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Collapsed / Marginal Gibbs sampler (Escober & West,
1995)

I For density estimation,consider the DP mixture (DPM)model

yi | µi , τi ∼ N(µi , τ
−1
i ), θi = (µi , τi ) ∼ P,P ∼ DP(αP0)(·)

I Not immediate clear how to conduct posterior computation

I One strategy relies on marginalizing out P to obtain

(θi | θ1, . . . , θi−1) ∼
(

α

α− i + 1

)
P0 +

i−1∑
j=1

1

α + 1
δθj



Computation of (θ1, . . . , θn) | y

I Computational methods like the Gibbs sampler will require the
conditional distributions of θi | y, θ−i .

I conditional distribution of θi given (y, θ−i ) is proportional to

N(yi , θi )(
∑
j 6=i

δθ−i
j

(dθi ) + αG0(dθi ))

=
∑
j 6=i

N(yi ; θ
−i
j )δθ−i

j
(dθi ) + αN(yi ; θi )G0(θi )

=
∑
j 6=i

N(yi ; θ
−i
j )δθ−i

j
(dθi ) + αN(yi ,G0)

N(yi ; θi )G0(θi )

N(yi ,G0)

where N(yi ,G0) =
∫
N(yi ; θi )G0(θi )dθi .

I The normalizing constant is
∑

j 6=i N(yi ; θ
−i
j ) + αN(yi ;G0) is

available in closed form.



Computation of f (yn+1 | y)

I Let y = (y1, . . . , yn)′ and θ = (θ1, . . . , θn)′.

f (yn+1 | y) =

∫
f (yn+1 | y,θ)f (θ | y)dθ

≈ 1

M

M∑
t=1

f (yn+1 | y,θ(t))

I

f (yn+1 | y,θ) =

∫
f (yn+1 | y,θ, θn+1)f (θn+1 | θ, y)dθn+1

=

∫
f (yn+1 | θn+1)f (θn+1 | θ)dθn+1

=
α

n + α

∫
N(yn+1; θn+1)G0(θn+1)dθn+1 +

1

n + α

n∑
j=1

N(yn+1; θj) (1)

I Draw samples from the posterior θ | y and plug in (1) at each step

of the Gibbs sampling.



Improved Collapsed Gibbs Sampler (Bush & MacEachern,
96)

I Let θ∗ = (θ∗1, . . . , θ
∗
k) denote the unique values of θ.

I Let Si = h if θi = θ∗h denote allocation of subject i to cluster h

I Let k(−i) is the number of unique values in θ(−i) and n
(−i)
h are

the corresponding counts
I Gibbs sampler alternates between

1. Update the allocation S = (S1, . . . ,Sn)′ by sampling from
multinomial with

P(Si = h | −) ∝

{
n
(−i)
h N(yi ; θ

∗
h), h = 1, . . . , k(−i)

α
∫
N(yi ; θ)dP0(θ), h = k(−i) + 1

2. Update the unique values of θ∗ by sampling

(µ∗h, τ
∗,−1
h |−) = N(µh, µ̂h, κ̂hτ

−1
h )Ga(τh, âτh , b̂τh)

with parameters defined as in the finite mixture model case



Marginal Gibbs Sampler - Some Comments

I Only slightly more complicated the Gibbs sampling for finite
mixture models

I However the chain might be “sticky” and prediction is more
complicated

I # mixture components k represented in the sample of n
subjects is unknown

I From the MCMC samples, we can estimate posterior
distribution of k

I As subjects are added k will increase stochastically

I To estimate the predictive density of yn+1 use

f (y) =
k∑

h=1

nh
n + α

N(y ; θ∗h) +
α

n + α

∫
N(y ; θ)dP0(θ)

averaged over MCMC iterations after burn-in.



Clustering & Label Ambiguity via the Dirichlet Process

I Clustering via the Dirichlet Process

I If we let yi ∼ f ,with f assigned the prior described above,
then

yi ∼ N(µSi , τ
−1
Si

), Si ∼
k∑

h=1

πhδh

where Si is a cluster index for subject i and (µh, τh) ∼ P0

independently.

