## Fisher Information

April 6, 2016

## 1 Fisher Information

Assume $X \sim f(x \mid \theta)$ (pdf or pmf) with $\theta \in \Theta \subset \mathbb{R}$. Define

$$
I_{X}(\theta)=E_{\theta}\left[\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)^{2}\right]
$$

where $\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)$ is the derivative of the log-likelihood function evaluated at the true value $\theta$. Fisher information is meaningful for families of distribution which are regular:

1. Fixed support: $\{x: f(x \mid \theta)>0\}$ is the same for all $\theta$.
2. $\frac{\partial}{\partial \theta} \log f(x \mid \theta)$ must exist and be finite for all $x$ and $\theta$.
3. If $E_{\theta}|W(X)|<\infty$ for all $\theta$, then

$$
\left(\frac{\partial}{\partial \theta}\right)^{k} E_{\theta} W(X)=\left(\frac{\partial}{\partial \theta}\right)^{k} \int W(x) f(x \mid \theta) d x=\int W(x)\left(\frac{\partial}{\partial \theta}\right)^{k} f(x \mid \theta) d x
$$

### 1.1 Regular families

One parameter exponential families: Cauchy location or scale family:

$$
\begin{aligned}
f(x \mid \theta) & =\frac{1}{\pi\left(1+(x-\theta)^{2}\right)} \\
f(x \mid \theta) & =\frac{1}{\pi \theta\left(1+(x / \theta)^{2}\right)}
\end{aligned}
$$

and lots more. (Most families of distributions used in applications are regular).

### 1.2 Non-regular families

$$
\begin{array}{r}
\text { Uniform }(0, \theta) \\
\text { Uniform }(\theta, \theta+1) .
\end{array}
$$

### 1.3 Facts about Fisher Information

Assume a regular family.
1.

$$
E_{\theta}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)=0
$$

Here $\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)$ is called the "score" function $S(\theta)$.
Proof.

$$
\begin{aligned}
E_{\theta}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right) & =\int\left(\frac{\partial}{\partial \theta} \log f(x \mid \theta)\right) f(x \mid \theta) d x \\
& =\int \frac{\frac{\partial}{\partial \theta} f(x \mid \theta)}{f(x \mid \theta)} f(x \mid \theta) d x \\
& =\int \frac{\partial}{\partial \theta} f(x \mid \theta) d x \\
& =\frac{\partial}{\partial \theta} \int f(x \mid \theta) d x=0
\end{aligned}
$$

since $\int f(x \mid \theta) d x=1$ for all $\theta$.
2. $I_{X}(\theta)=\operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)$.

Proof. Since $E_{\theta}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)=0$

$$
\operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)=E_{\theta}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)^{2}=I_{X}(\theta)
$$

3. If $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables, then $I_{X}(\theta)=I_{X_{1}}(\theta)+I_{X_{2}}(\theta)+\cdots I_{X_{n}}(\theta)$.

Proof. Note that

$$
f(x \mid \theta)=\prod_{i=1}^{n} f_{i}\left(x_{i} \mid \theta\right)
$$

where $f_{i}(\cdot \mid \theta)$ is the pdf (pmf) of $X_{i}$. Observe that

$$
\frac{\partial}{\partial \theta} \log f(X \mid \theta)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{i}\left(X_{i} \mid \theta\right)
$$

and the random variables in the sum are independent. This

$$
\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]=\sum_{i=1}^{n} \operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{i}\left(X_{i} \mid \theta\right)\right]
$$

so that $I_{X}(\theta)=\sum_{i=1}^{n} I_{X_{i}}(\theta)$ by 2 .
4. If $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d and $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, then $I_{X_{i}}(\theta)=I_{X_{1}}(\theta)$ for all $i$ so that $I_{X}(\theta)=n I_{X_{1}}(\theta)$.
5. An alternate formula for Fisher information is

$$
I_{X}(\theta)=E_{\theta}\left(-\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid \theta)\right)
$$

Proof. Abbreviate $\int f(x \mid \theta) d x$ as $\int f$, etc. Since $1=\int f$, applying $\frac{\partial}{\partial \theta}$ to both sides,

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \theta} \int f=\int \frac{\partial f}{\partial \theta}=\int \frac{\frac{\partial}{\partial \theta}}{f} \cdot f \\
& =\int\left(\frac{\partial}{\partial \theta} \log f\right) f .
\end{aligned}
$$

Applying $\frac{\partial}{\partial \theta}$ again,

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \theta} \int\left(\frac{\partial}{\partial \theta} \log f\right) f \\
& =\int \frac{\partial}{\partial \theta}\left[\left(\frac{\partial}{\partial \theta} \log f\right) f\right] \\
& =\int\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f\right) \cdot f+\int\left(\frac{\partial}{\partial \theta} \log f\right) \frac{\partial f}{\partial \theta}
\end{aligned}
$$

Noting that

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\frac{\frac{\partial f}{\partial \theta}}{f} \cdot f \\
& =\left(\frac{\partial}{\partial \theta} \log f\right) f
\end{aligned}
$$

this becomes

$$
0=\int\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f\right) \cdot f+\int\left(\frac{\partial}{\partial \theta} \log f\right)^{2} \cdot f
$$

or

$$
0=E\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid \theta)\right)+I_{X}(\theta)
$$

