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Stick Breaking construction for G ~ DP(-, a, Gp)

Stick-Breaking Formula

T = Bk | J(1 = B1), Bk ~ Beta(1, ),

=1

0 ~ Go, G = > midy:
k=1
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Sketch of the proof (Sethuraman, 1994)

> Recall the posterior process
0 ~ Gy

GNDP('la,Go)} { ]
<~ aGo+6,
[ G|0~DP<-,a+17Ojf19)

0]G~G

» Consider a partition (0,0\6) of ©. We have

aGy + 6y

200+ ) 2 @)

a—+1

(G(9),G(B\0)) ~ Diri{(a +1)

= Beta(1,q)

» G has a point mass located at 6:
G = B0+ (1—pB)G', B~ Beta(l,a)

and G’ is the renormalized probability measure with the point mass
removed.

» What is G'?



Sketch of the proof : What is G’

» Consider a further partition of (0, A;,...,Ax) of ©.

(6(6),G(A1), .-, G(Ak)) = (B,(1=B)G' (A1), ..., (1= PG (Ak))
~ Diri(l,OéGo(Al) ..../OZGO(AK))

» Renomalizing

(G/(Al), ceey G,(AK)) | 0 = Diri(OéGo(Al), ey OéGo(AK))
G ~ DP(-,a,G)



Sketch of the proof

()
lé

DP(-,a, Go)
= Bide; + (1 - B1)G1
G = Biog; + (1= B1)(B200; + (1 — B2)G2)

()
\

G = D mdy
k=1

where 1 = B[[,_,(1 — B1), Bk ~ Beta(1, ), 0} ~ Go.



Finite Mixture Models

» Finite mixture models are useful in a wide variety of settings,
including density estimation, clustering, classification, etc

» Focus initially on problem in which f(y),for y € R,is an
unknown density function

» Finite mixture of Gaussians provides a flexible choice,

k

Fly) =>_ mnN(y: pn, 7, ")
h=1

» It is well known that a mixture of normals can approximate
any smooth density



Application: Modeling length of gestation

» Preterm birth is a major public health problem leading to
substantial mortality & short and long-term morbidity

» Preterm birth is typically defined as a delivery occurring prior
to 37 weeks of completed gestation

» This cutoff is somewhat arbitrary & the shorter the length of
gestation, the more adverse the associated health effects

» Appealing to model the distribution of gestational age at
delivery as unknown & then allow predictors to impact this
distribution
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Gestational Length Densities within DDE Categories
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Comments on Gestational Length Data

» Data are non-Gaussian with a left skew
» Not straightforward to transform the data to approximate
normality

» A different transformation would be needed within each DDE
category

» First question: how to characterize gestational age at delivery
distribution without considering predictors?



Mixture Models

Initially ignoring DDE

v

v

Letting y; = gestational age at delivery for woman 1/,
709 = [ NG 036 ),

where G = mixture distribution for § = (1, 0?)

v

Mixtures of normals can approximate any smooth density

v

Finite location mixture with k components one possibility:

Zﬂ-hN Mh77—h )



Mixture components for gestational age at delivery

Component 1 (86% of deliveries)
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Mixture-based density of gestational age at delivery
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Some comments on mixture models

» k = 3 component mixture provides a good fit to gestational
age at delivery data.

» Can be fit easily using the EM algorithm for maximum
likelihood or Gibbs sampling for Bayesian inference.

» Il focus on the Gibbs sampling approach here



Finite mixture model

» The finite mixture of normals can be equivalently expressed as

yi~ N(us;;751), Si Nzﬂ'hfsh

0p = probability measure concentrated at the integer h,

Si€{1,2,...,k} indexes the mixture component for subject
ii=1,....n
» A prior on m = (71, 7m2,...,7k) and (pup, ), h=1,... ks
given by
m ~ Dir(a1, a2, ..., ak)

(tohy Th) ~ N(p; po, KT;l)Ga(Th; ar b)), h=1,... k



Posterior Computation in finite mixture models

» Update S; from its multinomial conditional posterior with

TaN(yis pn, 75 1)

= = —1’h:1""’k
Z/zl WhN(Yi;,U«haTh )

> Let ny = #{Si=h,i=1,....,n} and 7 = - >;.s._;, i and
update (Mh,lel) from its conditional posterior

(,u’thhil‘i) = N(Mhaﬂha k\:hT};l)Ga(Tha ‘aTh7 B‘I‘h)

where
’%h = (H_l + nh)_lngh — /A{(H—lﬂo + nh}_/h)a é‘l‘h =ar+ %,

~ 1 np

b, =b, + = )2 Vi — 1io)?

h T—l—2{_s h(y/ V) +1+mnh(yh Mo)}
1:5;=

» Update 7 as (7w|—) = Dir(ay + n1, ..., ax + ng).



Some comments

v

Gibbs sampler is trivial to implement

Discarding a burn-in,monitor f(y) = S>5_, 74 N(y; [, 7 Y)
for a large number of iterations & a dense grid of y values

v

v

Bayes estimate of f(y) under squared error loss averages the
samples

v

Can also obtain 95% pointwise intervals for unknown density



Choosing the Dirichlet hyperparameters

» The choice of hyperparameters in the mixture model can have
an important impact

» Focus initially on the choice of (a1,...,ax) in the Dirichlet
prior
» A common choice is a; = - -+ = a, = 1,which seems

“non-informative”.

> However, this is actually a poor choice in many cases, as it
favors assigning roughly equal weights to the different
components

> ldeally, we could choose k as an upper bound and choose
hyperparameters, which favor a small number of components
with relatively large weights



Finite Approximation to Dirichlet Process

Ishwaran and Zarepour (2002), “Dirichlet prior sieves in finite
normal mixtures,” Statistica Sinica, 12, 941-963) propose a
finite approximation to the DP

v

v

In particular, they propose letting
m ~ Dir(a/k,...,a/k) iid
» Assuming also that 6, = (up, 7h) ~ Po, they show that

v

k
Jim. hz_; Thg, — DP(aPy)

v

In addition, the posterior for the density is L1 consistent if
logk/n — 0.



Implications

> We can implement a finite mixture model analysis with a
carefully chosen prior & sufficiently large k to obtain an
accurate approximation to the DP mixture (DPM) model:

> f(y) = [ K(y;0)dP(0), P ~ DP(aPo)
» Here, K(y;0) is a kernel parameterized by 0s - e.g.,

K(y;0) = N(y; , 7 1) with 0 = (, 7~ 1) for normal mixtures
» P is now an unknown mixing measure

» Hence, we no longer use the DP as a prior directly for the
distribution of the data but instead use it for the mixture
distribution



Dirichlet Process Mixtures - comments

» The discreteness of the Dirichlet process is not a problem
when it is used for a mixture distribution instead of directly
for the data distribution

» In fact, in this setting the discreteness is appealing in leading
to a simple representation of the mixture distribution that
leads to clustering of the observations as a side effect

» Focusing on the finite approximation, P ~ DPy(a, Pp), let

fly) = / N(y; p, 7)dP(p, 7)

» Note that induces a prior on f.



