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Stick Breaking construction for G ∼ DP(·, α,G0)

Stick-Breaking Formula

πk = βk
∏
l=1

(1− βl), βk ∼ Beta(1, α),

θ∗k ∼ G0,G =
∞∑
k=1

πkδθ∗k

Stick Breaking



Sketch of the proof (Sethuraman, 1994)

I Recall the posterior process[
G ∼ DP(· | α,G0)

θ | G ∼ G

]
⇔
[ θ ∼ G0

G | θ ∼ DP

(
·, α + 1, αG0+δθ

α+1

) ]

I Consider a partition (θ,Θ\θ) of Θ. We have

(G (θ),G (Θ\θ)) ∼ Diri

{
(α + 1)

αG0 + δθ
α + 1

(θ), (α + 1)
αG0 + δθ
α + 1

(Θ\θ)

}
= Beta(1, α)

I G has a point mass located at θ:

G = βδθ + (1− β)G ′, β ∼ Beta(1, α)

and G ′ is the renormalized probability measure with the point mass
removed.

I What is G ′?



Sketch of the proof : What is G’

I Consider a further partition of (θ,A1, . . . ,AK ) of Θ.

(G (θ),G (A1), . . . ,G (AK )) = (β, (1− β)G ′(A1), . . . , (1− β)G ′(AK ))

∼ Diri(1, αG0(A1), . . . , αG0(AK ))

I Renomalizing

(G ′(A1), . . . ,G ′(AK )) | θ = Diri(αG0(A1), . . . , αG0(AK ))

G ′ ∼ DP(·, α,G0)



Sketch of the proof

G ∼ DP(·, α,G0)

G = β1δθ∗1 + (1− β1)G1

G = β1δθ∗1 + (1− β1)(β2δθ∗2 + (1− β2)G2)

...

G =
∞∑
k=1

πkδθ∗k

where πk = β
∏

l=1(1− βl), βk ∼ Beta(1, α), θ∗k ∼ G0.



Finite Mixture Models

I Finite mixture models are useful in a wide variety of settings,
including density estimation, clustering, classification, etc

I Focus initially on problem in which f (y),for y ∈ R,is an
unknown density function

I Finite mixture of Gaussians provides a flexible choice,

f (y) =
k∑

h=1

πhN(y ;µh, τ
−1
h )

I It is well known that a mixture of normals can approximate
any smooth density



Application: Modeling length of gestation

I Preterm birth is a major public health problem leading to
substantial mortality & short and long-term morbidity

I Preterm birth is typically defined as a delivery occurring prior
to 37 weeks of completed gestation

I This cutoff is somewhat arbitrary & the shorter the length of
gestation, the more adverse the associated health effects

I Appealing to model the distribution of gestational age at
delivery as unknown & then allow predictors to impact this
distribution



Gestational Length vs. DDE(mg/L)



Gestational Length Densities within DDE Categories



Comments on Gestational Length Data

I Data are non-Gaussian with a left skew

I Not straightforward to transform the data to approximate
normality

I A different transformation would be needed within each DDE
category

I First question: how to characterize gestational age at delivery
distribution without considering predictors?



Mixture Models

I Initially ignoring DDE

I Letting yi = gestational age at delivery for woman i ,

f (yi ) =

∫
N(yi ;µ, σ

2)dG (µ, σ2),

where G = mixture distribution for θ = (µ, σ2)

I Mixtures of normals can approximate any smooth density

I Finite location mixture with k components one possibility:

f (y) =
k∑

h=1

πhN(y ;µh, τ
−1
h )



Mixture components for gestational age at delivery



Mixture-based density of gestational age at delivery



Some comments on mixture models

I k = 3 component mixture provides a good fit to gestational
age at delivery data.

I Can be fit easily using the EM algorithm for maximum
likelihood or Gibbs sampling for Bayesian inference.