Example: Fisher Information for a Poisson sample. Observe $\underset{\sim}{\mathbf{X}}=\left(X_{1}, \ldots, X_{n}\right)$ iid Poisson $(\lambda)$. Find $I_{\underset{\sim}{\mathbf{X}}}(\lambda)$. We know $I_{\underset{\sim}{\mathbf{X}}}(\lambda)=n I_{X_{1}}(\lambda)$. We shall calculate $I_{X_{1}}(\lambda)$ in three ways. Let $X=X_{1}$. Preliminaries:

$$
\begin{aligned}
f(x \mid \lambda) & =\frac{\lambda^{x} e^{-\lambda}}{x!} \\
\log f(x \mid \lambda) & =x \log \lambda-\lambda-\log x! \\
\frac{\partial}{\partial \lambda} \log f(x \mid \lambda) & =\frac{x}{\lambda}-1 \\
-\frac{\partial^{2}}{\partial \lambda^{2}} \log f(x \mid \lambda) & =\frac{x}{\lambda^{2}}
\end{aligned}
$$

Method \#1: Observe that

$$
\begin{aligned}
I_{X}(\lambda) & =E_{\lambda}\left[\left(\frac{\partial}{\partial \lambda} \log f(X \mid \lambda)\right)^{2}\right]=E_{\lambda}\left[\left(\frac{X}{\lambda}-1\right)^{2}\right] \\
& =\operatorname{Var}_{\lambda}\left(\frac{X}{\lambda}\right)\left(\operatorname{since} E\left(\frac{X}{\lambda}\right)=\frac{E X}{\lambda}=1\right) \\
& =\frac{\operatorname{Var}(X)}{\lambda^{2}}=\frac{\lambda}{\lambda^{2}}=\frac{\lambda}{\lambda^{2}}=\frac{1}{\lambda}
\end{aligned}
$$

Method \#2: Observe that

$$
\begin{aligned}
I_{X}(\lambda) & =\operatorname{Var}_{\lambda}\left(\frac{\partial}{\partial \lambda} \log f(X \mid \lambda)\right)=\operatorname{Var}\left(\frac{X}{\lambda}-1\right) \\
& =\operatorname{Var}\left(\frac{X}{\lambda}\right)=\frac{1}{\lambda}(\text { as in Method } \# 1) .
\end{aligned}
$$

Method \#3: Observe that

$$
I_{X}(\lambda)=E_{\lambda}\left(-\frac{\partial^{2}}{\partial \lambda^{2}} \log f(X \mid \lambda)\right)=E_{\lambda}\left(\frac{X}{\lambda^{2}}\right)=\frac{\lambda}{\lambda^{2}}=\frac{1}{\lambda} .
$$

Thus $I_{\sim}^{\mathbf{X}}(\lambda)=n I_{X_{1}}(\lambda)=\frac{n}{\lambda}$.
Example: Fisher information for Cauchy location family. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ iid with pdf

$$
f(x \mid \theta)=\frac{1}{\pi\left(1+(x-\theta)^{2}\right)} .
$$

Let $\underset{\sim}{X}=\left(X_{1}, \ldots, X_{n}\right), X \sim f(x \mid \theta)$. Find $I_{\underset{\sim}{X}}(\theta)$.
Note that $I_{\underset{\sim}{X}}(\theta)=n I_{X_{1}}(\theta)=n I_{X}(\theta)$. Now

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log f(x \mid \theta) & =\frac{\frac{\partial f}{\partial \theta}}{f} \\
& =\frac{\frac{-1}{\pi\left(1+(x-\theta)^{2}\right)^{2}} \cdot 2(x-\theta)(-1)}{\frac{1}{\pi\left(1+(x-\theta)^{2}\right)}} \\
& =\frac{2(x-\theta)}{\left(1+(x-\theta)^{2}\right)}
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{X}(\theta) & =\mathrm{E}\left[\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right)^{2}\right] \\
& =E\left(\frac{2(X-\theta)}{1+(X-\theta)^{2}}\right)^{2} \\
& =\int_{-\infty}^{\infty}\left(\frac{2(x-\theta)}{1+(x-\theta)^{2}}\right)^{2} \frac{1}{\pi\left(1+(x-\theta)^{2}\right)} d x \\
& =\frac{4}{\pi} \int_{-\infty}^{\infty} \frac{(x-\theta)^{2}}{\left(1+(x-\theta)^{2}\right)^{3}} d x .
\end{aligned}
$$

Letting $u=x-\theta, d u=d x$,

$$
\begin{aligned}
I_{X}(\theta) & =\frac{4}{\pi} \int_{-\infty}^{\infty} \frac{u^{2}}{\left(1+u^{2}\right)^{3}} d u \\
& =\frac{8}{\pi} \int_{0}^{\infty} \frac{u^{2}}{\left(1+u^{2}\right)^{3}} d u .
\end{aligned}
$$

Substituting $x=1 /\left(1+u^{2}\right), u=(1 / x-1)^{1 / 2}, d u=0.5(1 / x-1)^{-1 / 2}\left(-1 / x^{2}\right) d x$,

$$
\begin{aligned}
I_{X}(\theta) & =\frac{8}{\pi} \int_{0}^{\infty} \frac{u^{2}}{\left(1+u^{2}\right)^{3}} d u \\
& =\frac{8}{\pi} \int_{0}^{\infty} \frac{u^{2}}{\left(1+u^{2}\right)}\left(\frac{1}{1+u^{2}}\right)^{2} d u \\
& =\frac{8}{\pi} \int_{0}^{1}(1-x) x^{2} \cdot(1 / 2)(1 / x-1)^{-1 / 2}\left(1 / x^{2}\right) d x \\
& =\frac{4}{\pi} \int_{0}^{1} x^{1 / 2}(1-x)^{1 / 2} d x \\
& =\frac{4}{\pi} \int_{0}^{1} x^{3 / 2-1}(1-x)^{3 / 2-1} d x \quad \text { (Beta integral) } \\
& =\frac{4}{\pi} \frac{\Gamma(3 / 2) \Gamma(3 / 2)}{\Gamma(3 / 2+3 / 2)}=\frac{4}{\pi} \frac{(0.5 \sqrt{\pi})^{2}}{2!} \\
& =\frac{1}{2}
\end{aligned}
$$

Hence $I_{\underset{\sim}{X}}(\theta)=n / 2$.

