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Gaussian process: why flexible

» Realizations of a GP

{g:g(x ZWkC(X Xk)s (X1, ..., xk) C X, k € Nyw, € R}

» Heuristics: We want to approximate an arbitrary function
fo : X — R. Setting c(x, x") = ¢o(x — x'), wix = fo(xk)

K
Zwkgbox—xk :Zfb Xk)bo (X — Xk) = ¢ * fo — foaso — 0.
k=1



RKHS of Gaussian processes

» The RKHS H is the completion of the linear space

F(t) =Y anC(sh.t), sn € [0,1], ap € R
h=1

> lllustration with the squared exponential kernel
C(s,t) = exp(—~|s — t|?)
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Why scaling works

» A or k plays the role of an inverse-bandwidth
> Large A implies more peaked kernels
» Stretching the sample paths




Why scaling works

» A or k plays the role of an inverse-bandwidth

> Large A enables approximation of rougher functions from the
RKHS
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» van der Vaart & van Zanten (2008): If AP ~ gamma(a, b),
optimal rate of convergence adaptively over C*[0,1]? for any
a>0



Theory for Gaussian random element

v

Want mechanism to produce random (continuous) functions.

A random vector X : (Q,&, P) — R* is Gaussian if a™X is
Gaussian for any a € R¥

Let X : (Q,&,P) — (C[0,1],]] - ||oc) be measurable

X is called Gaussian if L(X) is Gaussian for any linear
functional L

For example, L(f) = f(1/2), L(f) = 2f(1/3) — f(3/4), ...
Clearly, for any (t1,...,tm), Y. aiX(t;) is Gaussian for any
acRm

(th, PN 7Xtm) is MVN
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Covariance kernel approach

v

Specify a joint Gaussian for (X4, ..., Xs,) consistently

v

Let C(t,s) be a positive definite covariance kernel, i.e.,
C = (C(t;, tj)) is positive definite for any t1,..., tm
(Xtyy -y Xe,,) ~ N(0,C), so that C(s, t) = cov(Xs, X¢)
» Common examples: C(t,s) = min(t,s),

C(t,s) = exp(—~|t — s|), C(t,s) = exp(—k|t — s|?) etc

v



Series expansion approach

» Mercer's theorem: There exists a sequence of eigenvalues
Ap 1 0 and an orthonormal system of eigenfunctions ¢, such
that

£) =Y Anon(s)dn(t)
h=1

> Define X(t) = 32°°, \Y/? Z,, ¢u(t), where Z, i.i.d. N(0,1)
> cov(Xs, Xe) = 30521 Anon(s)en(t) = C(s,t)

» We can start with a series representation by choosing A\ and
¢p. Different choices lead to splines, neural networks,
wavelets, etc



RKHS of Gaussian processes

v

In np Bayes, want priors to place positive probability around
arbitrary neighborhoods of a large class of parameter values
(large support property)

v

The prior concentration plays a key role in determining the
rate of posterior contraction

v

The reproducing kernel Hilbert space (RKHS) of a Gaussian
process determines the prior support and concentration

v

Intuitively, a space of functions that are similar to the
covariance kernel in terms of smoothness



RKHS of Gaussian processes

» Let X be a zero mean Gaussian process on ([0, 1], ||~) with
covariance kernel C(s, t) = E(XsX¢)

» The RKHS H is the completion of the linear space
F(t) = anC(sh 1), sn € [0,1], ay € R.
h=1

under the norm induced by the inner product,

k / k /
<ZO¢fC(Si7'),ZﬁjC(fj")> => > @ifiCsiy)
i=1 j=1 H

i=1 j=1

» The completion can be identified with a set of functions
f :[0,1] — R though the reproducing formula,
f(t) = <f7 C(tv )>