I Ill focus on the Gibbs sampling approach here



Finite mixture model

I The finite mixture of normals can be equivalently expressed as

yi ∼ N(µSi ; τ
−1
Si

),Si ∼
k∑

h=1

πhδh

δh = probability measure concentrated at the integer h,
Si ∈ {1, 2, . . . , k} indexes the mixture component for subject
i , i = 1, . . . , n.

I A prior on π = (π1, π2, . . . , πk) and (µh, τh), h = 1, . . . , k is
given by

π ∼ Dir(a1, a2, . . . , ak)

(µh, τh) ∼ N(µh;µ0, κτ
−1
h )Ga(τh; aτ ; bτ ), h = 1, . . . , k



Posterior Computation in finite mixture models

I Update Si from its multinomial conditional posterior with

Pr(Si = h|−) =
πhN(yi ;µh, τ

−1
h )∑k

l=1 πhN(yi ;µh, τ
−1
h )

, h = 1, . . . , k

I Let nh = #{Si = h, i = 1, . . . , n} and ȳh = 1
nh

∑
i :Si=h yi and

update (µh, τ
−1
h ) from its conditional posterior

(µh, τ
−1
h |−) = N(µh, µ̂h, κ̂hτ

−1
h )Ga(τh, âτh , b̂τh)

where
κ̂h = (κ−1 + nh)−1, µ̂h = κ̂(κ−1µ0 + nhȳh), âτh = aτ + nh

2 ,

b̂τh = bτ +
1

2

{ ∑
i :Si=h

(yi − ȳh)2 +
nh

1 + κnh
(ȳh − µ0)2

}

I Update π as (π|−) = Dir(a1 + n1, . . . , ak + nk).



Some comments

I Gibbs sampler is trivial to implement

I Discarding a burn-in,monitor f (y) =
∑k

h=1 πhN(y ;µh, τ
−1
h )

for a large number of iterations & a dense grid of y values

I Bayes estimate of f (y) under squared error loss averages the
samples

I Can also obtain 95% pointwise intervals for unknown density



Choosing the Dirichlet hyperparameters

I The choice of hyperparameters in the mixture model can have
an important impact

I Focus initially on the choice of (a1, . . . , ak)′ in the Dirichlet
prior

I A common choice is a1 = · · · = ak = 1,which seems
“non-informative”.

I However, this is actually a poor choice in many cases, as it
favors assigning roughly equal weights to the different
components

I Ideally, we could choose k as an upper bound and choose
hyperparameters, which favor a small number of components
with relatively large weights



Finite Approximation to Dirichlet Process

I Ishwaran and Zarepour (2002), “Dirichlet prior sieves in finite
normal mixtures,” Statistica Sinica, 12, 941-963) propose a
finite approximation to the DP

I In particular, they propose letting

I π ∼ Dir(α/k , . . . , α/k) iid

I Assuming also that θh = (µh, τh) ∼ P0, they show that

lim
k→∞

k∑
h=1

πhδθh → DP(αP0)

I In addition, the posterior for the density is L1 consistent if
log k/n→ 0.



Implications

I We can implement a finite mixture model analysis with a
carefully chosen prior & sufficiently large k to obtain an
accurate approximation to the DP mixture (DPM) model:

I f (y) =
∫
K (y ; θ)dP(θ),P ∼ DP(αP0)

I Here, K (y ; θ) is a kernel parameterized by θs - e.g.,
K (y ; θ) = N(y ;µ, τ−1) with θ = (µ, τ−1) for normal mixtures

I P is now an unknown mixing measure

I Hence, we no longer use the DP as a prior directly for the
distribution of the data but instead use it for the mixture
distribution



Dirichlet Process Mixtures - comments

I The discreteness of the Dirichlet process is not a problem
when it is used for a mixture distribution instead of directly
for the data distribution

I In fact, in this setting the discreteness is appealing in leading
to a simple representation of the mixture distribution that
leads to clustering of the observations as a side effect

I Focusing on the finite approximation, P ∼ DPk(α,P0), let

f (y) =

∫
N(y ;µ, τ)dP(µ, τ)

I Note that induces a prior on f .