## 2 Uses of Fisher Information

- Asymptotic distribution of MLE's
- Cramér-Rao Inequality (Information inequality)


### 2.1 Asymptotic distribution of MLE's

- i.i.d case:

If $f(x \mid \theta)$ is a regular one-parameter family of pdf's (or pmf's) and $\hat{\theta}_{n}=\hat{\theta}_{n}\left(\mathbf{X}_{n}\right)$ is the MLE based on $\mathbf{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ where $n$ is large and $X_{1}, \ldots, X_{n}$ are iid from $f(x \mid \theta)$, then approximately,

$$
\hat{\theta}_{n} \sim \mathrm{~N}\left(\theta, \frac{1}{n I(\theta)}\right)
$$

where $I(\theta) \equiv I_{X_{1}}(\theta)$ and $\theta$ is the true value. Note that $n I(\theta)=I_{\mathbf{X}_{n}}(\theta)$. More formally,

$$
\frac{\hat{\theta}_{n}-\theta}{\sqrt{\frac{1}{n I(\theta)}}}=\sqrt{n I(\theta)}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathrm{~N}(0,1)
$$

as $n \rightarrow \infty$.

- More general case: (Assuming various regularity conditions) If $f(\underset{\sim}{x} \mid \theta)$ is a oneparameter family of joint pdf's (or joint pmf's) for data $\mathbf{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ where $n$ is large (think of a large dataset arising from regression or time series model) and $\hat{\theta}_{n}=\hat{\theta}_{n}\left(\mathbf{X}_{n}\right)$ is the MLE, then

$$
\hat{\theta}_{n} \sim \mathrm{~N}\left(\theta, \frac{1}{I_{\mathbf{X}_{n}}(\theta)}\right)
$$

where $\theta$ is the true value.

### 2.2 Estimation of the Fisher Information

If $\theta$ is unknown, then so is $I_{\mathbf{X}}(\theta)$. Two estimates $\hat{I}$ of the Fisher information $I_{\mathbf{X}}(\theta)$ are

$$
\hat{I}_{1}=I_{\mathbf{X}}(\hat{\theta}), \quad \hat{I}_{2}=-\left.\frac{\partial^{2}}{\partial \theta^{2}} \log f(\mathbf{X} \mid \theta)\right|_{\theta=\hat{\theta}}
$$

where $\hat{\theta}$ is the MLE of $\theta$ based on the data $\mathbf{X} . \hat{I}_{1}$ is the obvious plug-in estimator. It can be difficult to compute $I_{X}(\theta)$ does not have a known closed form. The estimator $\hat{I}_{2}$ is suggested by the formula

$$
I_{\mathbf{X}}(\theta)=E\left(-\frac{\partial^{2}}{\partial \theta^{2}} \log f(\mathbf{X} \mid \theta)\right)
$$

It is often easy to compute, and is required in many Newton- Raphson style algorithms for finding the MLE (so that it is already available without extra computation). The two estimates $\hat{I}_{1}$ and $\hat{I}_{2}$ are often referred to as the "expected" and "observed" Fisher information, respectively.
As $n \rightarrow 1$, both estimators are consistent (after normalization) for $I_{\mathbf{X}_{n}}(\theta)$ under various regularity conditions.
For example: in the iid case: $\hat{I}_{1} / n, \hat{I}_{2} / n$, and $I_{\mathbf{X}_{n}}(\theta) / n$ all converge to $I(\theta) \equiv I_{X_{1}}(\theta)$.

### 2.3 Approximate Confidence Intervals for $\theta$

Choose $0<\alpha<1$ (say, $\alpha=0.05$ ). Let $z^{*}$ be such that

$$
P\left(-z^{*}<Z<z^{*}\right)=1-\alpha
$$

where $Z \sim \mathrm{~N}(0,1)$. When $n$ is large, we have approximately

$$
\sqrt{I_{\mathbf{X}}(\theta)}(\hat{\theta}-\theta) \sim \mathrm{N}(0,1)
$$

so that

$$
P\left\{-z^{*}<\sqrt{I_{\mathbf{X}}(\theta)}(\hat{\theta}-\theta)<z^{*}\right\} \approx 1-\alpha
$$

or equivalently,

$$
P\left\{\hat{\theta}-z^{*} \sqrt{\frac{1}{I_{\mathbf{X}}(\theta)}}<\theta<\hat{\theta}+z^{*} \sqrt{\frac{1}{I_{\mathbf{X}}(\theta)}}\right\} \approx 1-\alpha
$$

This approximation continues to hold when $I_{\mathbf{X}}(\theta)$ is replaced by an estimate $\hat{I}$ (either $\hat{I}_{1}$ or $\hat{I}_{2}$ ):

$$
P\left\{\hat{\theta}-z^{*} \sqrt{\frac{1}{\hat{I}}}<\theta<\hat{\theta}+z^{*} \sqrt{\frac{1}{\hat{I}}}\right\} \approx 1-\alpha
$$

Thus

$$
\left(\hat{\theta}-z^{*} \sqrt{\frac{1}{\hat{I}}}, \hat{\theta}+z^{*} \sqrt{\frac{1}{\hat{I}}}\right)
$$

is an approximate $1-\alpha$ confidence interval for $\theta$. (Here $\hat{\theta}$ is the MLE and $\hat{I}$ is an estimate of the Fisher information.)

