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Finite mixture model

I The finite mixture of normals can be equivalently expressed as

yi ∼ N(µSi ; τ
−1
Si

),Si ∼
k∑

h=1

πhδh

δh = probability measure concentrated at the integer h,
Si ∈ {1, 2, . . . , k} indexes the mixture component for subject
i , i = 1, . . . , n.

I A prior on π = (π1, π2, . . . , πk) and (µh, τh), h = 1, . . . , k is
given by

π ∼ Dir(α1, α2, . . . , αk)

(µh, τh) ∼ N(µh;µ0, κτ
−1
h )Ga(τh; aτ ; bτ ), h = 1, . . . , k



Posterior Computation in finite mixture models

I Update Si from its multinomial conditional posterior with

Pr(Si = h|−) =
πhN(yi ;µh, τ

−1
h )∑k

l=1 πhN(yi ;µh, τ
−1
h )

, h = 1, . . . , k

I Let nh = #{Si = h, i = 1, . . . , n} and ȳh = 1
nh

∑
i :Si=h yi and

update (µh, τ
−1
h ) from its conditional posterior

(µh, τ
−1
h |−) = N(µh, µ̂h, κ̂hτ

−1
h )Ga(τh, âτh , b̂τh)

where
κ̂h = (κ−1 + nh)−1, µ̂h = κ̂(κ−1µ0 + nhȳh), âτh = aτ + nh

2 ,

b̂τh = bτ +
1

2

{ ∑
i :Si=h

(yi − ȳh)2 +
nh

1 + κnh
(ȳh − µ0)2

}

I Update π as (π|−) = Dir(a1 + n1, . . . , ak + nk).



Some comments

I Gibbs sampler is trivial to implement

I Discarding a burn-in,monitor f (y) =
∑k

h=1 πhN(y ;µh, τ
−1
h )

for a large number of iterations & a dense grid of y values

I Bayes estimate of f (y) under squared error loss averages the
samples

I Can also obtain 95% pointwise intervals for unknown density



Choosing the Dirichlet hyperparameters

I The choice of hyperparameters in the mixture model can have
an important impact

I Focus initially on the choice of (a1, . . . , ak)′ in the Dirichlet
prior

I A common choice is a1 = · · · = ak = 1,which seems
“non-informative”.

I However, this is actually a poor choice in many cases, as it
favors assigning roughly equal weights to the different
components

I Ideally, we could choose k as an upper bound and choose
hyperparameters, which favor a small number of components
with relatively large weights



Finite Approximation to Dirichlet Process

I Ishwaran and Zarepour (2002), “Dirichlet prior sieves in finite
normal mixtures,” Statistica Sinica, 12, 941-963) propose a
finite approximation to the DP

I In particular, they propose letting

I π ∼ Dir(α/k , . . . , α/k) iid

I Assuming also that θh = (µh, τh) ∼ P0, they show that

lim
k→∞

k∑
h=1

πhδθh → DP(αP0)

I In addition, the posterior for the density is L1 consistent if
log k/n→ 0.



Implications

I We can implement a finite mixture model analysis with a
carefully chosen prior & sufficiently large k to obtain an
accurate approximation to the DP mixture (DPM) model:

I f (y) =
∫
K (y ; θ)dP(θ),P ∼ DP(αP0)

I Here, K (y ; θ) is a kernel parameterized by θ - e.g.,
K (y ; θ) = N(y ;µ, τ−1) with θ = (µ, τ−1) for normal mixtures

I P is now an unknown mixing measure

I Hence, we no longer use the DP as a prior directly for the
distribution of the data but instead use it for the mixture
distribution



Dirichlet Process Mixtures - comments

I The discreteness of the Dirichlet process is not a problem
when it is used for a mixture distribution instead of directly
for the data distribution

I In fact, in this setting the discreteness is appealing in leading
to a simple representation of the mixture distribution that
leads to clustering of the observations as a side effect

I Focusing on the finite approximation, P ∼ DPk(α,P0), let

f (y) =

∫
N(y ;µ, τ)dP(µ, τ) =

k∑
h=1

πhN(y ;µh, τ
−1
h )

I This induces a prior on f .



Dirichlet Process Mixtures

I For density estimation,consider the DP mixture (DPM)model

yi | µi , τi ∼ N(µi , τ
−1
i ), θi = (µi , τi ) ∼ P,P ∼ DP(αP0)(·)

I Not immediate clear how to conduct posterior computation

I One strategy relies on marginalizing out P to obtain

(θi | θ1, . . . , θi−1) ∼
(

α

α + i − 1

)
P0 +

i−1∑
j=1

1

α + i − 1
δθj

I DP prediction rule or Polya urn scheme (Blackwell &
MacQueen, 73)



Avoiding Marginalization

I By marginalizing out the RPM P, we give up the ability to
conduct inferences on P

I By having approaches that avoid marginalization, we open the
door to generalizations of DPMs

I Stick-breaking representation (Sethuraman, 94),

θi ∼ P =
∞∑
h=1

Vh

∏
l<h

(1− Vl)δΘh
,Vh

i .i .d∼ beta(1, α), θh
i .i .d∼ P0



Samples from Dirichlet process with precision α



Implications of Stick-Breaking

I For small α, most of the probability is allocated to the first
few components, favoring few latent classes

I Expected number of occupied components ∝ α log n

I Weights πh decrease stochastically towards near zero rapidly
in the index h

I Suggests truncation approximation (Muliere & Tardella, 98),

P =
N∑

h=1

Vh

∏
l<h

(1− Vl)δΘh

with VN = 1 so that weights sum to one



Blocked Gibbs Sampler (Ishwaran & James, 01)

1. Update Si ∈ {1, . . . ,N} by multinomial sampling with

P(Si = h | −) =
πhN(yi ; Θh)∑N
l=1 πlN(yi ; Θl)

, h = 1, . . . ,N

2. Update stick-breaking weight Vh, h = 1, . . . ,N − 1, from

Beta

(
1 + nh, α +

N∑
l=h+1

nl

)
.

3. Update Θh, h = 1, . . . ,N, exactly as in the finite mixture
model.



Comments on Blocked Gibbs

I N acts as an upper bound on the number of mixture
components in the sample

I By choosing a large value, the approximation error should be
small

I Possible to monitor this error during the MCMC

I Approximate inferences on functionals of P are possible

I Slice (Walker, 07) & retrospective sampling (Papaspiliopoulos
& Roberts, 08) approaches avoid truncation - exact block
Gibbs (Papaspiliopoulos, 08) combine these approaches



Choosing the DP precision parameter

I The DP precision parameter α plays a key role in controlling
the prior on the number of clusters

I A number of strategies have been proposed in the literature -

1. Fix α at a small number to favor allocation to few clusters
relative to the sample size - a commonly used default value is
α = 1.

2. Assign a hyperprior (typically gamma) to α - refer to technical
report by West (92) & recent article by Dorazio (09, JSPI,
139, 3384-3390)

3. Estimate α via empirical Bayes (Liu 96; McAulliffe et al. 06)


