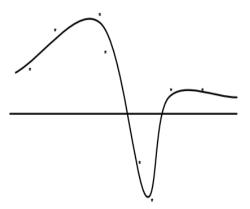
Nonparametric Bayesian Methods

Debdeep Pati Florida State University

September 25, 2014

Example 1: Regression

▶ learning function $f_0 : \mathbb{X} \to \mathbb{Y}$ from training data $\{x_i, y_i\}$.



Regression with Basis Functions

Assume a set of basis functions ϕ_1, \dots, ϕ_K and parameterize a function

$$f(x, \mathbf{w}) = \sum_{k=1}^{K} w_k \phi_k(x)$$

Parameters $\mathbf{w} = \{w_1, \dots, w_K\}.$

► Find optimal parameters

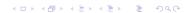
$$\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} \left| y_i - \sum_{k=1}^{K} w_k \phi_k(x_i) \right|^2$$

► As a Bayesian,

$$y_i \mid x_i, \mathbf{w} = f(x_i, \mathbf{w}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

 $w_k \sim N(0, \tau^2)$

• Compute posterior $p(\mathbf{w} \mid \{x_i, y_i\})$



Regression with Basis Functions

- What basis functions to use?
- How many basis functions to use?
- ▶ Do we really believe that the true $f_0(x)$ can be expressed as $f_0(x) = f(x; \mathbf{w_0})$ for some $\mathbf{w_0}$
- ▶ Also $\epsilon_i \sim N(0, \sigma^2)$. Do we really believe that the noise process is Gaussian?

Gaussian process: a prior for function spaces

- ▶ A GP defines a distribution over functions, f, where f is a function mapping some input space \mathbb{X} to \mathbb{R} , $f: \mathbb{X} \to \mathbb{R}$. Let's call it P(f).
- ▶ Mean and cov function: $m : \mathbb{X} \to \mathbb{R}, c : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$. p.d. function
- ▶ P(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathbb{X}$, the marginal distribution over that finite subset P(f) has a multivariate Gaussian distribution.

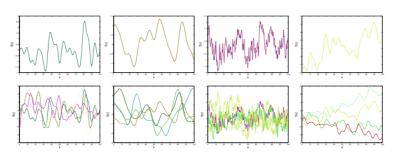
$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathbb{N} \left(\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} c(x_1, x_2) & \cdots & c(x_1, x_n) \\ \vdots & \ddots & \vdots \\ c(x_n, x_1) & \cdots & c(x_n, x_n) \end{bmatrix} \right)$$

A random function f is a stochastic process. It is a collection of random variables $\{f(x): x \in \mathbb{X}\}$ one for each possible input value x (Kolmogorov Extension Theorem).

Gaussian process: a prior for function spaces

▶ E.g. $c(x_i, x_j) = v_0 \exp\{-\kappa |x_i - x_j|^{\alpha}/\lambda\}$, Gaussian kernel for $\alpha = 2$

Figure: Sample paths of a GP



Gaussian process: why flexible

Realizations of a GP

$$\{g:g(x)=\sum_{k=1}^K w_k C(x,x_k),(x_1,\ldots,x_k)\subset \mathbb{X},k\in\mathbb{N},w_k\in\mathbb{R}\}$$

▶ Heuristics: We want to approximate an arbitrary function $f_0: \mathbb{X} \to \mathbb{R}$. Setting $c(x, x') = \phi_{\sigma}(x - x')$, $w_k = f_0(x_k)$

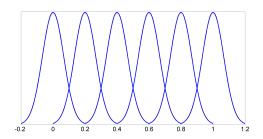
$$\sum_{k=1}^K w_k \phi_{\sigma}(x-x_k) = \sum_{k=1}^K f_0(x_k) \phi_{\sigma}(x-x_k) \approx \phi_{\sigma} \star f_0 \to f_0 \text{ as } \sigma \to 0.$$

RKHS of Gaussian processes

► The RKHS III is the completion of the linear space

$$f(t) = \sum_{h=1}^{m} a_h C(s_h, t), \ s_h \in [0, 1], \ a_h \in \mathbb{R}$$

▶ Illustration with the squared exponential kernel $C(s,t) = \exp(-\kappa |s-t|^2)$

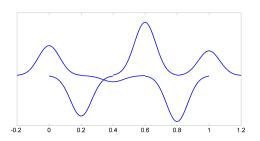


RKHS of Gaussian processes

▶ The RKHS ℍ is the completion of the linear space

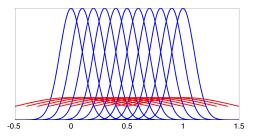
$$f(t) = \sum_{h=1}^{m} a_h C(s_h, t), s_h \in [0, 1], a_h \in \mathbb{R}$$

▶ Illustration with the squared exponential kernel $C(s,t) = \exp(-\kappa |s-t|^2)$



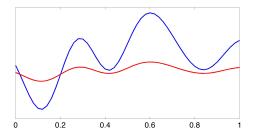
Why scaling works

- ightharpoonup A or κ plays the role of an inverse-bandwidth
- ► Large A implies more peaked kernels
- Stretching the sample paths



Why scaling works

- \blacktriangleright A or κ plays the role of an inverse-bandwidth
- ► Large A enables approximation of rougher functions from the RKHS