## 3 Cramer-Rao Inequality

Let $\underset{\sim}{X} \sim P_{\theta}, \theta \in \Theta \subset \mathbb{R}$.

Theorem 1. If $f(\underset{\sim}{x} \mid \theta)$ is a regular one-parameter family, $E_{\theta} W(\underset{\sim}{X})=\tau(\theta)$ for all $\theta$, and $\tau(\theta)$ is differentiable, then

$$
\operatorname{Var}_{\theta}(W(\underset{\sim}{X})) \geq \frac{\left\{\tau^{\prime}(\theta)\right\}^{2}}{I_{\underset{\sim}{X}}(\theta)}
$$

Proof. Preliminary Facts:
A. $[\operatorname{Cov}(X, Y)]^{2} \leq(\operatorname{Var} X)(\operatorname{Var} Y)$. This is a special case of the Cauchy-Schwarz inequality. It is better known to statisticians as $\rho^{2} \leq 1$ where

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
$$

is the correlation between $X$ and $Y$.
B. $\operatorname{Cov}(X, Y)=E X Y$ if wither $E X=0$ or $E Y=0$. This follows from the well-known formula.

$$
\operatorname{Cov}(X, Y)=E X Y-(E X)(E Y)
$$

Since $E_{\theta} \frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid \theta)=0$, from $\mathbf{B}$, we have

$$
\begin{aligned}
{\left[\operatorname{Cov}_{\theta}\left(W(\underset{\sim}{X}), \frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid \theta)\right]\right.} & =E\left[W(\underset{\sim}{X}) \frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid \theta)\right] \\
& =\int W(\underset{\sim}{x})\left(\frac{\partial}{\partial \theta} \log f(\underset{\sim}{x} \mid \theta)\right) f(\underset{\sim}{x} \mid \theta) d \underset{\sim}{x} \\
& =\int W(\underset{\sim}{x}) \frac{\partial f(\underset{\sim}{x} \mid \theta)}{\partial \theta} d \underset{\sim}{x} \\
& \left.=\frac{\partial}{\partial \theta} \int W(\underset{\sim}{x}) f(\underset{\sim}{x} \mid \theta) d x \quad \text { (since } f(\underset{\sim}{x} \mid \theta) \text { is a regular family }\right) \\
& =\frac{\partial}{\partial \theta} E_{\theta} W(\underset{\sim}{X})=\tau^{\prime}(\theta) .
\end{aligned}
$$

Since from A., we have

$$
\begin{gathered}
{\left[\operatorname{Cov}_{\theta}\left(W(\underset{\sim}{X}), \frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid \theta)\right]^{2} \leq \operatorname{Var} W(\underset{\sim}{X}) \operatorname{Var}\left(\frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid \theta)\right),\right.} \\
{\left[\tau^{\prime}(\theta)\right]^{2} \leq \operatorname{Var}_{\theta} W(\underset{\sim}{X}) I_{\sim}^{X}(\theta) .}
\end{gathered}
$$

Remark 1. Equality in A. is achieved iff

$$
Y=a X+b
$$

for some constants $a, b$. Moreover, if $E Y=0$, then $E(a X+b)=0$ forces $b=-a E X$ so that

$$
Y=a(X-E X)
$$

for some constant $a$. Applying this to the proof of CRLB with $X=W(\underset{\sim}{X}), Y=\frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid$ $\theta)$ tells us that

$$
\operatorname{Var}_{\theta} W(\underset{\sim}{X})=\frac{\left\{\tau^{\prime}(\theta)\right\}^{2}}{I_{\underset{\sim}{X}}(\theta)}
$$

iff

$$
\begin{equation*}
\left.\left.\frac{\partial}{\partial \theta} \log f(\underset{\sim}{X}) \right\rvert\, \theta\right)=a(\theta)[W(\underset{\sim}{X})-\tau(\theta)] \tag{1}
\end{equation*}
$$

for some function $a(\theta)$. (1) is true only when $f(\underset{\sim}{x} \mid \theta)$ is a 1 pef and $W(\underset{\sim}{X})=c T(\underset{\sim}{X})+d$ for some $c, d$ where $T(\underset{\sim}{X})$ is the natural sufficient statistic of the 1 pef.

## 4 Asymptotic Efficiency

Let $X_{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Given a sequence of estimators $W_{n}=W_{n}\left(X_{n}\right)$. If $E\left(W_{n}\right)=$ $\tau(\theta)$ for all $n$, then $\left\{W_{n}\right\}$ is asymptotically efficient if

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Var}_{\theta} W_{n}}{V_{n}(\theta)}=1
$$

where

$$
V_{n}(\theta)=\frac{\left\{\tau^{\prime}(\theta)\right\}^{2}}{I_{X_{\sim}}(\theta)}
$$

What if $\operatorname{Var}_{\theta} W_{n}=\infty$ or if $W_{n}$ is biased?
An alternative definition: A sequence of estimators $\left\{W_{n}\right\}$ is asymptotically normal if

$$
\frac{W_{n}-\tau(\theta)}{\sqrt{V_{n}(\theta)}} \xrightarrow{d} \mathrm{~N}(0,1) .
$$

as $n \rightarrow \infty$. $\left\{W_{n}\right\}$ is asymptotically efficient for estimating $\tau(\theta)$ if $W_{n} \sim \operatorname{AN}\left(\tau(\theta), V_{n}(\theta)\right)$.
Example: Observe $X_{1}, X_{2}, \ldots, X_{n}$ iid Poisson $(\lambda)$.

