April 6, 2016

1 Fisher Information

Assume $X \sim f(x \mid \theta)$ (pdf or pmf) with $\theta \in \Theta \subset \mathbb{R}$. Define

$$I_X(\theta) = E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right)^2 \right]$$

where $\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)$ is the derivative of the log-likelihood function evaluated at the true value θ . Fisher information is meaningful for families of distribution which are regular:

- 1. Fixed support: $\{x : f(x \mid \theta) > 0\}$ is the same for all θ .
- 2. $\frac{\partial}{\partial \theta} \log f(x \mid \theta)$ must exist and be finite for all x and θ .
- 3. If $E_{\theta}|W(X)| < \infty$ for all θ , then

$$\left(\frac{\partial}{\partial\theta}\right)^k E_{\theta}W(X) = \left(\frac{\partial}{\partial\theta}\right)^k \int W(x)f(x\mid\theta)dx = \int W(x)\left(\frac{\partial}{\partial\theta}\right)^k f(x\mid\theta)dx$$

1.1 Regular families

One parameter exponential families: Cauchy location or scale family:

$$f(x \mid \theta) = \frac{1}{\pi (1 + (x - \theta)^2)}$$
$$f(x \mid \theta) = \frac{1}{\pi \theta (1 + (x/\theta)^2)}$$

and lots more. (Most families of distributions used in applications are regular).

1.2 Non-regular families

Uniform
$$(0, \theta)$$

Uniform $(\theta, \theta + 1)$.

1.3 Facts about Fisher Information

Assume a regular family.

1.

$$E_{\theta}\left(\frac{\partial}{\partial \theta}\log f(X \mid \theta)\right) = 0.$$

Here $\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)$ is called the "score" function $S(\theta)$.

Proof.

$$E_{\theta}\left(\frac{\partial}{\partial\theta}\log f(X\mid\theta)\right) = \int \left(\frac{\partial}{\partial\theta}\log f(x\mid\theta)\right)f(x\mid\theta)dx$$
$$= \int \frac{\partial}{\partial\theta}f(x\mid\theta)f(x\mid\theta)dx$$
$$= \int \frac{\partial}{\partial\theta}f(x\mid\theta)dx$$
$$= \frac{\partial}{\partial\theta}\int f(x\mid\theta)dx = 0$$

since $\int f(x \mid \theta) dx = 1$ for all θ .

2.
$$I_X(\theta) = \operatorname{Var}_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right).$$

Proof. Since $E_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right) = 0$
 $\operatorname{Var}_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right) = E_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right)^2 = I_X(\theta).$

3. If $X = (X_1, X_2, \dots, X_n)$ and X_1, X_2, \dots, X_n are independent random variables, then $I_X(\theta) = I_{X_1}(\theta) + I_{X_2}(\theta) + \cdots + I_{X_n}(\theta).$

Proof. Note that

$$f(x \mid \theta) = \prod_{i=1}^{n} f_i(x_i \mid \theta)$$

where $f_i(\cdot \mid \theta)$ is the pdf (pmf) of X_i . Observe that

$$\frac{\partial}{\partial \theta} \log f(X \mid \theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_i(X_i \mid \theta)$$

and the random variables in the sum are independent. This

$$\operatorname{Var}\left[\frac{\partial}{\partial\theta}\log f(X\mid\theta)\right] = \sum_{i=1}^{n} \operatorname{Var}\left[\frac{\partial}{\partial\theta}\log f_{i}(X_{i}\mid\theta)\right]$$
$$= \sum_{i=1}^{n} I_{X_{i}}(\theta) \text{ by } 2.$$

so that $I_X(\theta) = \sum_{i=1}^n I_{X_i}(\theta)$ by 2.

- 4. If X_1, X_2, \ldots, X_n are i.i.d and $X = (X_1, X_2, \ldots, X_n)$, then $I_{X_i}(\theta) = I_{X_1}(\theta)$ for all i so that $I_X(\theta) = nI_{X_1}(\theta)$.
- 5. An alternate formula for Fisher information is

$$I_X(\theta) = E_{\theta} \left(-\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta) \right)$$

Proof. Abbreviate $\int f(x \mid \theta) dx$ as $\int f$, etc. Since $1 = \int f$, applying $\frac{\partial}{\partial \theta}$ to both sides,

$$0 = \frac{\partial}{\partial \theta} \int f = \int \frac{\partial f}{\partial \theta} = \int \frac{\partial}{\partial \theta} \cdot f$$
$$= \int \left(\frac{\partial}{\partial \theta} \log f\right) f.$$

Applying $\frac{\partial}{\partial \theta}$ again,

$$0 = \frac{\partial}{\partial \theta} \int \left(\frac{\partial}{\partial \theta} \log f\right) f$$

=
$$\int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} \log f\right) f \right]$$

=
$$\int \left(\frac{\partial^2}{\partial \theta^2} \log f\right) \cdot f + \int \left(\frac{\partial}{\partial \theta} \log f\right) \frac{\partial f}{\partial \theta}$$

