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Collapsed / Marginal Gibbs sampler (Escober & West,

1995)

» For density estimation,consider the DP mixture (DPM)model
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» Not immediate clear how to conduct posterior computation

> One strategy relies on marginalizing out P to obtain
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Computation of (01,...,6,) |y

» Computational methods like the Gibbs sampler will require the
conditional distributions of 0; | y, 07",

» conditional distribution of 6; given (y,0~') is proportional to
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where N(y;, Go) = [ N(yi; 0i)Go(6;)d0;.
> The normalizing constant is > . ,; N(yi; Gj_") + aN(y;; Gp) is
available in closed form.



Computation of f(y,.1|y)

> Lety = (y1,...,yn) and 8 = (01,...,0,)".
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> Draw samples from the posterior 6 | y and plug in (1) at each step
of the Gibbs s ambpline



Improved Collapsed Gibbs Sampler (Bush & MacEachern,

96)

v

Let * = (67,...,0;) denote the unique values of 6.

v

Let S; = h if 0; = 0} denote allocation of subject i to cluster h
Let k(-7 is the number of unique values in (-~ and ng_i)
the corresponding counts

are
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Gibbs sampler alternates between

1. Update the allocation S = (Sy,...,S,)" by sampling from
multinomial with
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2. Update the unique values of §* by sampling
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with parameters defined as in the finite mixture model case



Marginal Gibbs Sampler - Some Comments

> Only slightly more complicated the Gibbs sampling for finite
mixture models

» Unless further collapsing is done, the chain might be “sticky”
and prediction is more complicated

> # mixture components k represented in the sample of n
subjects is unknown

» From the MCMC samples, we can estimate posterior
distribution of k

> As subjects are added k will increase stochastically

» To estimate the predictive density of y, 11 use
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averaged over MCMC iterations after burn-in.



Clustering & Label Ambiguity via the Dirichlet Process

v

Clustering via the Dirichlet Process

v

If we let y; ~ f,with f assigned the prior described above,
then

k
Yi~ N(MS/st_il)asi ~ Zﬂ-héh
h=1

where S; is a cluster index for subject i and (up, 7h) ~ Po

independently.
> (m1,...,m) ~ Dir(a/k,...,a/k)
> {0h = (un,m),h=1,..., k} are component specific

parameters.



Estimating component specific parameters and Label

Ambiguity

» Note that the labels {1,..., k} are treated as exchangeable in
the above mixture model

> There is nothing in the prior or likelihood distinguishing
mixture component (cluster) h and cluster A

» Hence, the true marginal posterior distribution of 6, (the

parameters specific to component/cluster h) will be identical
forall he {1,..., k}.

» Each of these marginals can be expected to be multi-modal



Problems with Label Ambiguity & MCMC

» Due to the multi-modality of the posterior distributions, the
Gibbs sampler described above will have a tendency to get
stuck for long intervals in local modes

» This “stickiness” depends strongly on the separation between
the different components

> If the components are widely separated, then one may obtain
an apparently unimodal posterior for each 65 and the Gibbs
sampling trace plots may seem well behaved

» For example, if k = 2 with one component close to p = —1
and one close to i = 1, the samples of ;3 may remain close
to —1 while the samples of u» remain close to 1

> Is this evidence of convergence? Are we happy with this?



Label switching & MCMC

» No! We know in advance that the marginal posteriors of every
0y, are identical

» Hence, if we observe MCMC chains that do not converge to
the same stationary distribution, then we know these chains
haven't converged

> |s this a problem if our focus is on estimating the density &
not on inferences on component-specific parameters?
Seemingly not, as the modes corresponding to permutations
of the label indices all correspond to the same posterior on the
induced density.

» However, what about if we are interested in
mixture-component specific inferences? i.e., we like to know
where the different components are located and report this.



Dealing with Label Switching

> It is very common to simply apply standard methods of
summarizing the component-specific parameters - e.g., take
posterior means & 95% credible intervals for each 1, - is this
a good idea?

» No! This is a very bad idea, because unless weve gotten
“lucky” and are stuck in one local mode/configuration of the
cluster indices, then posterior summaries are completely
meaningless

» In fact, if we had a large number of perfect samples from the
true joint posterior, then posterior summaries of yj, would be
identical to those for 1}

» One possibility is to relabel the mixture indices after running
the MCMC algorithm in a post-processing step (Stephens,
2000; Jasra et al., 2005)



What about putting in order restrictions?

> To deal with label ambiguity, another very common strategy is
to put on some identifying restriction to avoid a priori
exchangeability

> For example, we could let p11 < po < ... < pg - any problems
with this approach?