- Estimation of $\tau(\lambda)=\lambda$ :
$E \bar{X}=\lambda$. Does $\bar{X}$ achieve the CRLB? Yes!

$$
\begin{array}{r}
\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}\left(X_{1}\right)}{n}=\frac{\lambda}{n} \\
\mathrm{CRLB}=\frac{\left\{\tau^{\prime}(\lambda)\right\}^{2}}{I_{\mathbf{X}}(\lambda)}=\frac{1}{n / \lambda}=\frac{\lambda}{n}
\end{array}
$$

Alternative: Check condition for exact attainment of CRLB.

$$
\begin{aligned}
\frac{\partial}{\partial \lambda} \log f(\mathbf{X} \mid \lambda)=\sum_{i=1}^{n} \frac{\partial}{\partial \lambda} \log f\left(X_{i} \mid \lambda\right) & =\sum_{i}\left(\frac{X_{i}}{\lambda}-1\right) \\
& =\frac{n}{\lambda}(\bar{X}-\lambda)
\end{aligned}
$$

Note: Since $\bar{X}$ attains the CRLB (for all), it must be the best unbiased estimator of $\lambda$.

Showing that an estimator attains the CRLB is one way to show it is best unbiased. (But see later remark.)

- Estimation of $\tau(\lambda)=\lambda^{2}$ : Define $W=T(T-1) / n^{2}$ where $T=\sum_{i=1}^{n} X_{i}$. $E W=\lambda^{2}$ (see calculations below) and $W$ is a function of the CSS $T$. Thus $W$ is best unbiased for $\lambda^{2}$. Does $W$ achieve the CRLB? No !!! Note that

$$
\begin{aligned}
\mathrm{CRLB} & =\frac{\left\{\tau^{\prime}(\lambda)\right\}^{2}}{I_{\mathbf{X}}(\lambda)}=\frac{(2 \lambda)^{2}}{n / \lambda}=\frac{4 \lambda^{3}}{n} \\
\operatorname{Var}(W) & =\frac{4 \lambda^{3}}{n}+\frac{2 \lambda^{2}}{n^{2}} \quad \text { (see calculations below) }
\end{aligned}
$$

Alternative: Show condition for achievement of CRLB fails.
As show earlier:

$$
\frac{\partial}{\partial \lambda} \log f(\mathbf{X} \mid \lambda)=\sum_{i}\left(\frac{X_{i}}{\lambda}-1\right)=\frac{T}{\lambda}-n
$$

The CRLB is attained iff there exists $a(\lambda)$ such that

$$
\frac{T}{\lambda}-n=a(\lambda)\left(\frac{T(T-1)}{n^{2}}-\lambda^{2}\right) .
$$

But the left side is linear in $T$ and the right side is quadratic in $T$, so that no multiplier $a(\lambda)$ can make them equal for all possible values of $T=0,1,2, \ldots$.

Remark 2. This situation is not unusual. The best unbiased estimator often fails to achieve the CRLB. But $W$ is asymptotically efficient:

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Var}(W)}{C R L B}=\lim _{n \rightarrow \infty} \frac{\frac{4 \lambda^{3}}{n}+\frac{2 \lambda^{2}}{n^{2}}}{\frac{4 \lambda^{3}}{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n \lambda}\right)=1
$$

Calculations: Suppose $Y \sim \operatorname{Poisson}(\xi)$. The factorial moments of the Poisson follow simple pattern:

$$
\begin{aligned}
E Y & =\xi \\
E Y(Y-1) & =\xi^{2} \\
E Y(Y-1)(Y-2) & =\xi^{3} \\
E Y(Y-1)(Y-2)(Y-3) & =\xi^{4}
\end{aligned}
$$

Proof of one case:

$$
\begin{aligned}
E Y(Y-1)(Y-2) & =\sum_{i=0}^{\infty} i(i-1)(i-2) \frac{\xi^{i} e^{-\xi}}{i!} \\
& =\xi^{3} \sum_{i=3}^{\infty} \frac{\xi^{i-3} e^{-\xi}}{(i-3)!}=\xi^{3} \sum_{i=0}^{\infty} \frac{\xi^{i} e^{-\xi}}{j!}=\xi^{3}
\end{aligned}
$$

From the factorial moments, we can calculate everything else. For example:

$$
\begin{aligned}
\operatorname{Var}(Y(Y-1)) & =E\left[\{Y(Y-1)\}^{2}\right]-[E Y(Y-1)]^{2} \\
& =E\left[\left\{Y^{2}(Y-1)^{2}\right\}\right]-\left[\xi^{2}\right]^{2} \\
& =E\left[\langle Y\rangle_{4}+4\langle Y\rangle_{3}+2\langle Y\rangle_{2}\right]-\xi^{4} \\
& =\left[\xi^{4}+4 \xi^{3}+2 \xi^{2}\right]-\xi^{4}=4 \xi^{3}+2 \xi^{2}
\end{aligned}
$$

where $\langle Y\rangle_{k} \equiv Y(Y-1)(Y-2) \cdots(Y-k+1)$.
In our case $T \sim \operatorname{Poisson}(\lambda)$ so that substituting $\xi=n \lambda$ in the above results leads to

$$
\begin{aligned}
E T(T-1) & =(n \lambda)^{2}=n^{2} \lambda^{2} \\
\operatorname{Var}[T(T-1)] & =4(n \lambda)^{3}+2(n \lambda)^{2}=4 n^{3} \lambda^{3}+2 n^{2} \lambda^{2}
\end{aligned}
$$

so that $W=T(T-1) / n^{2}$ satisfies:

$$
\begin{aligned}
E W & =\lambda^{2} \\
\operatorname{Var}(W) & =\frac{4 \lambda^{3}}{n}+\frac{2 \lambda^{2}}{n^{2}} .
\end{aligned}
$$

