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Finite mixture model

» The finite mixture of normals can be equivalently expressed as

yi~ N(us;;751), Si Nzﬂ'hfsh

0p = probability measure concentrated at the integer h,

Si€{1,2,...,k} indexes the mixture component for subject
ii=1,....n
» A prior on m = (71, 7m2,...,7k) and (pup, ), h=1,... ks
given by
m ~ Dir(ag, o, ..., a)

(tohy Th) ~ N(pp; po, KT;l)Ga(Th; ar b)), h=1,... k



Posterior Computation in finite mixture models

» Update S; from its multinomial conditional posterior with

TaN(yis pn, 75 1)

= = —1’h:1""’k
Z/zl WhN(Yi;,U«haTh )

> Let ny = #{Si=h,i=1,....,n} and 7 = - >;.s._;, i and
update (Mh,lel) from its conditional posterior

(,u’thhil‘i) = N(Mhaﬂha k\:hT};l)Ga(Tha ‘aTh7 B‘I‘h)

where
’%h = (H_l + nh)_lngh — /A{(H—lﬂo + nh}_/h)a é‘l‘h =ar+ %,

~ 1 np

b, =b, + = )2 Vi — 1io)?

h T—l—2{_s h(y/ V) +1+mnh(yh Mo)}
1:5;=

» Update 7 as (7w|—) = Dir(ay + n1, ..., ax + ng).



Some comments

v

Gibbs sampler is trivial to implement

Discarding a burn-in,monitor f(y) = S>5_, 74 N(y; [, 7 Y)
for a large number of iterations & a dense grid of y values

v

v

Bayes estimate of f(y) under squared error loss averages the
samples

v

Can also obtain 95% pointwise intervals for unknown density



Choosing the Dirichlet hyperparameters

» The choice of hyperparameters in the mixture model can have
an important impact

» Focus initially on the choice of (a1,...,ax) in the Dirichlet
prior
» A common choice is a; = - -+ = a, = 1,which seems

“non-informative”.

> However, this is actually a poor choice in many cases, as it
favors assigning roughly equal weights to the different
components

> ldeally, we could choose k as an upper bound and choose
hyperparameters, which favor a small number of components
with relatively large weights



Finite Approximation to Dirichlet Process

Ishwaran and Zarepour (2002), “Dirichlet prior sieves in finite
normal mixtures,” Statistica Sinica, 12, 941-963) propose a
finite approximation to the DP

v

v

In particular, they propose letting
m ~ Dir(a/k,...,a/k) iid
» Assuming also that 6, = (up, 7h) ~ Po, they show that

v

k
Jim. hz_; Thg, — DP(aPy)

v

In addition, the posterior for the density is L1 consistent if
logk/n — 0.



Implications

> We can implement a finite mixture model analysis with a
carefully chosen prior & sufficiently large k to obtain an
accurate approximation to the DP mixture (DPM) model:

> f(y) = [ K(y;0)dP(0), P ~ DP(aPo)
» Here, K(y;0) is a kernel parameterized by 6 - e.g.,

K(y;0) = N(y; u, 1) with 0 = (u, 7~ 1) for normal mixtures
» P is now an unknown mixing measure

» Hence, we no longer use the DP as a prior directly for the
distribution of the data but instead use it for the mixture
distribution



Dirichlet Process Mixtures - comments

» The discreteness of the Dirichlet process is not a problem
when it is used for a mixture distribution instead of directly
for the data distribution

> In fact, in this setting the discreteness is appealing in leading
to a simple representation of the mixture distribution that
leads to clustering of the observations as a side effect

» Focusing on the finite approximation, P ~ DPy(a, Py), let

f(y)://\/(y:m T)dP(u, 7 Zﬂ'hNy fhs Ty )
h=1

» This induces a prior on f.



Dirichlet Process Mixtures

For density estimation,consider the DP mixture (DPM)model

v

yi | winmi ~ N(pi, 771),0; = (pi, 1) ~ P, P ~ DP(aPp) (")

v

Not immediate clear how to conduct posterior computation

v

One strategy relies on marginalizing out P to obtain

i—1

o 1
0i | 01,...,0i—1) ~ | ——— | P ——— 0y,
(0i | 61 1) (a+/—1) o+;a+1_10,

v

DP prediction rule or Polya urn scheme (Blackwell &
MacQueen, 73)



Avoiding Marginalization

> By marginalizing out the RPM P, we give up the ability to
conduct inferences on P

» By having approaches that avoid marginalization, we open the
door to generalizations of DPMs

» Stick-breaking representation (Sethuraman, 94),
i~ P = Z Vh H(l - Vi)de,, Vi A beta(1, ), 0 i Po
h=1 I<h



Samples from Dirichlet process with precision «
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Implications of Stick-Breaking

v

For small «;, most of the probability is allocated to the first
few components, favoring few latent classes

v

Expected number of occupied components o «log n

v

Weights 7, decrease stochastically towards near zero rapidly
in the index h

v

Suggests truncation approximation (Muliere & Tardella, 98),

N
P=> Vi[]( - Vi)de,

h=1 I<h

with Vjy = 1 so that weights sum to one



Blocked Gibbs Sampler (Ishwaran & James, 01)

1. Update S; € {1,..., N} by multinomial sampling with

P(Si—h|—)— T N(yi; ©n)

= — C h=1,....N
>y mN(yi; ©))

2. Update stick-breaking weight V,,h=1,..., N — 1, from

N
Beta(l + np, a0 + Z n,).

I=h+1

3. Update ©,,h=1,..., N, exactly as in the finite mixture
model.



Comments on Blocked Gibbs

» NN acts as an upper bound on the number of mixture
components in the sample

» By choosing a large value, the approximation error should be
small

» Possible to monitor this error during the MCMC
» Approximate inferences on functionals of P are possible

» Slice (Walker, 07) & retrospective sampling (Papaspiliopoulos
& Roberts, 08) approaches avoid truncation - exact block
Gibbs (Papaspiliopoulos, 08) combine these approaches



Choosing the DP precision parameter

» The DP precision parameter « plays a key role in controlling
the prior on the number of clusters
» A number of strategies have been proposed in the literature -

1. Fix v at a small number to favor allocation to few clusters
relative to the sample size - a commonly used default value is
a=1

2. Assign a hyperprior (typically gamma) to « - refer to technical
report by West (92) & recent article by Dorazio (09, JSPI,
139, 3384-3390)

3. Estimate « via empirical Bayes (Liu 96; McAulliffe et al. 06)