▶ van der Vaart & van Zanten (2008): If $A^D \sim \operatorname{gamma}(a,b)$, optimal rate of convergence adaptively over $C^{\alpha}[0,1]^D$ for any $\alpha>0$

Gaussian process: posterior and posterior predictive

- ▶ How do we compute the posterior and predictive distributions?
- ▶ Training set $(x_1, y_1), (x_2, y_2), \dots, (x_n; y_n)$ and test input x_{n+1} .
- ▶ Out of the uncountably many random variables $\{f(x): x \in \mathbb{X}\}$ making up the GP only n+1 has to do with the data: $f(x_1), f(x_2), \ldots, f(x_{n+1})$
- ► Training data gives observations $f(x_1) = y_1, \dots, f(x_n) = y_n$. The predictive distribution of $f(x_{n+1})$ is simply

$$p(f(x_{n+1}) | f(x_1) = y_1, ..., f(x_n) = y_n)$$

which is easy to compute since $f(x_1), f(x_2), \ldots, f(x_{n+1})$ is multivariate Gaussian.

Posterior and posterior predictive for noise free observations

- ► Suppose we know $\{(x_i, f_i), i = 1, ..., n\}$
- ▶ The joinprior distribution of the training outputs, f, and the test outputs f_* according to the prior is

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim N \begin{pmatrix} \mathbf{0}, \begin{bmatrix} C(X,X) & C(X,X_*) \\ C(X_*,X) & C(X_*,X_*) \end{bmatrix} \end{pmatrix}$$

If there are n training points and n_* test points then $C(X, X_*)$ denotes the $n \times n_*$ matrix of the covariances evaluated at all pairs of training and test points, and similarly for the other entries C(X, X), $C(X_*, X_*)$ and $C(X_*, X)$.

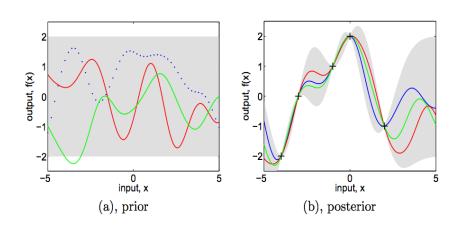
Posterior predictive for noise free observations

- Graphically you may think of generating functions from the prior, and rejecting the ones that disagree with the observations, although this strategy would not be computationally very efficient.
- Fortunately, in probabilistic terms this operation is extremely simple, corresponding to conditioning the joint Gaussian prior distribution on the observations to give

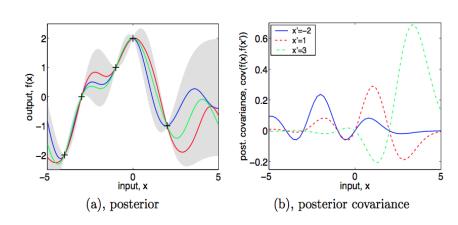
$$f_* \mid X_*, X, f \sim \mathsf{N}(C(X_*, X)C(X, X)^{-1}f, C(X_*, X_*) - C(X_*, X)C(X, X)^{-1}C(X, X_*)).$$

▶ Function values f_* (corresponding to test inputs X_*) can be sampled from the joint posterior distribution by evaluating the mean and covariance matrix

Posterior predictive for noise free observations



Posterior covariance



Prediction using noisy observations

- It is typical for more realistic modelling situations that we do not have access to function values themselves, but only noisy versions there of $y_i = f(x_i) + \epsilon_i$, i = 1, ..., n.
- Assuming additive independent identically distributed Gaussian noise with variance σ^2 , the prior on the noisy observations becomes

$$cov(y_p, y_q) = C(x_p, x_q) + \sigma^2 I_{p=q} \implies cov(y) = C(X, X) + \sigma^2 I,$$

► The joint distribution of the observed target values and the function values at the test locations under the prior as

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim N \left(\mathbf{0}, \begin{bmatrix} C(X,X) + \sigma^2 I & C(X,X_*) \\ C(X_*,X) & C(X_*,X_*) \end{bmatrix} \right)$$

Prediction using noisy observations

► The predictive distribution is

$$f_* \mid X_*, X, y \sim \mathsf{N}(\bar{f}_*, cov(f_*)).$$
 where $\bar{f}_* = E[f_* \mid X, y, X_*] = C(X_*, X)[C(X, X) + \sigma^2]^{-1}y$, and $cov(f_*) = C(X_*, X_*) - C(X_*, X)[C(X, X) + \sigma^2]^{-1}C(X, X_*).$

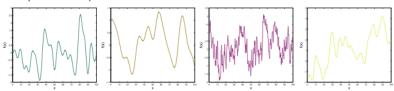
- Note first that the mean prediction is a linear combination of observations y; this is sometimes referred to as a linear predictor.
- ▶ Another way to look at this equation is to see it as a linear combination of *n* kernel functions, each one centered on a training point, by writing correspondence with weight-space view compact notation predictive distribution linear predictor representer theorem

$$\bar{f}(x_*) = \sum_{i=1}^n \alpha_i C(x_i, x_*), \quad \alpha = (C(X, X) + \sigma^2 I)^{-1} y.$$

Gaussian process predictions using squared exponential cov kernel

Figure: Prediction and predictive intervals

A sample from the prior for each covariance function:



Corresponding predictions, mean with two standard deviations:

