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1 Fisher Information

Assume X ∼ f(x | θ) (pdf or pmf) with θ ∈ Θ ⊂ R. Define

IX(θ) = Eθ

[(
∂

∂θ
log f(X | θ)

)2]

where

(
∂
∂θ log f(X | θ)

)
is the derivative of the log-likelihood function evaluated at the

true value θ. Fisher information is meaningful for families of distribution which are regular:

1. Fixed support: {x : f(x | θ) > 0} is the same for all θ.

2. ∂
∂θ log f(x | θ) must exist and be finite for all x and θ.

3. If Eθ|W (X)| <∞ for all θ, then(
∂

∂θ

)k
EθW (X) =

(
∂

∂θ

)k ∫
W (x)f(x | θ)dx =

∫
W (x)

(
∂

∂θ

)k
f(x | θ)dx

1.1 Regular families

One parameter exponential families: Cauchy location or scale family:

f(x | θ) =
1

π(1 + (x− θ)2)

f(x | θ) =
1

πθ(1 + (x/θ)2)

and lots more. (Most families of distributions used in applications are regular).

1.2 Non-regular families

Uniform(0, θ)

Uniform(θ, θ + 1).
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1.3 Facts about Fisher Information

Assume a regular family.

1.

Eθ

(
∂

∂θ
log f(X | θ)

)
= 0.

Here

(
∂
∂θ log f(X | θ)

)
is called the “score” function S(θ).

Proof.

Eθ

(
∂

∂θ
log f(X | θ)

)
=

∫ (
∂

∂θ
log f(x | θ)

)
f(x | θ)dx

=

∫ ∂
∂θf(x | θ)
f(x | θ)

f(x | θ)dx

=

∫
∂

∂θ
f(x | θ)dx

=
∂

∂θ

∫
f(x | θ)dx = 0

since
∫
f(x | θ)dx = 1 for all θ.

2. IX(θ) = Varθ

(
∂
∂θ log f(X | θ)

)
.

Proof. Since Eθ

(
∂
∂θ log f(X | θ)

)
= 0

Varθ

(
∂

∂θ
log f(X | θ)

)
= Eθ

(
∂

∂θ
log f(X | θ)

)2

= IX(θ).

3. If X = (X1, X2, . . . , Xn) and X1, X2, . . . , Xn are independent random variables, then
IX(θ) = IX1(θ) + IX2(θ) + · · · IXn(θ).

Proof. Note that

f(x | θ) =
n∏
i=1

fi(xi | θ)
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where fi(· | θ) is the pdf (pmf) of Xi. Observe that

∂

∂θ
log f(X | θ) =

n∑
i=1

∂

∂θ
log fi(Xi | θ)

and the random variables in the sum are independent. This

Var

[
∂

∂θ
log f(X | θ)

]
=

n∑
i=1

Var

[
∂

∂θ
log fi(Xi | θ)

]
so that IX(θ) =

∑n
i=1 IXi(θ) by 2.

4. If X1, X2, . . . , Xn are i.i.d and X = (X1, X2, . . . , Xn), then IXi(θ) = IX1(θ) for all i
so that IX(θ) = nIX1(θ).

5. An alternate formula for Fisher information is

IX(θ) = Eθ

(
− ∂2

∂θ2
log f(X | θ)

)
Proof. Abbreviate

∫
f(x | θ)dx as

∫
f , etc. Since 1 =

∫
f , applying ∂

∂θ to both sides,

0 =
∂

∂θ

∫
f =

∫
∂f

∂θ
=

∫ ∂
∂θ

f
· f

=

∫ (
∂

∂θ
log f

)
f.

