables so far.
- $n=$ total number of customers so far.
- $n_{k}=$ number of customers seated at table k.

Chinese Restaurant process

Figure: CRP

Generating from a CRP:

customer 1 enters the restaurant and sits at table 1 .
$\phi_{1}=\theta_{1}$ where $\theta_{1} \sim G_{0}, K=1, n=1, n_{1}=1$
for $n=2, \ldots$,
customer n sits at table $\left\{\begin{array}{clc}k & \text { with prob } \frac{n_{k}}{n-1+\alpha} & \text { for } k=1 \ldots K \\ K+1 & \text { with prob } \frac{\alpha}{n-1+\alpha} & \text { (new table) }\end{array}\right.$
if new table was chosen then $K \leftarrow K+1, \theta_{K+1} \sim G_{0}$ endif set ϕ_{n} to θ_{k} of the table k that customer n sat at; set $n_{k} \leftarrow n_{k}+1$ endfor

Relationship between CRP and DP

- DP is a distribution over distributions
- DP results in discrete distributions, so if you draw n points you are likely to get repeated values
- A DP induces a partitioning of the n points e.g. $(134)(25) \Leftrightarrow \phi_{1}=\phi_{3}=\phi_{4} \neq \phi_{2}=\phi_{5}$
- CRP is the corresponding distribution over partitions

Stick Breaking construction for $G \sim D P\left(\cdot, \alpha, G_{0}\right)$

Stick-Breaking Formula

$$
\begin{array}{r}
\pi_{k}=\beta_{k} \prod_{l=1}\left(1-\beta_{l}\right), \beta_{k} \sim \operatorname{Beta}(1, \alpha), \\
\theta_{k}^{*} \sim G_{0}, G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}^{*}}
\end{array}
$$

Stick Breaking

Sketch of the proof (Sethuraman, 1994)

- Recall the posterior process

$$
\left[\begin{array}{c}
G \sim D P\left(\cdot \mid \alpha, G_{0}\right) \\
\theta \mid G \sim G
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
\theta \sim G_{0} \\
G \left\lvert\, \theta \sim D P\left(\cdot, \alpha+1, \frac{\alpha G_{0}+\delta_{\theta}}{\alpha+1}\right)\right.
\end{array}\right]
$$

- Consider a partition $(\theta, \Theta \backslash \theta)$ of Θ. We have

$$
\begin{aligned}
(G(\theta), G(\Theta \backslash \theta)) & \sim \operatorname{Diri}\left\{(\alpha+1) \frac{\alpha G_{0}+\delta_{\theta}}{\alpha+1}(\theta),(\alpha+1) \frac{\alpha G_{0}+\delta_{\theta}}{\alpha+1}(\Theta \backslash \theta)\right\} \\
& =\operatorname{Beta}(1, \alpha)
\end{aligned}
$$

- G has a point mass located at θ :

$$
G=\beta \delta_{\theta}+(1-\beta) G^{\prime}, \quad \beta \sim \operatorname{Beta}(1, \alpha)
$$

and G^{\prime} is the renormalized probability measure with the point mass removed.

- What is G^{\prime} ?

Sketch of the proof : What is G'

- Consider a further partition of $\left(\theta, A_{1}, \ldots, A_{K}\right)$ of Θ.

$$
\begin{aligned}
\left(G(\theta), G\left(A_{1}\right), \ldots, G\left(A_{K}\right)\right) & =\left(\beta,(1-\beta) G^{\prime}\left(A_{1}\right), \ldots,(1-\beta) G^{\prime}\left(A_{K}\right)\right) \\
& \sim \operatorname{Diri}\left(1, \alpha G_{0}\left(A_{1}\right), \ldots, \alpha G_{0}\left(A_{K}\right)\right)
\end{aligned}
$$

- Renomalizing

$$
\begin{aligned}
\left(G^{\prime}\left(A_{1}\right), \ldots, G^{\prime}\left(A_{K}\right)\right) \mid \theta & =\operatorname{Diri}\left(\alpha G_{0}\left(A_{1}\right), \ldots, \alpha G_{0}\left(A_{K}\right)\right) \\
G^{\prime} & \sim \operatorname{DP}\left(\cdot, \alpha, G_{0}\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
G & \sim D P(\cdot, \alpha, G) \\
G & =\beta_{1} \delta_{\theta_{1}^{*}}+\left(1-\beta_{1}\right) G_{1} \\
G & =\beta_{1} \delta_{\theta_{1}^{*}}+\left(1-\beta_{1}\right)\left(\beta_{2} \delta_{\theta_{2}^{*}}+\left(1-\beta_{2}\right) G_{2}\right) \\
& \vdots \\
G & =\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}^{*}}
\end{aligned}
$$

where $\pi_{k}=\beta \prod_{l=1}\left(1-\beta_{l}\right), \beta_{k} \sim \operatorname{Beta}(1, \alpha), \theta_{k}^{*} \sim G_{0}$.