I (π1, . . . , πk) ∼ Dir(α/k , . . . , α/k)

I {θh = (µh, τh), h = 1, . . . , k} are component specific
parameters.



Estimating component specific parameters and Label
Ambiguity

I Note that the labels {1, . . . , k} are treated as exchangeable in
the above mixture model

I There is nothing in the prior or likelihood distinguishing
mixture component (cluster) h and cluster h′

I Hence, the true marginal posterior distribution of θh (the
parameters specific to component/cluster h) will be identical
for all h ∈ {1, . . . , k}.

I Each of these marginals can be expected to be multi-modal



Problems with Label Ambiguity & MCMC

I Due to the multi-modality of the posterior distributions, the
Gibbs sampler described above will have a tendency to get
stuck for long intervals in local modes

I This “stickiness” depends strongly on the separation between
the different components

I If the components are widely separated, then one may obtain
an apparently unimodal posterior for each θh and the Gibbs
sampling trace plots may seem well behaved

I For example, if k = 2 with one component close to µ = −1
and one close to µ = 1, the samples of µ1 may remain close
to −1 while the samples of µ2 remain close to 1

I Is this evidence of convergence? Are we happy with this?



Label switching & MCMC

I No! We know in advance that the marginal posteriors of every
θh are identical

I Hence, if we observe MCMC chains that do not converge to
the same stationary distribution, then we know these chains
haven’t converged

I Is this a problem if our focus is on estimating the density &
not on inferences on component-specific parameters?
Seemingly not, as the modes corresponding to permutations
of the label indices all correspond to the same posterior on the
induced density.

I However, what about if we are interested in
mixture-component specific inferences? i.e., we like to know
where the different components are located and report this.



Dealing with Label Switching

I It is very common to simply apply standard methods of
summarizing the component-specific parameters - e.g., take
posterior means & 95% credible intervals for each µh - is this
a good idea?

I No! This is a very bad idea, because unless weve gotten
“lucky” and are stuck in one local mode/configuration of the
cluster indices, then posterior summaries are completely
meaningless

I In fact, if we had a large number of perfect samples from the
true joint posterior, then posterior summaries of µh would be
identical to those for µ′h

I One possibility is to relabel the mixture indices after running
the MCMC algorithm in a post-processing step (Stephens,
2000; Jasra et al., 2005)



What about putting in order restrictions?

I To deal with label ambiguity, another very common strategy is
to put on some identifying restriction to avoid a priori
exchangeability

I For example, we could let µ1 < µ2 < . . . < µk - any problems
with this approach?

I When θh has dimension greater than one, it is typically not
clear how to define an appropriate constraint

I For example, it may be the case that the means are the same
for different components but only the variances differ

I Difficult to implement in general



Approaches to clustering

I There is commonly interest in clustering observations into
groups

I Suppose we have yi ∈ Rp, for i = 1, . . . , n, we may want to
group subjects that have similar y values

I There is a very rich literature on clustering via distance-based
methods without a likelihood specification

I From a Bayes perspective, “model-based” clustering is more
natural (Banfield & Raftery, 93; Fraley & Raftery, 98)



Model based clustering

I Let yi ∼
∑k

h=1 πhK(y ; θh), for some parametric kernel K
(typically Gaussian), for i = 1, . . . , n.

I The n subjects allocated to at most k clusters, with each
mixture component corresponding to a different cluster

I Suppose we fit the finite mixture model using the EM
algorithm to obtain an MLE π̂h, θ̂h, h = 1, . . . , k, with k the
number of components estimated using BIC

I Conditionally on the estimated parameters, we obtain

P(Si = h | yi , π̂, θ̂) =
π̂hK(yi ; θ̂h)∑k
l=1 π̂lK(yi ; θ̂l)

with the optimal allocation corresponding to the h that
maximizes these probs



Clustering - Comments

I Allocating all the subjects to clusters in this manner, we
obtain a partition of {1, . . . , n} into kn ≤ k clusters

I The index on the different clusters is not important - the
grouping of the subjects is the focus

I Note that the choice of kernel K can have a big impact on the
estimated number of clusters & the allocation to clusters

I In fact, the definition of a “cluster” is inherently determined
entirely by the kernel - if we have a flexible enough kernel,
then subjects can always be allocated to a single cluster



Pitfalls & Limitations of Clustering

I From a statistical perspective, new clusters are introduced to
accommodate lack of fit in the parametric model K(·).