Applying ∂
∂θ again,

0 =
∂

∂θ

∫ (
∂

∂θ
log f

)
f

=

∫
∂

∂θ

[(
∂

∂θ
log f

)
f

]
=

∫ (
∂2

∂θ2
log f

)
· f +

∫ (
∂

∂θ
log f

)
∂f

∂θ

Noting that

∂f

∂θ
=

∂f
∂θ

f
· f,

=

(
∂

∂θ
log f

)
f,

3



this becomes

0 =

∫ (
∂2

∂θ2
log f

)
· f +

∫ (
∂

∂θ
log f

)2

· f

or

0 = E

(
∂2

∂θ2
log f(X | θ)

)
+ IX(θ).

Example: Fisher Information for a Poisson sample. Observe X
˜

= (X1, . . . , Xn) iid

Poisson(λ). Find IX
˜

(λ). We know IX
˜

(λ) = nIX1(λ). We shall calculate IX1(λ) in three

ways. Let X = X1. Preliminaries:

f(x | λ) =
λxe−λ

x!
log f(x | λ) = x log λ− λ− log x!

∂

∂λ
log f(x | λ) =

x

λ
− 1

− ∂2

∂λ2
log f(x | λ) =

x

λ2

Method #1: Observe that

IX(λ) = Eλ

[(
∂

∂λ
log f(X | λ)

)2]
= Eλ

[(
X

λ
− 1

)2]
= Varλ

(
X

λ

)
(sinceE

(
X

λ

)
=
EX

λ
= 1)

=
Var(X)

λ2
=

λ

λ2
=

λ

λ2
=

1

λ

Method #2: Observe that

IX(λ) = Varλ

(
∂

∂λ
log f(X | λ)

)
= Var

(
X

λ
− 1

)
= Var

(
X

λ

)
=

1

λ
(as in Method#1).

Method #3: Observe that

IX(λ) = Eλ

(
− ∂2

∂λ2
log f(X | λ)

)
= Eλ

(
X

λ2

)
=

λ

λ2
=

1

λ
.
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Thus IX
˜

(λ) = nIX1(λ) = n
λ .

Example: Fisher information for Cauchy location family. Suppose X1, X2, . . . , Xn iid with
pdf

f(x | θ) =
1

π(1 + (x− θ)2)
.

Let X
˜

= (X1, . . . , Xn), X ∼ f(x | θ). Find IX
˜

(θ).

Note that IX
˜

(θ) = nIX1(θ) = nIX(θ). Now

∂

∂θ
log f(x | θ) =

∂f
∂θ

f

=

−1
π(1+(x−θ)2)2

· 2(x− θ)(−1)

1
π(1+(x−θ)2)

=
2(x− θ)

(1 + (x− θ)2)

Now

IX(θ) = E

[(
∂

∂θ
log f(X | θ)

)2]
= E

(
2(X − θ)

1 + (X − θ)2

)2

=

∫ ∞
−∞

(
2(x− θ)

1 + (x− θ)2

)2 1

π(1 + (x− θ)2)
dx

=
4

π

∫ ∞
−∞

(x− θ)2

(1 + (x− θ)2)3
dx.

Letting u = x− θ, du = dx,

IX(θ) =
4

π

∫ ∞
−∞

u2

(1 + u2)3
du

=
8

π

∫ ∞
0

u2

(1 + u2)3
du.
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Substituting x = 1/(1 + u2), u = (1/x− 1)1/2, du = 0.5(1/x− 1)−1/2(−1/x2)dx,

IX(θ) =
8

π

∫ ∞
0

u2

(1 + u2)3
du

=
8

π

∫ ∞
0

u2

(1 + u2)

(
1

1 + u2

)2

du

=
8

π

∫ 1

0
(1− x)x2 · (1/2)(1/x− 1)−1/2(1/x2)dx

=
4

π

∫ 1

0
x1/2(1− x)1/2dx

=
4

π

∫ 1

0
x3/2−1(1− x)3/2−1dx (Beta integral)

=
4

π

Γ(3/2)Γ(3/2)

Γ(3/2 + 3/2)
=

4

π

(0.5
√
π)2

2!

=
1

2
.

Hence IX
˜

(θ) = n/2.

2 Uses of Fisher Information

• Asymptotic distribution of MLE’s

• Cramér-Rao Inequality (Information inequality)

2.1 Asymptotic distribution of MLE’s

• i.i.d case:
If f(x | θ) is a regular one-parameter family of pdf’s (or pmf’s) and θ̂n = θ̂n(Xn) is
the MLE based on Xn = (X1, . . . , Xn) where n is large and X1, . . . , Xn are iid from
f(x | θ), then approximately,

θ̂n ∼ N

(
θ,

1

nI(θ)

)
where I(θ) ≡ IX1(θ) and θ is the true value. Note that nI(θ) = IXn(θ). More
formally,

θ̂n − θ√
1

nI(θ)

=
√
nI(θ)(θ̂n − θ)

d→ N(0, 1)
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as n→∞.

• More general case: (Assuming various regularity conditions) If f(x
˜
| θ) is a one-

parameter family of joint pdf’s (or joint pmf’s) for data Xn = (X1, . . . , Xn) where
n is large (think of a large dataset arising from regression or time series model) and
θ̂n = θ̂n(Xn) is the MLE, then

θ̂n ∼ N

(
θ,

1

IXn(θ)

)
where θ is the true value.

2.2 Estimation of the Fisher Information

If θ is unknown, then so is IX(θ). Two estimates Î of the Fisher information IX(θ) are

Î1 = IX(θ̂), Î2 = − ∂2

∂θ2
log f(X | θ)|θ=θ̂

where θ̂ is the MLE of θ based on the data X. Î1 is the obvious plug-in estimator. It
can be difficult to compute IX(θ) does not have a known closed form. The estimator Î2 is
suggested by the formula

IX(θ) = E

(
− ∂2

∂θ2
log f(X | θ)

)
It is often easy to compute, and is required in many Newton- Raphson style algorithms
for finding the MLE (so that it is already available without extra computation). The
two estimates Î1 and Î2 are often referred to as the “expected” and “observed” Fisher
information, respectively.
As n → 1, both estimators are consistent (after normalization) for IXn(θ) under various
regularity conditions.
For example: in the iid case: Î1/n, Î2/n, and IXn(θ)/n all converge to I(θ) ≡ IX1(θ).

2.3 Approximate Confidence Intervals for θ

Choose 0 < α < 1 (say, α = 0.05). Let z∗ be such that

P (−z∗ < Z < z∗) = 1− α

where Z ∼ N(0, 1). When n is large, we have approximately√
IX(θ)(θ̂ − θ) ∼ N(0, 1)

7



so that

P

{
− z∗ <

√
IX(θ)(θ̂ − θ) < z∗

}
≈ 1− α

or equivalently,

P

{
θ̂ − z∗

√
1

IX(θ)
< θ < θ̂ + z∗

√
1

IX(θ)

}
≈ 1− α.

This approximation continues to hold when IX(θ) is replaced by an estimate Î (either Î1

or Î2):

P

{
θ̂ − z∗

√
1

Î
< θ < θ̂ + z∗

√
1

Î

}
≈ 1− α.

Thus (
θ̂ − z∗

√
1

Î
, θ̂ + z∗

√
1

Î

)
is an approximate 1−α confidence interval for θ. (Here θ̂ is the MLE and Î is an estimate
of the Fisher information.)

3 Cramer-Rao Inequality

Let X
˜
∼ Pθ, θ ∈ Θ ⊂ R.

Theorem 1. If f(x
˜
| θ) is a regular one-parameter family, EθW (X

˜
) = τ(θ) for all θ, and

τ(θ) is differentiable, then

Varθ(W (X
˜

)) ≥ {τ
′(θ)}2

IX
˜

(θ)
.

Proof. Preliminary Facts:

A. [Cov(X,Y )]2 ≤ (VarX)(VarY ). This is a special case of the Cauchy-Schwarz inequal-
ity. It is better known to statisticians as ρ2 ≤ 1 where

ρ =
Cov(X,Y )√

Var(X) ·Var(Y )

is the correlation between X and Y .
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B. Cov(X,Y ) = EXY if wither EX = 0 or EY = 0. This follows from the well-known
formula.

Cov(X,Y ) = EXY − (EX)(EY ).

Since Eθ
∂
∂θ log f(X

˜
| θ) = 0, from B, we have

[Covθ(W (X
˜

),
∂

∂θ
log f(X

˜
| θ)] = E

[
W (X

˜
)
∂

∂θ
log f(X

˜
| θ)
]

=

∫
W (x

˜
)

(
∂

∂θ
log f(x

˜
| θ)
)
f(x

˜
| θ)dx

˜

=

∫
W (x

˜
)

∂f(x
˜
| θ)

∂θ
dx

˜

=
∂

∂θ

∫
W (x

˜
)f(x

˜
| θ)dx

˜
(since f(x

˜
| θ) is a regular family)

=
∂

∂θ
EθW (X

˜
) = τ ′(θ).

Since from A., we have

[Covθ(W (X
˜

),
∂

∂θ
log f(X

˜
| θ)]2 ≤ VarW (X

˜
)Var

(
∂

∂θ
log f(X

˜
| θ)
)
,

[τ ′(θ)]2 ≤ VarθW (X
˜

)IX
˜

(θ).

Remark 1. Equality in A. is achieved iff

Y = aX + b

for some constants a, b. Moreover, if EY = 0, then E(aX + b) = 0 forces b = −aEX so
that

Y = a(X − EX)

for some constant a. Applying this to the proof of CRLB with X = W (X
˜

), Y = ∂
∂θ log f(X

˜
|

θ) tells us that

VarθW (X
˜

) =
{τ ′(θ)}2

IX
˜

(θ)
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iff

∂

∂θ
log f(X

˜
) | θ) = a(θ)[W (X

˜
)− τ(θ)] (1)

for some function a(θ). (1) is true only when f(x
˜
| θ) is a 1pef and W (X

˜
) = cT (X

˜
) + d

for some c, d where T (X
˜

) is the natural sufficient statistic of the 1pef.

4 Asymptotic Efficiency

Let Xn
˜

= (X1, X2, . . . , Xn). Given a sequence of estimators Wn = Wn(Xn
˜

). If E(Wn) =

τ(θ) for all n, then {Wn} is asymptotically efficient if

lim
n→∞

VarθWn

Vn(θ)
= 1.

where

Vn(θ) =
{τ ′(θ)}2

IXn
˜

(θ)

What if VarθWn =∞ or if Wn is biased?
An alternative definition: A sequence of estimators {Wn} is asymptotically normal if

Wn − τ(θ)√
Vn(θ)

d→ N(0, 1).

as n→∞. {Wn} is asymptotically efficient for estimating τ(θ) if Wn ∼ AN(τ(θ), Vn(θ)).
Example: Observe X1, X2, . . . , Xn iid Poisson(λ).

• Estimation of τ(λ) = λ:
EX̄ = λ. Does X̄ achieve the CRLB? Yes !

Var(X̄) =
Var(X1)

n
=
λ

n

CRLB =
{τ ′(λ)}2

IX(λ)
=

1

n/λ
=
λ

n

Alternative: Check condition for exact attainment of CRLB.

∂

∂λ
log f(X | λ) =

n∑
i=1

∂

∂λ
log f(Xi | λ) =

∑
i

(
Xi

λ
− 1

)
=

n

λ
(X̄ − λ)
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Note: Since X̄ attains the CRLB (for all), it must be the best unbiased estimator of
λ.
Showing that an estimator attains the CRLB is one way to show it is best unbiased.
(But see later remark.)

• Estimation of τ(λ) = λ2: Define W = T (T − 1)/n2 where T =
∑n

i=1Xi. EW = λ2

(see calculations below) and W is a function of the CSS T . Thus W is best unbiased
for λ2. Does W achieve the CRLB? No !!! Note that

CRLB =
{τ ′(λ)}2

IX(λ)
=

(2λ)2

n/λ
=

4λ3

n
.

Var(W ) =
4λ3

n
+

2λ2

n2
(see calculations below).

Alternative: Show condition for achievement of CRLB fails.
As show earlier:

∂

∂λ
log f(X | λ) =

∑
i

(
Xi

λ
− 1

)
=
T

λ
− n

The CRLB is attained iff there exists a(λ) such that

T

λ
− n = a(λ)

(
T (T − 1)

n2
− λ2

)
.

But the left side is linear in T and the right side is quadratic in T , so that no multiplier
a(λ) can make them equal for all possible values of T = 0, 1, 2, . . ..

Remark 2. This situation is not unusual. The best unbiased estimator often fails to
achieve the CRLB. But W is asymptotically efficient:

lim
n→∞

Var(W )

CRLB
= lim

n→∞

4λ3

n + 2λ2

n2

4λ3

n

= lim
n→∞

(
1 +

1

2nλ

)
= 1.

Calculations: Suppose Y ∼ Poisson(ξ). The factorial moments of the Poisson follow
simple pattern:

EY = ξ

EY (Y − 1) = ξ2

EY (Y − 1)(Y − 2) = ξ3

EY (Y − 1)(Y − 2)(Y − 3) = ξ4

· · ·
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Proof of one case:

EY (Y − 1)(Y − 2) =

∞∑
i=0

i(i− 1)(i− 2)
ξie−ξ

i!

= ξ3
∞∑
i=3

ξi−3e−ξ

(i− 3)!
= ξ3

∞∑
i=0

ξie−ξ

j!
= ξ3

From the factorial moments, we can calculate everything else. For example:

Var(Y (Y − 1)) = E[{Y (Y − 1)}2]− [EY (Y − 1)]2

= E[{Y 2(Y − 1)2}]− [ξ2]2

= E[〈Y 〉4 + 4〈Y 〉3 + 2〈Y 〉2]− ξ4

= [ξ4 + 4ξ3 + 2ξ2]− ξ4 = 4ξ3 + 2ξ2

where 〈Y 〉k ≡ Y (Y − 1)(Y − 2) · · · (Y − k + 1).
In our case T ∼ Poisson(λ) so that substituting ξ = nλ in the above results leads to

ET (T − 1) = (nλ)2 = n2λ2

Var[T (T − 1)] = 4(nλ)3 + 2(nλ)2 = 4n3λ3 + 2n2λ2

so that W = T (T − 1)/n2 satisfies:

EW = λ2

Var(W ) =
4λ3

n
+

2λ2

n2
.

4.1 An asymptotically inefficient estimator

Example: Let X1, . . . , Xn be iid with pdf

f(x | α) =
xα−1e−x

Γ(α)
, x > 0.

For this pdf EX = Var(X) = α. Clearly EX̄ = α. Thus X̄ = MOM estimator of α. Is it
asymptotically efficient? No. (verified below).
Note: This is 1pef with natural sufficient statistic T =

∑n
i=1 logXi. Since T is complete,

E(X̄ | T ) is the UMVUE of α. Since X̄ is not a function of T , we know Var(X̄) >
Var[E(X̄ | T )]. But Var[E(X̄ | T )] ≥ CRLB. Thus, without calculation, we know that
X̄ cannot achieve the CRLB for any value of n. We now show it does not achieve it
asymptotically either.
Note that

VarX̄ =
Var(X1)

n
=
α

n
.
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And,

IXn
˜

(α) = nIX1(α) = n

[
Γ′′(α)Γ(α)− {Γ′(α)}2}

{Γ(α)}2

]
by a routine calculation. Hence

CRLB =
1

nIX1(α)
.

Thus

Var(X̄)

CRLB
= αIX1(α)

which does not depend on n. Since X̄ does not achieve CRLB for any n, we know αIX1(α) >
1. Thus

lim
n→∞

Var(X̄)

CRLB
= αIX1(α) > 1

so that X̄ is not asymptotically efficient. The function αIX1(α) is a non-negative decreasing
function with

lim
α→0

αIX1(α) =∞ lim
α→∞

αIX1(α) = 1.

Figure 1: Plot of αIX1(α), where IX1(α) is called the trigamma function (derivative of

digamma function: Γ′(α)
Γ(α) )
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When α is small, X̄ is horrible. When α is large, X̄ is pretty good.
General Comment: For regular families, the MLE is asymptotically efficient. (MOM is
inefficient in general). Thus

lim
n→∞

VarWn

CRLB(n)

essentially compares the variance of Wn with that of the MLE in large samples.

5 Fisher Information, CRLB, Asymptotic distribution of MLE’s
in the multi parameter case

Notation: X
˜
∼ f(x

˜
| θ), θ = (θ1, θ2, . . . , θp) and

∂

∂θ
=


∂
∂θ1
...
∂
∂θp


and Sp×1 is the vector of scores

∂

∂θ
log f(X

˜
| θ) =


∂
∂θ1

log f(X
˜
| θ)

...
∂
∂θp

log f(X
˜
| θ)


Define

(p× p) matrix IX
˜

(θ) = E(Sp×1S
′
1×p)

Note that S is evaluated at θ and the expectation is taken under the distribution indexed
by the same parameter θ. For a vector or matrix, we define the expected values in this
way:

E

(
Y
Z

)
=

(
EY
ZZ

)
E

(
W X
Y Z

)
=

(
EW EX
EY EZ

)

5.1 Properties

1. EθSp×1 = 0p×1.
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2. IX
˜

(S) = Cov(S), the variance-covariance matrix of S

3. If X
˜

= (X1, X2, . . . , Xn) has independent components, then

IX
˜

(θ) = IX1(θ) + IX2(θ) + · · ·+ IXn(θ).

4. If X
˜

= (X1, X2, . . . , Xn) are iid, then

IX
˜

(θ) = nIX1(θ).

5. IX
˜

(θ) = E

(
− ∂2

∂θ2
log f(X

˜
| θ)
)

where we define

∂2

∂θ2
log f(X

˜
| θ) =

(
∂2

∂θi∂θj
log f(X

˜
| θ)
)

which is the p× pmatrix whose (i, j) entry is

∂2

∂θi∂θj
log f(X

˜
| θ).

5.2 Asymptotic distribution of MLE (of θ)

If θ̂n = θ̂n(X1, X2, . . . , Xn) is the sequence of MLE’s (based on progressively larger sam-
ples), then

θ̂n ∼ AN(θ, (IX
˜

(θ))−1)

where AN now stands for asymptotically multivariate normal. This means

θ̂n ∼ N(θ, (IX
˜

(θ))−1)

for large n.
Recall: In iid case IX

˜
(θ) = nIX1(θ).

Estimate IX
˜

(θ) by IX
˜

(θ̂n) or

−
(

∂2

∂θi∂θj
log f(X

˜
| θ)
)∣∣∣∣

θ=θ̂n
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5.3 Multi-parameter CRLB

X has joint pdf (pmf) f(x | θ) which is a regular family. θ = (θ1, θ2, . . . , θp)
′. If EW (X) =

τ(θ) where τ(θ) ∈ R is differentiable function of θi, i = 1, . . . , p, then

Var(W (X) ≥ g′I−1g

where g ≡ ∂τ(θ)
∂θ p×1

and I ≡ IX(θ)p×p.