Noting that

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial \theta} \cdot f,$$

$$= \left(\frac{\partial}{\partial \theta} \log f\right) f,$$

this becomes

$$0 = \int \left(\frac{\partial^2}{\partial \theta^2} \log f\right) \cdot f + \int \left(\frac{\partial}{\partial \theta} \log f\right)^2 \cdot f$$

or

$$0 = E\left(\frac{\partial^2}{\partial\theta^2}\log f(X \mid \theta)\right) + I_X(\theta).$$

Example: Fisher Information for a Poisson sample. Observe $\mathbf{X} = (X_1, \ldots, X_n)$ iid Poisson(λ). Find $I_{\mathbf{X}}(\lambda)$. We know $I_{\mathbf{X}}(\lambda) = nI_{X_1}(\lambda)$. We shall calculate $I_{X_1}(\lambda)$ in three ways. Let $X = X_1$. Preliminaries:

$$\begin{aligned} f(x \mid \lambda) &= \frac{\lambda^{x} e^{-\lambda}}{x!} \\ \log f(x \mid \lambda) &= x \log \lambda - \lambda - \log x! \\ \frac{\partial}{\partial \lambda} \log f(x \mid \lambda) &= \frac{x}{\lambda} - 1 \\ -\frac{\partial^{2}}{\partial \lambda^{2}} \log f(x \mid \lambda) &= \frac{x}{\lambda^{2}} \end{aligned}$$

Method #1: Observe that

$$I_X(\lambda) = E_{\lambda} \left[\left(\frac{\partial}{\partial \lambda} \log f(X \mid \lambda) \right)^2 \right] = E_{\lambda} \left[\left(\frac{X}{\lambda} - 1 \right)^2 \right]$$
$$= \operatorname{Var}_{\lambda} \left(\frac{X}{\lambda} \right) (\operatorname{since} E\left(\frac{X}{\lambda} \right) = \frac{EX}{\lambda} = 1)$$
$$= \frac{\operatorname{Var}(X)}{\lambda^2} = \frac{\lambda}{\lambda^2} = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}$$

Method #2: Observe that

$$I_X(\lambda) = \operatorname{Var}_{\lambda}\left(\frac{\partial}{\partial\lambda}\log f(X \mid \lambda)\right) = \operatorname{Var}\left(\frac{X}{\lambda} - 1\right)$$
$$= \operatorname{Var}\left(\frac{X}{\lambda}\right) = \frac{1}{\lambda}(\text{as in Method}\#1).$$

Method #3: Observe that

$$I_X(\lambda) = E_\lambda \left(-\frac{\partial^2}{\partial \lambda^2} \log f(X \mid \lambda) \right) = E_\lambda \left(\frac{X}{\lambda^2} \right) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}.$$

Thus $I_{\mathbf{X}}(\lambda) = nI_{X_1}(\lambda) = \frac{n}{\lambda}$.

Example: Fisher information for Cauchy location family. Suppose X_1, X_2, \ldots, X_n iid with pdf

$$f(x \mid \theta) = \frac{1}{\pi (1 + (x - \theta)^2)}.$$

Let $X = (X_1, \dots, X_n), X \sim f(x \mid \theta)$. Find $I_{\tilde{X}}(\theta)$. Note that $I_{\tilde{X}}(\theta) = nI_{X_1}(\theta) = nI_X(\theta)$. Now

$$\frac{\partial}{\partial \theta} \log f(x \mid \theta) = \frac{\frac{\partial f}{\partial \theta}}{f}$$
$$= \frac{\frac{-1}{\pi (1 + (x - \theta)^2)^2} \cdot 2(x - \theta)(-1)}{\frac{1}{\pi (1 + (x - \theta)^2)}}$$
$$= \frac{2(x - \theta)}{(1 + (x - \theta)^2)}$$

Now

$$I_X(\theta) = \mathbf{E}\left[\left(\frac{\partial}{\partial\theta}\log f(X \mid \theta)\right)^2\right]$$

= $E\left(\frac{2(X-\theta)}{1+(X-\theta)^2}\right)^2$
= $\int_{-\infty}^{\infty} \left(\frac{2(x-\theta)}{1+(x-\theta)^2}\right)^2 \frac{1}{\pi(1+(x-\theta)^2)} dx$
= $\frac{4}{\pi} \int_{-\infty}^{\infty} \frac{(x-\theta)^2}{(1+(x-\theta)^2)^3} dx.$

Letting $u = x - \theta$, du = dx,

$$I_X(\theta) = \frac{4}{\pi} \int_{-\infty}^{\infty} \frac{u^2}{(1+u^2)^3} du$$
$$= \frac{8}{\pi} \int_0^{\infty} \frac{u^2}{(1+u^2)^3} du.$$

