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GP-LVM for density estimation (Kundu & Dunson, 2013,
Biometrika)

I Consider the latent variable model,

yi = µ(ηi ) + εi , εi ∼ N(0, σ2), (i = 1, . . . , n)

µ ∼ GP(0, c), σ ∼ IG(a, b), ηi ∼ U(0, 1),

I ηi ’s are subject specific latent variables, µ ∈ C [0, 1] is a
transfer function relating the latent variables to the observed
variables.

I The density of y conditional on the transfer function µ and
scale σ is obtained on marginalizing out the latent variable as

f (y ;µ, σ)
def
= fµ,σ(y) =

∫ 1

0

φσ{y − µ(x)}dx ≈ 1

T

T∑
j=1

φσ

{
y − µ

(
j

T

)}
.



Flexibility of GP-LVM

I Let F0(t) =
∫ t
−∞ f0(x)dx .

I Letting µ0(x) = F−10 (x), one obtains

fµ0,σ(y) =

∫ 1

0
φσ(y − F−10 (x))dx =

∫ ∞
−∞

φσ(y − t)f0(t)dt,

where the second equality follows from the change of variable
theorem.

I ‖φσ ∗ f0 − f0‖ → 0

I Posterior computation: i) µ | y, η, σ is Gaussian ii) η | y, µ, σ
Metropolis Hastings iii) σ | y, η, σ is Inverse Gamma



Back to DP

Some applications of the
Dirichlet process Mixture

models



Hierarchical Modeling

I θi = random effects specific to “subject” i

I Hierarchical models let θi ∼ P

I P = random effects distribution

I Choice of P critical in controlling borrowing of information



Some Classical Applications

I Meta Analysis: combine data from multiple studies to make
overall conclusion (e.g., drug is effective)

I Multi-level Designs: subjects are nested in schools, regions or
study centers

I Longitudinal Data: data collected for subject over time -
important to accommodate within-subject dependence



Some Emerging Applications

I Joint modeling of data from different domains

1. Images and captions
2. Diagnostic images or functional predictors & health responses
3. Multiple types of omics data (sequence & expression)

I Multi-task learning: borrow strength across tasks

1. Multiple images, music pieces, security videos
2. Compressive sensing
3. User preferences in different domains (film, books, etc)



Application 1 - Multinational Bioassay

I Increasing concern about adverse effects of environmental
estrogens on human development

I Rodent uterotrophic bioassay: system for identifying suspected
agonists or antagonists of estrogen.

I OECD study: collected data from 19 laboratories to
investigate consistency of effects of known agonist (EE) &
antagonist (ZM)

I yij = uterus weight for rat j in lab i

I xij=lab indicator, dose of EE, dose of ZM



Some Comments

I Can potentially fit normal random effects model,

yij = x′ijbi + εij , εij ∼ N(0, σ2)

θi ∼ Np(θ,Σ)

I Normal distribution has light tails & does not allow outlying
labs or clusters of labs

I Conclusions may be sensitive to violations of normality

I Appealing to have a more flexible approach available



DPM for the random effects

I A simple case corresponds to the linear mixed effects model

yij = xijβ + zijbi + εij , εij ∼ N(0, σ2)

bi ∼ P, P ∼ DP(αP0)

I DP prior on P, the distribution of the random effects

I Useful semiparametric model for longitudinal & correlated
data

I Bush & MacEachern (1996), Müller & Rosner (1997),
Kleinman & Ibrahim (1998), Ishwaran & Takahara (2002), etc



Application 2 - longitudinal data (log PdG trajectories
(Bigelow & Dunson, JASA, 08))



Functional Dirichlet process

I Interest in estimating a collection of functions, {fi}ni=1.

I Longitudinal trajectories for different individuals

I We will focus on the following model:

yij = fi (tij) + εij , εij ∼ tν(σ2)

fi (t) =

p∑
j=1

βijbj(t) = b(t)′βi

βi ∼ P

b = {bj}=basis functions, βi =basis coefficients



Comments on Functional Data Model

I Subject-specific basis coefficients, βi , allow variability in the
functional trajectories for different individuals

I Heterogeneity among subjects controlled by the random
effects distribution, P

I Number of basis functions, p, is not small (p ≥ 20)



Clustering the curves

I Characterize variability in growth curves & cluster subjects
having similar trajectories

I Can be accomplished using DPM linear mixed model with

fi (tij) =

p∑
l=1

βilbl(tij)

βi ∼ P =
∞∑
h=1

πhδβ∗
h



Comments- Functional Dirichlet Process

I Recalling the DP stick-breaking property (Sethuraman, 1994):

βi ∼ P =
∞∑
h=1

Vh

∏
l<h

(1− Vl)δβ∗
h
,Vh

i .i .d∼ Beta(1, α),β∗h ∼ P0

I Hence, the n subjects are grouped into k ≤ n clusters

I Subjects in cluster l all have βi = β∗l .

I Provides a semiparametric Bayes version of latent trajectory
class or growth mixture models.

I Avoids fixing the number of clusters in advance



Comments- Functional Dirichlet Process

I The curve in cluster l is f (t) = b(t)′β∗l .

I The number of functional clusters in n growth curves is
treated as unknown

I Gibbs samplers are straightforward to generalize

I Number of clusters and configuration of subjects into clusters
varies across the MCMC iterations

I Problem: label switching!



Label Switching

I Problem arises because the labels on the cluster-specific
parameters are ambiguous, so vary in meaning across the
iterations

I Not meaningful to calculate posterior summaries of ??h across
the iterations

I Strategies:

1. Relabeling algorithms that align the clusters after running
MCMC (Stephens, 00);

2. Define clusters as individuals that are grouped together with
high posterior probability

3. Estimate optimal clustering (Dahl, 06; Lau & Green, 97)
4. Ignore problem & avoid cluster-specific inferences