### 4.1 An asymptotically inefficient estimator

Example: Let $X_{1}, \ldots, X_{n}$ be iid with pdf

$$
f(x \mid \alpha)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}, \quad x>0 .
$$

For this pdf $E X=\operatorname{Var}(X)=\alpha$. Clearly $E \bar{X}=\alpha$. Thus $\bar{X}=$ MOM estimator of $\alpha$. Is it asymptotically efficient? No. (verified below).
Note: This is 1 pef with natural sufficient statistic $T=\sum_{i=1}^{n} \log X_{i}$. Since $T$ is complete, $E(\bar{X} \mid T)$ is the UMVUE of $\alpha$. Since $\bar{X}$ is not a function of $T$, we know $\operatorname{Var}(\bar{X})>$ $\operatorname{Var}[E(\bar{X} \mid T)]$. But $\operatorname{Var}[E(\bar{X} \mid T)] \geq$ CRLB. Thus, without calculation, we know that $\bar{X}$ cannot achieve the CRLB for any value of $n$. We now show it does not achieve it asymptotically either.
Note that

$$
\operatorname{Var} \bar{X}=\frac{\operatorname{Var}\left(X_{1}\right)}{n}=\frac{\alpha}{n} .
$$

And,

$$
I_{X_{n}}(\alpha)=n I_{X_{1}}(\alpha)=n\left[\frac{\left.\Gamma^{\prime \prime}(\alpha) \Gamma(\alpha)-\left\{\Gamma^{\prime}(\alpha)\right\}^{2}\right\}}{\{\Gamma(\alpha)\}^{2}}\right]
$$

by a routine calculation. Hence

$$
\mathrm{CRLB}=\frac{1}{n I_{X_{1}}(\alpha)}
$$

Thus

$$
\frac{\operatorname{Var}(\bar{X})}{\operatorname{CRLB}}=\alpha I_{X_{1}}(\alpha)
$$

which does not depend on $n$. Since $\bar{X}$ does not achieve CRLB for any $n$, we know $\alpha I_{X_{1}}(\alpha)>$ 1. Thus

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Var}(\bar{X})}{\operatorname{CRLB}}=\alpha I_{X_{1}}(\alpha)>1
$$

so that $\bar{X}$ is not asymptotically efficient. The function $\alpha I_{X_{1}}(\alpha)$ is a non-negative decreasing function with

$$
\lim _{\alpha \rightarrow 0} \alpha I_{X_{1}}(\alpha)=\infty \quad \lim _{\alpha \rightarrow \infty} \alpha I_{X_{1}}(\alpha)=1
$$



Figure 1: Plot of $\alpha I_{X_{1}}(\alpha)$, where $I_{X_{1}}(\alpha)$ is called the trigamma function (derivative of digamma function: $\left.\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}\right)$

When $\alpha$ is small, $\bar{X}$ is horrible. When $\alpha$ is large, $\bar{X}$ is pretty good.
General Comment: For regular families, the MLE is asymptotically efficient. (MOM is inefficient in general). Thus

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Var} W_{n}}{\operatorname{CRLB}(n)}
$$

essentially compares the variance of $W_{n}$ with that of the MLE in large samples.

## 5 Fisher Information, CRLB, Asymptotic distribution of MLE's in the multi parameter case

Notation: $\underset{\sim}{X} \sim f(\underset{\sim}{x} \mid \theta), \theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)$ and

$$
\frac{\partial}{\partial \theta}=\left(\begin{array}{c}
\frac{\partial}{\partial \theta_{1}} \\
\vdots \\
\frac{\partial}{\partial \theta_{p}}
\end{array}\right)
$$

and $S_{p \times 1}$ is the vector of scores

$$
\frac{\partial}{\partial \theta} \log f(\underset{\sim}{X} \mid \theta)=\left(\begin{array}{c}
\frac{\partial}{\partial \theta_{1}} \log f(\underset{\sim}{X} \mid \theta) \\
\vdots \\
\frac{\partial}{\partial \theta_{p}} \log f(\underset{\sim}{X} \mid \theta)
\end{array}\right)
$$

Define

$$
(p \times p) \text { matrix } \quad I_{\underset{\sim}{X}}(\theta)=E\left(S_{p \times 1} S_{1 \times p}^{\prime}\right)
$$

Note that $S$ is evaluated at $\theta$ and the expectation is taken under the distribution indexed by the same parameter $\theta$. For a vector or matrix, we define the expected values in this way:

$$
E\binom{Y}{Z}=\binom{E Y}{Z Z} \quad E\left(\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right)=\left(\begin{array}{cc}
E W & E X \\
E Y & E Z
\end{array}\right)
$$

### 5.1 Properties

1. $E_{\theta} S_{p \times 1}=0_{p \times 1}$.
2. $I_{\sim}^{X}(S)=\operatorname{Cov}(S)$, the variance-covariance matrix of $S$
3. If $\underset{\sim}{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has independent components, then

$$
I_{\underset{\sim}{X}}(\theta)=I_{X_{1}}(\theta)+I_{X_{2}}(\theta)+\cdots+I_{X_{n}}(\theta) .
$$