Substituting $x = 1/(1+u^2)$, $u = (1/x-1)^{1/2}$, $du = 0.5(1/x-1)^{-1/2}(-1/x^2)dx$,

$$\begin{split} I_X(\theta) &= \frac{8}{\pi} \int_0^\infty \frac{u^2}{(1+u^2)^3} du \\ &= \frac{8}{\pi} \int_0^\infty \frac{u^2}{(1+u^2)} \left(\frac{1}{1+u^2}\right)^2 du \\ &= \frac{8}{\pi} \int_0^1 (1-x) x^2 \cdot (1/2) (1/x-1)^{-1/2} (1/x^2) dx \\ &= \frac{4}{\pi} \int_0^1 x^{1/2} (1-x)^{1/2} dx \\ &= \frac{4}{\pi} \int_0^1 x^{3/2-1} (1-x)^{3/2-1} dx \quad \text{(Beta integral)} \\ &= \frac{4}{\pi} \frac{\Gamma(3/2)\Gamma(3/2)}{\Gamma(3/2+3/2)} = \frac{4}{\pi} \frac{(0.5\sqrt{\pi})^2}{2!} \\ &= \frac{1}{2}. \end{split}$$

Hence $I_{\tilde{X}}(\theta) = n/2.$

2 Uses of Fisher Information

- Asymptotic distribution of MLE's
- Cramér-Rao Inequality (Information inequality)

2.1 Asymptotic distribution of MLE's

• i.i.d case:

If $f(x \mid \theta)$ is a regular one-parameter family of pdf's (or pmf's) and $\hat{\theta}_n = \hat{\theta}_n(\mathbf{X}_n)$ is the MLE based on $\mathbf{X}_n = (X_1, \dots, X_n)$ where *n* is large and X_1, \dots, X_n are iid from $f(x \mid \theta)$, then approximately,

$$\hat{\theta}_n \sim N\left(\theta, \frac{1}{nI(\theta)}\right)$$

where $I(\theta) \equiv I_{X_1}(\theta)$ and θ is the true value. Note that $nI(\theta) = I_{\mathbf{X}_n}(\theta)$. More formally,

$$\frac{\theta_n - \theta}{\sqrt{\frac{1}{nI(\theta)}}} = \sqrt{nI(\theta)} (\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, 1)$$

as $n \to \infty$.

• More general case: (Assuming various regularity conditions) If $f(\mathbf{x} \mid \theta)$ is a oneparameter family of joint pdf's (or joint pmf's) for data $\mathbf{X}_n = (X_1, \ldots, X_n)$ where n is large (think of a large dataset arising from regression or time series model) and $\hat{\theta}_n = \hat{\theta}_n(\mathbf{X}_n)$ is the MLE, then

$$\hat{\theta}_n \sim \mathrm{N}\!\left(\boldsymbol{\theta}, \frac{1}{I_{\mathbf{X}_n}(\boldsymbol{\theta})}\right)$$

where θ is the true value.

2.2 Estimation of the Fisher Information

If θ is unknown, then so is $I_{\mathbf{X}}(\theta)$. Two estimates \hat{I} of the Fisher information $I_{\mathbf{X}}(\theta)$ are

$$\hat{I}_1 = I_{\mathbf{X}}(\hat{\theta}), \quad \hat{I}_2 = -\frac{\partial^2}{\partial \theta^2} \log f(\mathbf{X} \mid \theta)|_{\theta = \hat{\theta}}$$

where $\hat{\theta}$ is the MLE of θ based on the data **X**. \hat{I}_1 is the obvious plug-in estimator. It can be difficult to compute $I_X(\theta)$ does not have a known closed form. The estimator \hat{I}_2 is suggested by the formula

$$I_{\mathbf{X}}(\theta) = E\left(-\frac{\partial^2}{\partial\theta^2}\log f(\mathbf{X} \mid \theta)\right)$$

It is often easy to compute, and is required in many Newton- Raphson style algorithms for finding the MLE (so that it is already available without extra computation). The two estimates \hat{I}_1 and \hat{I}_2 are often referred to as the "expected" and "observed" Fisher information, respectively.

As $n \to 1$, both estimators are consistent (after normalization) for $I_{\mathbf{X}_n}(\theta)$ under various regularity conditions.

For example: in the iid case: \hat{I}_1/n , \hat{I}_2/n , and $I_{\mathbf{X}_n}(\theta)/n$ all converge to $I(\theta) \equiv I_{X_1}(\theta)$.

2.3 Approximate Confidence Intervals for θ

Choose $0 < \alpha < 1$ (say, $\alpha = 0.05$). Let z^* be such that

$$P(-z^* < Z < z^*) = 1 - \alpha$$

where $Z \sim N(0, 1)$. When n is large, we have approximately

$$\sqrt{I_{\mathbf{X}}(\theta)}(\hat{\theta} - \theta) \sim \mathcal{N}(0, 1)$$

so that

$$P\left\{-z^* < \sqrt{I_{\mathbf{X}}(\theta)}(\hat{\theta} - \theta) < z^*\right\} \approx 1 - \alpha$$

or equivalently,

$$P\left\{\hat{\theta} - z^* \sqrt{\frac{1}{I_{\mathbf{X}}(\theta)}} < \theta < \hat{\theta} + z^* \sqrt{\frac{1}{I_{\mathbf{X}}(\theta)}}\right\} \approx 1 - \alpha.$$

This approximation continues to hold when $I_{\mathbf{X}}(\theta)$ is replaced by an estimate \hat{I} (either \hat{I}_1 or \hat{I}_2):

$$P\left\{\hat{\theta} - z^* \sqrt{\frac{1}{\hat{I}}} < \theta < \hat{\theta} + z^* \sqrt{\frac{1}{\hat{I}}}\right\} \approx 1 - \alpha.$$

Thus

$$\left(\hat{\theta} - z^* \sqrt{\frac{1}{\hat{I}}}, \hat{\theta} + z^* \sqrt{\frac{1}{\hat{I}}}\right)$$

is an approximate $1 - \alpha$ confidence interval for θ . (Here $\hat{\theta}$ is the MLE and \hat{I} is an estimate of the Fisher information.)