Special Case: W (X) = θ̂i with τ(θ) = θi. That is, θ̂i is an unbiased estimate of θi. Now
that vector g has gi = 1 and gj = 0 for j 6= i, and the CRLB gives

Var(θ̂i) ≥ (I−1)ii

where the right hand side is the ith diagonal element of I−1.
Weaker result: Suppose we knew θj for all j 6= i. By fixing θj for j 6= i at the known
values, we get a one-parameter family and the CRLB for the one-parameter case gives

Var(θ̂i) ≥ I−1
ii =

1

Iii
=

1

E

(
∂
∂θi

log f(X | θ)
)2

But, since (I−1)ii ≥ I−1
ii ,

Var(θ̂i) ≥ (I−1)ii ≥ I−1
ii

where the upper lower bound is the best you can do if you are estimating θi and all the
other parameters are unknown, and the lower lower bound is the best you can do when all
the other parameters are known.
Example: N(µ, σ2 = ξ) distribution.

f(x | µ, ξ) =
1√
2πξ

e−(x−µ)2/(2ξ).

Note that

l = log f = −1

2
log(2πξ)− (x− µ)2

2ξ

and

∂

∂θ
log f(X | θ) =

(
∂
∂µ log f
∂
∂ξ log f

)
=

(
x−µ
ξ

− 1
2ξ + (x−µ)2

2ξ2

)
and

I(θ) = −E

(
∂2l
∂µ2

∂2l
∂µ∂ξ

∂2l
∂ξ∂µ

∂2l
∂ξ2

)
= −E

(
−1
ξ

−(X−µ)
ξ2

−(X−µ)
ξ2

1
2ξ2
− (X−µ)2

ξ3

)
=

(
1
ξ 0

0 1
2ξ2

)
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Hence

I−1 =

(
ξ 0
0 2ξ2

)
=

(
σ2 0
0 2σ4

)
.

For an unbiased estimate of µ(Eµ,σ2W = µ), Var(W ) ≥ σ2

n (achieved by W = X̄).

For an unbiased estimate of σ2, Var(W ) ≥ 2σ4

n (not achieved exactly) S2 is best unbiased

and S2 = σ2

n−1χ
2
n−1 so that Var(S2) = 2σ4

n−1 .
The limiting distribute of the MLE is given by(

X̄
σ̂2

)
∼ AN

((
µ
σ2

)
,

(
σ2

n 0

0 2σ4

n

))
Note:

Var

(
1

n

∑
(Xi − µ)2

)
=

2σ4

n

E

(
1

n

∑
(Xi − µ)2

)
= σ2.

achieves the CR-bound, but not legitimate estimator if µ is unknown.

Example: Gamma(α, β) Recall the digamma function ψ(α) = Γ′(α)
Γ(α) . Note that

f(x | α, β) =
1

Γ(α)βα
xα−1e−x/β

l = log f = − log Γ(α)− α log β + (α− 1) log x− x/β.

Then

∂

∂θ
log f(X | θ) =

( ∂
∂α log f
∂
∂β log f

)
=

(
−ψ(α)− log β + logX

−α
β + X

β2

)
and

I(θ) = −E

(
∂2l
∂α2

∂2l
∂α∂β

∂2l
∂β∂α

∂2l
∂β2

)
= −E

(
−ψ′(α) −1

β
−1
β

α
β2 − 2X

β3

)
=

(
ψ′(α) 1

β
1
β

α
β2

)
Hence

I(θ)−1 =
β2

αψ′(α)− 1

(
α
β2 − 1

β

− 1
β ψ′(α)

)
=

1

αψ′(α)− 1

(
α −β
−β β2ψ′(α)

)

CRLB for unbiased estimator of β is given by

Var(β̂) ≥ 1

n
(I−1(θ))22 ≥

1

n
{I(θ))22}−1.
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Note that

1

n
(I−1(θ))22 =

β2

αn
· ψ′(α)

ψ′(α)− 1/α
,

1

n
{I(θ))22}−1 =

β2

αn
.

If α is known the lower lower bound is achieved

E

(
X̄

α

)
= β

Var

(
X̄

α

)
=

1

α2

Var(X)

n
=
αβ2

nα2
=
β2

αn
.

If α must be estimated, there is a variance penalty which does not vanish asymptotically
(n→∞).

Figure 2: Plot of ψ′(α)
ψ′(α)−1/α , showing that it does not become asymptotically 1
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