4. If $\underset{\sim}{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are iid, then

$$
I_{\underset{\sim}{X}}(\theta)=n I_{X_{1}}(\theta) .
$$

5. $I_{\underset{\sim}{X}}(\theta)=E\left(-\frac{\partial^{2}}{\partial \theta^{2}} \log f(\underset{\sim}{X} \mid \theta)\right)$ where we define

$$
\frac{\partial^{2}}{\partial \theta^{2}} \log f(\underset{\sim}{X} \mid \theta)=\left(\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(\underset{\sim}{X} \mid \theta)\right)
$$

which is the $p \times p$ matrix whose $(i, j)$ entry is

$$
\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(\underset{\sim}{X} \mid \theta) .
$$

### 5.2 Asymptotic distribution of MLE (of $\theta$ )

If $\hat{\theta}_{n}=\hat{\theta}_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is the sequence of MLE's (based on progressively larger samples), then

$$
\hat{\theta}_{n} \sim \operatorname{AN}\left(\theta,\left(I_{\sim}^{X}(\theta)\right)^{-1}\right)
$$

where AN now stands for asymptotically multivariate normal. This means

$$
\hat{\theta}_{n} \sim \mathrm{~N}\left(\theta,\left(I_{\underset{\sim}{X}}(\theta)\right)^{-1}\right)
$$

for large $n$.
Recall: In iid case $I_{\sim}^{X}(\theta)=n I_{X_{1}}(\theta)$.
Estimate $I_{\underset{\sim}{X}}(\theta)$ by $I_{\underset{\sim}{X}}\left(\hat{\theta}_{n}\right)$ or

$$
-\left.\left(\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(\underset{\sim}{X} \mid \theta)\right)\right|_{\theta=\hat{\theta}_{n}}
$$

### 5.3 Multi-parameter CRLB

$\mathbf{X}$ has joint pdf (pmf) $f(\mathbf{x} \mid \theta)$ which is a regular family. $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)^{\prime}$. If $E W(\mathbf{X})=$ $\tau(\theta)$ where $\tau(\theta) \in \mathbb{R}$ is differentiable function of $\theta_{i}, i=1, \ldots, p$, then

$$
\operatorname{Var}\left(W(\mathbf{X}) \geq g^{\prime} I^{-1} g\right.
$$

where $g \equiv \frac{\partial \tau(\theta)}{\partial \theta}{ }_{p \times 1}$ and $I \equiv I_{\mathbf{X}}(\theta)_{p \times p}$.
Special Case: $W(\mathbf{X})=\hat{\theta}_{i}$ with $\tau(\theta)=\theta_{i}$. That is, $\hat{\theta}_{i}$ is an unbiased estimate of $\theta_{i}$. Now that vector $g$ has $g_{i}=1$ and $g_{j}=0$ for $j \neq i$, and the CRLB gives

$$
\operatorname{Var}\left(\hat{\theta}_{i}\right) \geq\left(I^{-1}\right)_{i i}
$$

where the right hand side is the $i$ th diagonal element of $I^{-1}$.
Weaker result: Suppose we knew $\theta_{j}$ for all $j \neq i$. By fixing $\theta_{j}$ for $j \neq i$ at the known values, we get a one-parameter family and the CRLB for the one-parameter case gives

$$
\operatorname{Var}\left(\hat{\theta}_{i}\right) \geq I_{i i}^{-1}=\frac{1}{I_{i i}}=\frac{1}{E\left(\frac{\partial}{\partial \theta_{i}} \log f(\mathbf{X} \mid \theta)\right)^{2}}
$$

But, since $\left(I^{-1}\right)_{i i} \geq I_{i i}^{-1}$,

$$
\operatorname{Var}\left(\hat{\theta}_{i}\right) \geq\left(I^{-1}\right)_{i i} \geq I_{i i}^{-1}
$$

where the upper lower bound is the best you can do if you are estimating $\theta_{i}$ and all the other parameters are unknown, and the lower lower bound is the best you can do when all the other parameters are known.
Example: $\mathrm{N}\left(\mu, \sigma^{2}=\xi\right)$ distribution.

$$
f(x \mid \mu, \xi)=\frac{1}{\sqrt{2 \pi \xi}} e^{-(x-\mu)^{2} /(2 \xi)}
$$

Note that

$$
l=\log f=-\frac{1}{2} \log (2 \pi \xi)-\frac{(x-\mu)^{2}}{2 \xi}
$$

and

$$
\frac{\partial}{\partial \theta} \log f(X \mid \theta)=\binom{\frac{\partial}{\partial \mu} \log f}{\frac{\partial}{\partial \xi} \log f}=\binom{\frac{x-\mu}{\xi}}{-\frac{1}{2 \xi}+\frac{(x-\mu)^{2}}{2 \xi^{2}}}
$$

and

$$
I(\theta)=-E\left(\begin{array}{cc}
\frac{\partial^{2} l}{\partial \mu^{2}} & \frac{\partial^{2} l}{\partial \mu \partial \xi} \\
\frac{\partial^{2} l}{\partial \xi \partial \mu} & \frac{\partial^{2} l}{\partial \xi^{2}}
\end{array}\right)=-E\left(\begin{array}{cc}
\frac{-1}{\xi} & \frac{-(X-\mu)}{\xi^{2}} \\
\frac{-(X-\mu)}{\xi^{2}} & \frac{1}{2 \xi^{2}}-\frac{(X-\mu)^{2}}{\xi^{3}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\xi} & 0 \\
0 & \frac{1}{2 \xi^{2}}
\end{array}\right)
$$