3 Cramer-Rao Inequality

Let $X \sim P_{\theta}, \theta \in \Theta \subset \mathbb{R}$.

Theorem 1. If $f(\underline{x} \mid \theta)$ is a regular one-parameter family, $E_{\theta}W(\underline{x}) = \tau(\theta)$ for all θ , and $\tau(\theta)$ is differentiable, then

$$Var_{\theta}(W(\tilde{X})) \ge \frac{\{\tau'(\theta)\}^2}{I_{\tilde{X}}(\theta)}.$$

Proof. Preliminary Facts:

A. $[Cov(X, Y)]^2 \leq (VarX)(VarY)$. This is a special case of the Cauchy-Schwarz inequality. It is better known to statisticians as $\rho^2 \leq 1$ where

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}$$

is the correlation between X and Y.

B. Cov(X, Y) = EXY if wither EX = 0 or EY = 0. This follows from the well-known formula.

$$\operatorname{Cov}(X,Y) = EXY - (EX)(EY).$$

Since $E_{\theta} \frac{\partial}{\partial \theta} \log f(X \mid \theta) = 0$, from **B**, we have

$$\begin{aligned} [\operatorname{Cov}_{\theta}(W(\bar{X}), \frac{\partial}{\partial \theta} \log f(\bar{X} \mid \theta)] &= E\left[W(\bar{X}) \frac{\partial}{\partial \theta} \log f(\bar{X} \mid \theta)\right] \\ &= \int W(\bar{x}) \left(\frac{\partial}{\partial \theta} \log f(\bar{x} \mid \theta)\right) f(\bar{x} \mid \theta) d\bar{x} \\ &= \int W(\bar{x}) \frac{\partial f(\bar{x} \mid \theta)}{\partial \theta} d\bar{x} \\ &= \frac{\partial}{\partial \theta} \int W(\bar{x}) f(\bar{x} \mid \theta) d\bar{x} \quad (\text{since } f(\bar{x} \mid \theta) \text{ is a regular family}) \\ &= \frac{\partial}{\partial \theta} E_{\theta} W(\bar{X}) = \tau'(\theta). \end{aligned}$$

Since from A., we have

$$[\operatorname{Cov}_{\theta}(W(X), \frac{\partial}{\partial \theta} \log f(X \mid \theta)]^{2} \leq \operatorname{Var}W(X) \operatorname{Var}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right),$$
$$[\tau'(\theta)]^{2} \leq \operatorname{Var}_{\theta}W(X) I_{X}(\theta).$$

_	_

Remark 1. Equality in A. is achieved iff

$$Y = aX + b$$

for some constants a, b. Moreover, if EY = 0, then E(aX + b) = 0 forces b = -aEX so that

$$Y = a(X - EX)$$

for some constant a. Applying this to the proof of CRLB with $X = W(X), Y = \frac{\partial}{\partial \theta} \log f(X \mid \theta)$ tells us that

$$Var_{\theta}W(\tilde{X}) = \frac{\{\tau'(\theta)\}^2}{I_{\tilde{X}}(\theta)}$$

 $i\!f\!f$

$$\frac{\partial}{\partial \theta} \log f(\underline{X}) \mid \theta) = a(\theta) [W(\underline{X}) - \tau(\theta)] \tag{1}$$

for some function $a(\theta)$. (1) is true only when $f(\tilde{x} \mid \theta)$ is a 1pef and $W(\tilde{X}) = cT(\tilde{X}) + d$ for some c, d where $T(\tilde{X})$ is the natural sufficient statistic of the 1pef.

4 Asymptotic Efficiency

Let $X_n = (X_1, X_2, \dots, X_n)$. Given a sequence of estimators $W_n = W_n(X_n)$. If $E(W_n) = \tau(\theta)$ for all n, then $\{W_n\}$ is asymptotically efficient if

$$\lim_{n \to \infty} \frac{\operatorname{Var}_{\theta} W_n}{V_n(\theta)} = 1.$$

where

$$V_n(\theta) = \frac{\{\tau'(\theta)\}^2}{I_{X_n}(\theta)}$$

What if $\operatorname{Var}_{\theta} W_n = \infty$ or if W_n is biased?