» When 6}, has dimension greater than one, it is typically not
clear how to define an appropriate constraint

» For example, it may be the case that the means are the same
for different components but only the variances differ

» Difficult to implement in general



Approaches to clustering

» There is commonly interest in clustering observations into
groups

» Suppose we have y; € RP, for i = 1,...,n, we may want to
group subjects that have similar y values

> There is a very rich literature on clustering via distance-based
methods without a likelihood specification

» From a Bayes perspective, “model-based” clustering is more
natural (Banfield & Raftery, 93; Fraley & Raftery, 98)



Model based clustering

> Let y; ~ Zﬁzl whKC(y; 6p), for some parametric kernel K
(typically Gaussian), for i =1,...,n.

» The n subjects allocated to at most k clusters, with each
mixture component corresponding to a different cluster

» Suppose we fit the finite mixture model using the EM
algorithm to obtain an MLE 7y, 0, h=1,..., k, with k the
number of components estimated using BIC

» Conditionally on the estimated parameters, we obtain
#hK (yi; On)
S K (i 6r)

with the optimal allocation corresponding to the h that
maximizes these probs

P(Si=h|yi,#,0) =



Clustering - Comments

> Allocating all the subjects to clusters in this manner, we
obtain a partition of {1,...,n} into k, < k clusters

» The index on the different clusters is not important - the
grouping of the subjects is the focus

> Note that the choice of kernel K can have a big impact on the
estimated number of clusters & the allocation to clusters

» In fact, the definition of a “cluster” is inherently determined

entirely by the kernel - if we have a flexible enough kernel,
then subjects can always be allocated to a single cluster



Pitfalls & Limitations of Clustering

» From a statistical perspective, new clusters are introduced to
accommodate lack of fit in the parametric model £(-).

» Clearly this is hugely sensitive to K & it is not clear that
clusters obtained from a statistical procedure correspond to
scientifically meaningful clusters

» Scientifically, “clusters” are often viewed as corresponding to
different mode in a multi-modal distribution, with clusters well
defined if these modes are well separated

» Each mixture component does not correspond to a different
mode - the relationship between the number of components,
the component-specific parameters & the number of modes is
complex even for multivariate normal distributions (Ray &
Lindsay, 05)



Robust Clustering

» Even focusing on multivariate normals, the clusters can be
sensitive to parameterization of the covariance

» Clustering based on normals with diagonal covariance may
lead to too many clusters - from the viewpoint of sparsity of
modeling & scientific interpretability of the clusters

» Li, Ray & Lindsay (07, JMLR) propose an approach for
clustering via mode identification using kernel density
estimation & a modal EM algorithm

» Would be interesting to develop a np Bayes version of their
approach - e.g., modeling ICp, (the kernel specific to
component h) as an unknown unimodal density



How to Estimate Clusters from the MCMC Draws?

» Medvedovic & Sivaganesan (2002) propose to apply standard
clustering methods (e.g., hierarchical agglomerative
clustering) to a distance matrix obtained using the posterior
probabilities of pairwise clustering

» Dahl (2006) proposes a simple approach to obtain a clustering
estimate based on the MCMC output using least squares
distances from the posterior probability that two subjects are
clustered



Modal Clustering

> Note that each MCMC iteration produces one clustering

» One possibility is to estimate the clustering probabilities as the
proportion of samples in which that clustering is drawn, and
then use the MAP as the optimal clustering under 0-1 loss

» # possible clusterings in n subjects grows exponentially via
Bell number (e.g., > 10275 for n = 200)

» Hence, it is very difficult to get accurate estimates of the
posterior clustering probabilities & the MAP will have a low
posterior probability anyway



Dahl (2006) Cluster Estimation Method

» Dahl (2006) proposed a useful alternative to ad hoc clustering
based on the MCMC results & MAP

» Let @ = {@;;} denote the n x n matrix with elements
corresponding to the estimated pairwise posterior probabilities
of clustering subjects jand j

» Dahl proposes to choose the least-squares clustering ¢; s

CLs = argmlnce{cl, .cB} E :E : ’J 7T’J

i=1 j=1

where 9;;(c) = 1 if subjects / and j are in the same cluster
under clustering ¢ & 0 otherwise

» We just calculate the least squares distance for each MCMC
iteration & choose the best of these iterations



Zhang et al (2014+) Cluster Estimation Method

» Let Fg denote the space of all membership matrices, as a
subset of symmetric n x n matrices with restrictions: (1)
B(i,j) ={0,1} for all i,j =1,....,n; (2) B(i,-) = B(j,-) and
B(-,i) = B(-,Jj) if i-th observation and j-th observation are in
the same cluster.

» Obtain posterior samples {B(i),i =1,...,M}
» The final matrix B* is obtained by calculating the extrinsic
mean of the posterior samples defined as follows:

» Find the mode of the number of clusters kg based on the
samples BW ... BM),
» Calculate the Euclidean mean and project it onto the
membership matrix space:
1. Euclidean mean: let B = %Zi\; B(®),
2. Projection: Project the Euclidean mean onto the space of
membership matrix by a thresholding operation
B* = threshold(B, t*) where t* is the largest threshold such
that B* has kg clusters.