Hence

$$
I^{-1}=\left(\begin{array}{cc}
\xi & 0 \\
0 & 2 \xi^{2}
\end{array}\right)=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & 2 \sigma^{4}
\end{array}\right) .
$$

For an unbiased estimate of $\mu\left(E_{\mu, \sigma^{2}} W=\mu\right), \operatorname{Var}(W) \geq \frac{\sigma^{2}}{n}$ (achieved by $W=\bar{X}$ ).
For an unbiased estimate of $\sigma^{2}, \operatorname{Var}(W) \geq \frac{2 \sigma^{4}}{n}$ (not achieved exactly) $S^{2}$ is best unbiased and $S^{2}=\frac{\sigma^{2}}{n-1} \chi_{n-1}^{2}$ so that $\operatorname{Var}\left(S^{2}\right)=\frac{2 \sigma^{4}}{n-1}$.
The limiting distribute of the MLE is given by

$$
\binom{\bar{X}}{\hat{\sigma}^{2}} \sim \operatorname{AN}\left(\binom{\mu}{\sigma^{2}},\left(\begin{array}{cc}
\frac{\sigma^{2}}{n} & 0 \\
0 & \frac{2 \sigma^{4}}{n}
\end{array}\right)\right)
$$

Note:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{n} \sum\left(X_{i}-\mu\right)^{2}\right) & =\frac{2 \sigma^{4}}{n} \\
\mathrm{E}\left(\frac{1}{n} \sum\left(X_{i}-\mu\right)^{2}\right) & =\sigma^{2}
\end{aligned}
$$

achieves the CR-bound, but not legitimate estimator if $\mu$ is unknown.
Example: $\operatorname{Gamma}(\alpha, \beta)$ Recall the digamma function $\psi(\alpha)=\frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}$. Note that

$$
\begin{array}{r}
f(x \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} \\
l=\log f=-\log \Gamma(\alpha)-\alpha \log \beta+(\alpha-1) \log x-x / \beta
\end{array}
$$

Then

$$
\frac{\partial}{\partial \theta} \log f(X \mid \theta)=\binom{\frac{\partial}{\partial \alpha} \log f}{\frac{\partial}{\partial \beta} \log f}=\binom{-\psi(\alpha)-\log \beta+\log X}{-\frac{\alpha}{\beta}+\frac{X}{\beta^{2}}}
$$

and

$$
I(\theta)=-E\left(\begin{array}{cc}
\frac{\partial^{2} l}{\partial \alpha^{2}} & \frac{\partial^{2} l}{\partial \alpha \partial \beta} \\
\frac{\partial^{2} l}{\partial \beta \partial \alpha} & \frac{\partial^{2} l}{\partial \beta^{2}}
\end{array}\right)=-E\left(\begin{array}{cc}
-\psi^{\prime}(\alpha) & \frac{-1}{\beta} \\
\frac{-1}{\beta} & \frac{\alpha}{\beta^{2}}-\frac{2 X}{\beta^{3}}
\end{array}\right)=\left(\begin{array}{cc}
\psi^{\prime}(\alpha) & \frac{1}{\beta} \\
\frac{1}{\beta} & \frac{\alpha}{\beta^{2}}
\end{array}\right)
$$

Hence

$$
I(\theta)^{-1}=\frac{\beta^{2}}{\alpha \psi^{\prime}(\alpha)-1}\left(\begin{array}{cc}
\frac{\alpha}{\beta^{2}} & -\frac{1}{\beta} \\
-\frac{1}{\beta} & \psi^{\prime}(\alpha)
\end{array}\right)=\frac{1}{\alpha \psi^{\prime}(\alpha)-1}\left(\begin{array}{cc}
\alpha & -\beta \\
-\beta & \beta^{2} \psi^{\prime}(\alpha)
\end{array}\right)
$$

CRLB for unbiased estimator of $\beta$ is given by

$$
\left.\operatorname{Var}(\hat{\beta}) \geq \frac{1}{n}\left(I^{-1}(\theta)\right)_{22} \geq \frac{1}{n}\{I(\theta))_{22}\right\}^{-1} .
$$

Note that

$$
\left.\frac{1}{n}\left(I^{-1}(\theta)\right)_{22}=\frac{\beta^{2}}{\alpha n} \cdot \frac{\psi^{\prime}(\alpha)}{\psi^{\prime}(\alpha)-1 / \alpha}, \quad \frac{1}{n}\{I(\theta))_{22}\right\}^{-1}=\frac{\beta^{2}}{\alpha n} .
$$

If $\alpha$ is known the lower lower bound is achieved

$$
\begin{aligned}
E\left(\frac{\bar{X}}{\alpha}\right) & =\beta \\
\operatorname{Var}\left(\frac{\bar{X}}{\alpha}\right) & =\frac{1}{\alpha^{2}} \frac{\operatorname{Var}(X)}{n}=\frac{\alpha \beta^{2}}{n \alpha^{2}}=\frac{\beta^{2}}{\alpha n} .
\end{aligned}
$$

If $\alpha$ must be estimated, there is a variance penalty which does not vanish asymptotically $(n \rightarrow \infty)$.


Figure 2: Plot of $\frac{\psi^{\prime}(\alpha)}{\psi^{\prime}(\alpha)-1 / \alpha}$, showing that it does not become asymptotically 1