<u>An alternative definition</u>: A sequence of estimators $\{W_n\}$ is asymptotically normal if

$$\frac{W_n - \tau(\theta)}{\sqrt{V_n(\theta)}} \stackrel{d}{\to} \mathcal{N}(0, 1).$$

as $n \to \infty$. $\{W_n\}$ is asymptotically efficient for estimating $\tau(\theta)$ if $W_n \sim \operatorname{AN}(\tau(\theta), V_n(\theta))$. **Example:** Observe X_1, X_2, \ldots, X_n iid Poisson (λ) .

• Estimation of $\tau(\lambda) = \lambda$: $E\bar{X} = \lambda$. Does \bar{X} achieve the CRLB? Yes !

$$\operatorname{Var}(\bar{X}) = \frac{\operatorname{Var}(X_1)}{n} = \frac{\lambda}{n}$$
$$\operatorname{CRLB} = \frac{\{\tau'(\lambda)\}^2}{I_{\mathbf{X}}(\lambda)} = \frac{1}{n/\lambda} = \frac{\lambda}{n}$$

Alternative: Check condition for exact attainment of CRLB.

$$\frac{\partial}{\partial \lambda} \log f(\mathbf{X} \mid \lambda) = \sum_{i=1}^{n} \frac{\partial}{\partial \lambda} \log f(X_i \mid \lambda) = \sum_{i} \left(\frac{X_i}{\lambda} - 1\right)$$
$$= \frac{n}{\lambda} (\bar{X} - \lambda)$$

<u>Note:</u> Since \bar{X} attains the CRLB (for all), it must be the best unbiased estimator of λ .

Showing that an estimator attains the CRLB is one way to show it is best unbiased. (But see later remark.)

• Estimation of $\tau(\lambda) = \lambda^2$: Define $W = T(T-1)/n^2$ where $T = \sum_{i=1}^n X_i$. $EW = \lambda^2$ (see calculations below) and W is a function of the CSS T. Thus W is best unbiased for λ^2 . Does W achieve the CRLB? No !!! Note that

$$CRLB = \frac{\{\tau'(\lambda)\}^2}{I_{\mathbf{X}}(\lambda)} = \frac{(2\lambda)^2}{n/\lambda} = \frac{4\lambda^3}{n}.$$

$$Var(W) = \frac{4\lambda^3}{n} + \frac{2\lambda^2}{n^2} \quad (\text{see calculations below}).$$

<u>Alternative</u>: Show condition for achievement of CRLB fails. As show earlier:

$$\frac{\partial}{\partial \lambda} \log f(\mathbf{X} \mid \lambda) = \sum_{i} \left(\frac{X_i}{\lambda} - 1 \right) = \frac{T}{\lambda} - n$$

The CRLB is attained iff there exists $a(\lambda)$ such that

$$\frac{T}{\lambda} - n = a(\lambda) \left(\frac{T(T-1)}{n^2} - \lambda^2 \right).$$

But the left side is linear in T and the right side is quadratic in T, so that no multiplier $a(\lambda)$ can make them equal for all possible values of T = 0, 1, 2, ...

Remark 2. This situation is not unusual. The best unbiased estimator often fails to achieve the CRLB. But W is asymptotically efficient:

$$\lim_{n \to \infty} \frac{Var(W)}{CRLB} = \lim_{n \to \infty} \frac{\frac{4\lambda^3}{n} + \frac{2\lambda^2}{n^2}}{\frac{4\lambda^3}{n}} = \lim_{n \to \infty} \left(1 + \frac{1}{2n\lambda}\right) = 1.$$

Calculations: Suppose $Y \sim \text{Poisson}(\xi)$. The factorial moments of the Poisson follow simple pattern:

$$EY = \xi EY(Y-1) = \xi^{2} EY(Y-1)(Y-2) = \xi^{3} EY(Y-1)(Y-2)(Y-3) = \xi^{4} ...$$

Proof of one case:

$$EY(Y-1)(Y-2) = \sum_{i=0}^{\infty} i(i-1)(i-2)\frac{\xi^i e^{-\xi}}{i!}$$
$$= \xi^3 \sum_{i=3}^{\infty} \frac{\xi^{i-3} e^{-\xi}}{(i-3)!} = \xi^3 \sum_{i=0}^{\infty} \frac{\xi^i e^{-\xi}}{j!} = \xi^3$$

From the factorial moments, we can calculate everything else. For example:

$$Var(Y(Y-1)) = E[\{Y(Y-1)\}^2] - [EY(Y-1)]^2$$

= $E[\{Y^2(Y-1)^2\}] - [\xi^2]^2$
= $E[\langle Y \rangle_4 + 4 \langle Y \rangle_3 + 2 \langle Y \rangle_2] - \xi^4$
= $[\xi^4 + 4\xi^3 + 2\xi^2] - \xi^4 = 4\xi^3 + 2\xi^2$

where $\langle Y \rangle_k \equiv Y(Y-1)(Y-2)\cdots(Y-k+1)$. In our case $T \sim \text{Poisson}(\lambda)$ so that substituting $\xi = n\lambda$ in the above results leads to

$$ET(T-1) = (n\lambda)^2 = n^2 \lambda^2$$

Var[T(T-1)] = $4(n\lambda)^3 + 2(n\lambda)^2 = 4n^3\lambda^3 + 2n^2\lambda^2$

so that $W = T(T-1)/n^2$ satisfies:

$$EW = \lambda^2$$

Var(W) = $\frac{4\lambda^3}{n} + \frac{2\lambda^2}{n^2}$.

4.1 An asymptotically inefficient estimator

Example: Let X_1, \ldots, X_n be iid with pdf

$$f(x \mid \alpha) = \frac{x^{\alpha - 1}e^{-x}}{\Gamma(\alpha)}, \quad x > 0.$$

For this pdf $EX = Var(X) = \alpha$. Clearly $E\overline{X} = \alpha$. Thus $\overline{X} = MOM$ estimator of α . Is it asymptotically efficient? No. (verified below).

<u>Note</u>: This is 1pef with natural sufficient statistic $T = \sum_{i=1}^{n} \log X_i$. Since T is complete, $E(\bar{X} \mid T)$ is the UMVUE of α . Since \bar{X} is <u>not</u> a function of T, we know $\operatorname{Var}(\bar{X}) > \operatorname{Var}[E(\bar{X} \mid T)]$. But $\operatorname{Var}[E(\bar{X} \mid T)] \ge \operatorname{CRLB}$. Thus, without calculation, we know that \bar{X} cannot achieve the CRLB for any value of n. We now show it does <u>not</u> achieve it asymptotically either.

Note that

$$\operatorname{Var}\bar{X} = \frac{\operatorname{Var}(X_1)}{n} = \frac{\alpha}{n}.$$

And,

$$I_{X_n}(\alpha) = nI_{X_1}(\alpha) = n \left[\frac{\Gamma''(\alpha)\Gamma(\alpha) - \{\Gamma'(\alpha)\}^2\}}{\{\Gamma(\alpha)\}^2} \right]$$

by a routine calculation. Hence

$$CRLB = \frac{1}{nI_{X_1}(\alpha)}.$$

Thus

$$\frac{\operatorname{Var}(\bar{X})}{\operatorname{CRLB}} = \alpha I_{X_1}(\alpha)$$

which does not depend on n. Since \bar{X} does not achieve CRLB for any n, we know $\alpha I_{X_1}(\alpha) > 1$. Thus

$$\lim_{n \to \infty} \frac{\operatorname{Var}(\bar{X})}{\operatorname{CRLB}} = \alpha I_{X_1}(\alpha) > 1$$

so that \bar{X} is not asymptotically efficient. The function $\alpha I_{X_1}(\alpha)$ is a non-negative decreasing function with

$$\lim_{\alpha \to 0} \alpha I_{X_1}(\alpha) = \infty \quad \lim_{\alpha \to \infty} \alpha I_{X_1}(\alpha) = 1.$$

Derivative of digamma(alpha) (trigamma(alpha)) times alpha

Figure 1: Plot of $\alpha I_{X_1}(\alpha)$, where $I_{X_1}(\alpha)$ is called the trigamma function (derivative of digamma function: $\frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$)

When α is small, \overline{X} is horrible. When α is large, \overline{X} is pretty good. <u>General Comment:</u> For regular families, the MLE is asymptotically efficient. (MOM is inefficient in general). Thus

$$\lim_{n \to \infty} \frac{\operatorname{Var} W_n}{\operatorname{CRLB}(n)}$$

essentially compares the variance of W_n with that of the MLE in large samples.

5 Fisher Information, CRLB, Asymptotic distribution of MLE's in the multi parameter case

Notation: $X \sim f(x \mid \theta), \ \theta = (\theta_1, \theta_2, \dots, \theta_p)$ and

$$\frac{\partial}{\partial \theta} = \begin{pmatrix} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_p} \end{pmatrix}$$

and $S_{p \times 1}$ is the vector of scores

$$\frac{\partial}{\partial \theta} \log f(\bar{X} \mid \theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_1} \log f(\bar{X} \mid \theta) \\ \vdots \\ \frac{\partial}{\partial \theta_p} \log f(\bar{X} \mid \theta) \end{pmatrix}$$

Define

$$(p \times p)$$
 matrix $I_{\underline{X}}(\theta) = E(S_{p \times 1}S'_{1 \times p})$

Note that S is evaluated at θ and the expectation is taken under the distribution indexed by the same parameter θ . For a vector or matrix, we define the expected values in this way:

$$E\left(\begin{array}{c}Y\\Z\end{array}\right) = \left(\begin{array}{c}EY\\ZZ\end{array}\right) \quad E\left(\begin{array}{c}W&X\\Y&Z\end{array}\right) = \left(\begin{array}{c}EW&EX\\EY&EZ\end{array}\right)$$

5.1 Properties

1.
$$E_{\theta}S_{p\times 1} = 0_{p\times 1}$$
.

- 2. $I_X(S) = \operatorname{Cov}(S)$, the variance-covariance matrix of S
- 3. If $X = (X_1, X_2, \dots, X_n)$ has independent components, then

$$I_{\underline{X}}(\theta) = I_{X_1}(\theta) + I_{X_2}(\theta) + \dots + I_{X_n}(\theta).$$

4. If $X = (X_1, X_2, ..., X_n)$ are iid, then

$$I_X(\theta) = nI_{X_1}(\theta).$$

5. $I_{\tilde{X}}(\theta) = E\left(-\frac{\partial^2}{\partial\theta^2}\log f(\tilde{X} \mid \theta)\right)$ where we define $\frac{\partial^2}{\partial\theta^2}\log f(\tilde{X} \mid \theta) = \left(\frac{\partial^2}{\partial\theta_i\partial\theta_i}\log f(\tilde{X} \mid \theta)\right)$

which is the $p \times p$ matrix whose (i, j) entry is

$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(\tilde{X} \mid \theta)$$

5.2 Asymptotic distribution of MLE (of θ)

If $\hat{\theta}_n = \hat{\theta}_n(X_1, X_2, \dots, X_n)$ is the sequence of MLE's (based on progressively larger samples), then

$$\hat{\theta}_n \sim \operatorname{AN}(\theta, (I_X(\theta))^{-1})$$

where AN now stands for asymptotically multivariate normal. This means

$$\hat{\theta}_n \sim \mathcal{N}(\theta, (I_{X}(\theta))^{-1})$$

for large n. <u>Recall</u>: In iid case $I_{X}(\theta) = nI_{X_1}(\theta)$.

Estimate $I_{\tilde{X}}(\theta)$ by $I_{\tilde{X}}(\hat{\theta}_n)$ or

$$- \left(\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(\tilde{X} \mid \theta) \right) \bigg|_{\theta = \hat{\theta}_n}$$

5.3 Multi-parameter CRLB

X has joint pdf (pmf) $f(\mathbf{x} \mid \theta)$ which is a regular family. $\theta = (\theta_1, \theta_2, \dots, \theta_p)'$. If $EW(\mathbf{X}) = \tau(\theta)$ where $\tau(\theta) \in \mathbb{R}$ is differentiable function of $\theta_i, i = 1, \dots, p$, then

$$\operatorname{Var}(W(\mathbf{X}) \ge g' I^{-1} g$$

where $g \equiv \frac{\partial \tau(\theta)}{\partial \theta}_{p \times 1}$ and $I \equiv I_{\mathbf{X}}(\theta)_{p \times p}$.

Special Case: $W(\mathbf{X}) = \hat{\theta}_i$ with $\tau(\theta) = \theta_i$. That is, $\hat{\theta}_i$ is an unbiased estimate of θ_i . Now that vector g has $g_i = 1$ and $g_j = 0$ for $j \neq i$, and the CRLB gives

$$\operatorname{Var}(\hat{\theta}_i) \ge (I^{-1})_{ii}$$

where the right hand side is the *i*th diagonal element of I^{-1} .

Weaker result: Suppose we knew θ_j for all $j \neq i$. By fixing θ_j for $j \neq i$ at the known values, we get a one-parameter family and the CRLB for the one-parameter case gives

$$\operatorname{Var}(\hat{\theta}_i) \ge I_{ii}^{-1} = \frac{1}{I_{ii}} = \frac{1}{E\left(\frac{\partial}{\partial \theta_i} \log f(\mathbf{X} \mid \theta)\right)^2}$$

But, since $(I^{-1})_{ii} \ge I_{ii}^{-1}$,

$$\operatorname{Var}(\hat{\theta}_i) \ge (I^{-1})_{ii} \ge I_{ii}^{-1}$$

where the upper lower bound is the best you can do if you are estimating θ_i and all the other parameters are unknown, and the lower lower bound is the best you can do when all the other parameters are known.

Example: $N(\mu, \sigma^2 = \xi)$ distribution.

$$f(x \mid \mu, \xi) = \frac{1}{\sqrt{2\pi\xi}} e^{-(x-\mu)^2/(2\xi)}.$$

Note that

$$l = \log f = -\frac{1}{2}\log(2\pi\xi) - \frac{(x-\mu)^2}{2\xi}$$

and

$$\frac{\partial}{\partial \theta} \log f(X \mid \theta) = \begin{pmatrix} \frac{\partial}{\partial \mu} \log f \\ \frac{\partial}{\partial \xi} \log f \end{pmatrix} = \begin{pmatrix} \frac{x - \mu}{\xi} \\ -\frac{1}{2\xi} + \frac{(x - \mu)^2}{2\xi^2} \end{pmatrix}$$

and

$$I(\theta) = -E \begin{pmatrix} \frac{\partial^2 l}{\partial \mu^2} & \frac{\partial^2 l}{\partial \mu \partial \xi} \\ \frac{\partial^2 l}{\partial \xi \partial \mu} & \frac{\partial^2 l}{\partial \xi^2} \end{pmatrix} = -E \begin{pmatrix} \frac{-1}{\xi} & \frac{-(X-\mu)}{\xi^2} \\ \frac{-(X-\mu)}{\xi^2} & \frac{1}{2\xi^2} - \frac{(X-\mu)^2}{\xi^3} \end{pmatrix} = \begin{pmatrix} \frac{1}{\xi} & 0 \\ 0 & \frac{1}{2\xi^2} \end{pmatrix}$$

