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Gaussian process: why flexible

I Realizations of a GP

{g : g(x) =
K∑

k=1

wkC (x , xk), (x1, . . . , xk) ⊂ X, k ∈ N,wk ∈ R}

I Heuristics: We want to approximate an arbitrary function
f0 : X→ R. Setting c(x , x ′) = φσ(x − x ′), wk = f0(xk)

K∑
k=1

wkφσ(x − xk) =
K∑

k=1

f0(xk)φσ(x − xk) ≈ φσ ? f0 → f0 as σ → 0.



RKHS of Gaussian processes

I The RKHS H is the completion of the linear space

f (t) =
m∑

h=1

ahC (sh, t), sh ∈ [0, 1], ah ∈ R

I Illustration with the squared exponential kernel
C (s, t) = exp(−κ|s − t|2)
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Why scaling works

I A or κ plays the role of an inverse-bandwidth

I Large A implies more peaked kernels

I Stretching the sample paths



Why scaling works

I A or κ plays the role of an inverse-bandwidth

I Large A enables approximation of rougher functions from the
RKHS

I van der Vaart & van Zanten (2008): If AD ∼ gamma(a, b),
optimal rate of convergence adaptively over Cα[0, 1]D for any
α > 0



Theory for Gaussian random element

I Want mechanism to produce random (continuous) functions.

I A random vector X : (Ω, E ,P)→ <k is Gaussian if aTX is
Gaussian for any a ∈ <k

I Let X : (Ω, E ,P)→ (C[0, 1], || · ||∞) be measurable

I X is called Gaussian if L(X ) is Gaussian for any linear
functional L

I For example, L(f ) = f (1/2), L(f ) = 2f (1/3)− f (3/4), ...

I Clearly, for any (t1, . . . , tm),
∑m

i=1 aiX (ti ) is Gaussian for any
a ∈ <m

I (Xt1 , . . . ,Xtm) is MVN



Covariance kernel approach

I Specify a joint Gaussian for (Xt1 , . . . ,Xtm) consistently

I Let C (t, s) be a positive definite covariance kernel, i.e.,
C =

(
C (ti , tj)

)
is positive definite for any t1, . . . , tm

I (Xt1 , . . . ,Xtm) ∼ N(0,C), so that C (s, t) = cov(Xs ,Xt)

I Common examples: C (t, s) = min(t, s),
C (t, s) = exp(−κ|t − s|), C (t, s) = exp(−κ|t − s|2) etc



Series expansion approach

I Mercer’s theorem: There exists a sequence of eigenvalues
λh ↓ 0 and an orthonormal system of eigenfunctions φh, such
that

C (s, t) =
∞∑
h=1

λhφh(s)φh(t)

I Define X̃ (t) =
∑∞

h=1 λ
1/2
h Zh φh(t), where Zh i.i.d. N(0, 1)

I cov
(
X̃s , X̃t

)
=
∑∞

h=1 λhφh(s)φh(t) = C (s, t)

I We can start with a series representation by choosing λh and
φh. Different choices lead to splines, neural networks,
wavelets, etc



RKHS of Gaussian processes

I In np Bayes, want priors to place positive probability around
arbitrary neighborhoods of a large class of parameter values
(large support property)

I The prior concentration plays a key role in determining the
rate of posterior contraction

I The reproducing kernel Hilbert space (RKHS) of a Gaussian
process determines the prior support and concentration

I Intuitively, a space of functions that are similar to the
covariance kernel in terms of smoothness



RKHS of Gaussian processes

I Let X be a zero mean Gaussian process on ([0, 1], ||∞) with
covariance kernel C (s, t) = E (XsXt)

I The RKHS H is the completion of the linear space

f (t) =
m∑

h=1

ahC (sh, t), sh ∈ [0, 1], ah ∈ <.

under the norm induced by the inner product,〈 k∑
i=1

αiC (si , ·),
l∑

j=1

βjC (tj , ·)
〉

H
=

k∑
i=1

l∑
j=1

αiβjC (si , tj)

I The completion can be identified with a set of functions
f : [0, 1]→ < though the reproducing formula,
f (t) = 〈f ,C (t, ·)〉