I Clearly this is hugely sensitive to K & it is not clear that
clusters obtained from a statistical procedure correspond to
scientifically meaningful clusters

I Scientifically, “clusters” are often viewed as corresponding to
different mode in a multi-modal distribution, with clusters well
defined if these modes are well separated

I Each mixture component does not correspond to a different
mode - the relationship between the number of components,
the component-specific parameters & the number of modes is
complex even for multivariate normal distributions (Ray &
Lindsay, 05)



Robust Clustering

I Even focusing on multivariate normals, the clusters can be
sensitive to parameterization of the covariance

I Clustering based on normals with diagonal covariance may
lead to too many clusters - from the viewpoint of sparsity of
modeling & scientific interpretability of the clusters

I Li, Ray & Lindsay (07, JMLR) propose an approach for
clustering via mode identification using kernel density
estimation & a modal EM algorithm

I Would be interesting to develop a np Bayes version of their
approach - e.g., modeling Kh (the kernel specific to
component h) as an unknown unimodal density



How to Estimate Clusters from the MCMC Draws?

I Medvedovic & Sivaganesan (2002) propose to apply standard
clustering methods (e.g., hierarchical agglomerative
clustering) to a distance matrix obtained using the posterior
probabilities of pairwise clustering

I Dahl (2006) proposes a simple approach to obtain a clustering
estimate based on the MCMC output using least squares
distances from the posterior probability that two subjects are
clustered



Modal Clustering

I Note that each MCMC iteration produces one clustering

I One possibility is to estimate the clustering probabilities as the
proportion of samples in which that clustering is drawn, and
then use the MAP as the optimal clustering under 0-1 loss

I # possible clusterings in n subjects grows exponentially via
Bell number (e.g., > 10275 for n = 200)

I Hence, it is very difficult to get accurate estimates of the
posterior clustering probabilities & the MAP will have a low
posterior probability anyway



Dahl (2006) Cluster Estimation Method

I Dahl (2006) proposed a useful alternative to ad hoc clustering
based on the MCMC results & MAP

I Let π̂ = {π̂ij} denote the n × n matrix with elements
corresponding to the estimated pairwise posterior probabilities
of clustering subjects iand j

I Dahl proposes to choose the least-squares clustering cLS

cLS = argminc∈{c1,...,cB}

n∑
i=1

n∑
j=1

(δij(c)− π̂ij)2

where δij(c) = 1 if subjects i and j are in the same cluster
under clustering c & 0 otherwise

I We just calculate the least squares distance for each MCMC
iteration & choose the best of these iterations



Zhang et al (2014+) Cluster Estimation Method

I Let FB denote the space of all membership matrices, as a
subset of symmetric n × n matrices with restrictions: (1)
B(i , j) = {0, 1} for all i , j = 1, ..., n; (2) B(i , ·) = B(j , ·) and
B(·, i) = B(·, j) if i-th observation and j-th observation are in
the same cluster.

I Obtain posterior samples {B(i), i = 1, . . . ,M}
I The final matrix B∗ is obtained by calculating the extrinsic

mean of the posterior samples defined as follows:

I Find the mode of the number of clusters k0 based on the
samples B(1), . . . ,B(M).

I Calculate the Euclidean mean and project it onto the
membership matrix space:

1. Euclidean mean: let B̄ = 1
M

∑M
t=1 B

(t).
2. Projection: Project the Euclidean mean onto the space of

membership matrix by a thresholding operation
B∗ = threshold(B̄, t∗) where t∗ is the largest threshold such
that B∗ has k0 clusters.