Hence

$$I^{-1} = \left(\begin{array}{cc} \xi & 0\\ 0 & 2\xi^2 \end{array}\right) = \left(\begin{array}{cc} \sigma^2 & 0\\ 0 & 2\sigma^4 \end{array}\right).$$

For an unbiased estimate of $\mu(E_{\mu,\sigma^2}W = \mu)$, $\operatorname{Var}(W) \ge \frac{\sigma^2}{n}$ (achieved by $W = \bar{X}$). For an unbiased estimate of σ^2 , $\operatorname{Var}(W) \ge \frac{2\sigma^4}{n}$ (not achieved exactly) S^2 is best unbiased and $S^2 = \frac{\sigma^2}{n-1}\chi_{n-1}^2$ so that $\operatorname{Var}(S^2) = \frac{2\sigma^4}{n-1}$. The limiting distribute of the MLE is given by

$$\left(\begin{array}{c} \bar{X} \\ \hat{\sigma}^2 \end{array}\right) \sim \operatorname{AN}\left(\left(\begin{array}{c} \mu \\ \sigma^2 \end{array}\right), \left(\begin{array}{c} \frac{\sigma^2}{n} & 0 \\ 0 & \frac{2\sigma^4}{n} \end{array}\right)\right)$$

Note:

$$\operatorname{Var}\left(\frac{1}{n}\sum(X_i-\mu)^2\right) = \frac{2\sigma^4}{n}$$
$$\operatorname{E}\left(\frac{1}{n}\sum(X_i-\mu)^2\right) = \sigma^2.$$

achieves the CR-bound, but not legitimate estimator if μ is unknown. **Example:** Gamma(α, β) Recall the digamma function $\psi(\alpha) = \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$. Note that

$$f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$
$$l = \log f = -\log \Gamma(\alpha) - \alpha \log \beta + (\alpha - 1) \log x - x/\beta.$$

Then

$$\frac{\partial}{\partial \theta} \log f(X \mid \theta) = \left(\begin{array}{c} \frac{\partial}{\partial \alpha} \log f \\ \frac{\partial}{\partial \beta} \log f \end{array}\right) = \left(\begin{array}{c} -\psi(\alpha) - \log \beta + \log X \\ -\frac{\alpha}{\beta} + \frac{X}{\beta^2} \end{array}\right)$$

and

$$I(\theta) = -E \begin{pmatrix} \frac{\partial^2 l}{\partial \alpha^2} & \frac{\partial^2 l}{\partial \alpha \partial \beta} \\ \frac{\partial^2 l}{\partial \beta \partial \alpha} & \frac{\partial^2 l}{\partial \beta^2} \end{pmatrix} = -E \begin{pmatrix} -\psi'(\alpha) & \frac{-1}{\beta} \\ \frac{-1}{\beta} & \frac{\alpha}{\beta^2} - \frac{2X}{\beta^3} \end{pmatrix} = \begin{pmatrix} \psi'(\alpha) & \frac{1}{\beta} \\ \frac{1}{\beta} & \frac{\alpha}{\beta^2} \end{pmatrix}$$

Hence

$$I(\theta)^{-1} = \frac{\beta^2}{\alpha\psi'(\alpha) - 1} \left(\begin{array}{cc} \frac{\alpha}{\beta^2} & -\frac{1}{\beta} \\ -\frac{1}{\beta} & \psi'(\alpha) \end{array} \right) = \frac{1}{\alpha\psi'(\alpha) - 1} \left(\begin{array}{cc} \alpha & -\beta \\ -\beta & \beta^2\psi'(\alpha) \end{array} \right)$$

CRLB for unbiased estimator of β is given by

$$\operatorname{Var}(\hat{\beta}) \ge \frac{1}{n} (I^{-1}(\theta))_{22} \ge \frac{1}{n} \{I(\theta))_{22} \}^{-1}.$$

Note that

$$\frac{1}{n}(I^{-1}(\theta))_{22} = \frac{\beta^2}{\alpha n} \cdot \frac{\psi'(\alpha)}{\psi'(\alpha) - 1/\alpha}, \quad \frac{1}{n}\{I(\theta))_{22}\}^{-1} = \frac{\beta^2}{\alpha n}$$

If α is known the lower lower bound is achieved

$$E\left(\frac{\bar{X}}{\alpha}\right) = \beta$$
$$\operatorname{Var}\left(\frac{\bar{X}}{\alpha}\right) = \frac{1}{\alpha^2} \frac{\operatorname{Var}(X)}{n} = \frac{\alpha\beta^2}{n\alpha^2} = \frac{\beta^2}{\alpha n}$$

If α must be estimated, there is a variance penalty which does not vanish asymptotically $(n \to \infty)$.

Figure 2: Plot of $\frac{\psi'(\alpha)}{\psi'(\alpha)-1/\alpha}$, showing that it does not become asymptotically 1