Gaussian processes

Jonathan Bradley Florida State University

October 15, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example 1: Regression

▶ learning function $f_0 : \mathbb{X} \to \mathbb{Y}$ from training data $\{x_i, y_i\}$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Regression with Basis Functions

► Assume a set of basis functions φ₁,..., φ_K and parameterize a function

$$f(x,\mathbf{w}) = \sum_{k=1}^{K} w_k \phi_k(x)$$

Parameters $\mathbf{w} = \{w_1, \ldots, w_K\}.$

Find optimal parameters

$$\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} \left| y_i - \sum_{k=1}^{K} w_k \phi_k(x_i) \right|^2$$

As a Bayesian,

$$y_i \mid x_i, \mathbf{w} = f(x_i, \mathbf{w}) + \epsilon_i, \quad \epsilon_i \sim \mathsf{N}(0, \sigma^2)$$

 $w_k \sim \mathsf{N}(0, \tau^2)$

• Compute posterior $p(\mathbf{w} \mid \{x_i, y_i\})$

- What basis functions to use?
- How many basis functions to use?
- ► Do we really believe that the true $f_0(x)$ can be expressed as $f_0(x) = f(x; \mathbf{w_0})$ for some $\mathbf{w_0}$
- Also $\epsilon_i \sim N(0, \sigma^2)$. Do we really believe that the noise process is Gaussian?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gaussian process: a prior for function spaces

- A GP defines a distribution over functions, *f*, where *f* is a function mapping some input space X to R, *f* : X → R. Let's call it *P*(*f*).
- ► Mean and cov function: m : X → R, c : X × X → R. p.d. function
- P(f) is a Gaussian process if for any finite subset
 {x₁,...,x_n} ⊂ X, the marginal distribution over that finite
 subset P(f) has a multivariate Gaussian distribution.

$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathsf{N}\left(\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} c(x_1, x_2) & \cdots & c(x_1, x_n) \\ \vdots & \ddots & \vdots \\ c(x_n, x_1) & \cdots & c(x_n, x_n) \end{bmatrix}\right)$$

A random function f is a stochastic process. It is a collection of random variables {f(x) : x ∈ X} one for each possible input value x (Kolmogorov Extension Theorem).

Gaussian process: a prior for function spaces

• E.g. $c(x_i, x_j) = v_0 \exp\{-\kappa |x_i - x_j|^{\alpha}/\lambda\}$, Gaussian kernel for $\alpha = 2$

Figure: Sample paths of a GP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Gaussian process: why flexible

Realizations of a GP

$$\{g:g(x)=\sum_{k=1}^{K}w_kC(x,x_k),(x_1,\ldots,x_k)\subset\mathbb{X},k\in\mathbb{N},w_k\in\mathbb{R}\}$$

▶ Heuristics: We want to approximate an arbitrary function $f_0 : \mathbb{X} \to \mathbb{R}$. Setting $c(x, x') = \phi_{\sigma}(x - x')$, $w_k = f_0(x_k)$

$$\sum_{k=1}^{K} w_k \phi_\sigma(x-x_k) = \sum_{k=1}^{K} f_0(x_k) \phi_\sigma(x-x_k) \approx \phi_\sigma \star f_0 \to f_0 \text{ as } \sigma \to 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RKHS of Gaussian processes

▶ The RKHS III is the completion of the linear space

$$f(t) = \sum_{h=1}^m a_h C(s_h, t), s_h \in [0, 1], a_h \in \mathbb{R}$$

• Illustration with the squared exponential kernel $C(s, t) = \exp(-\kappa |s - t|^2)$

RKHS of Gaussian processes

▶ The RKHS III is the completion of the linear space

$$f(t) = \sum_{h=1}^m a_h C(s_h, t), s_h \in [0, 1], a_h \in \mathbb{R}$$

• Illustration with the squared exponential kernel $C(s, t) = \exp(-\kappa |s - t|^2)$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Why scaling works

- A or κ plays the role of an inverse-bandwidth
- Large A implies more peaked kernels
- Stretching the sample paths

Gaussian process: posterior and posterior predictive

- How do we compute the posterior and predictive distributions?
- ▶ Training set $(x_1, y_1), (x_2, y_2), \dots, (x_n; y_n)$ and test input x_{n+1} .
- Out of the uncountably many random variables $\{f(x) : x \in \mathbb{X}\}$ making up the GP only n + 1 has to do with the data: $f(x_1), f(x_2), \dots, f(x_{n+1})$
- ► Training data gives observations f(x₁) = y1,..., f(x_n) = y_n. The predictive distribution of f(x_{n+1}) is simply

$$p(f(x_{n+1}) | f(x_1) = y_1, \dots, f(x_n) = y_n)$$

which is easy to compute since $f(x_1), f(x_2), \ldots, f(x_{n+1})$ is multivariate Gaussian.

Posterior and posterior predictive for noise free observations

- Suppose we know $\{(x_i, f_i), i = 1, \dots, n\}$
- The joinprior distribution of the training outputs, f, and the test outputs f_{*} according to the prior is

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim \mathsf{N}\left(\mathbf{0}, \begin{bmatrix} C(X,X) & C(X,X_*) \\ C(X_*,X) & C(X_*,X_*) \end{bmatrix}\right)$$

If there are *n* training points and *n*_∗ test points then C(X, X_∗) denotes the *n* × *n*_∗ matrix of the covariances evaluated at all pairs of training and test points, and similarly for the other entries C(X, X), C(X_∗, X_∗) and C(X_∗, X).

Posterior predictive for noise free observations

- Graphically you may think of generating functions from the prior, and rejecting the ones that disagree with the observations, although this strategy would not be computationally very efficient.
- Fortunately, in probabilistic terms this operation is extremely simple, corresponding to conditioning the joint Gaussian prior distribution on the observations to give

 $f_* \mid X_*, X, f \sim \mathsf{N}(C(X_*, X)C(X, X)^{-1}f, C(X_*, X_*) - C(X_*, X)C(X, X)^{-1}C(X, X_*)).$

 Function values f_{*} (corresponding to test inputs X_{*}) can be sampled from the joint posterior distribution by evaluating the mean and covariance matrix

Posterior predictive for noise free observations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Posterior covariance

Prediction using noisy observations

- ▶ It is typical for more realistic modelling situations that we do not have access to function values themselves, but only noisy versions there of $y_i = f(x_i) + \epsilon_i$, i = 1, ..., n.
- \blacktriangleright Assuming additive independent identically distributed Gaussian noise with variance σ^2 , the prior on the noisy observations becomes

$$cov(y_p, y_q) = C(x_p, x_q) + \sigma^2 I_{p=q} \implies cov(y) = C(X, X) + \sigma^2 I,$$

The joint distribution of the observed target values and the function values at the test locations under the prior as

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathsf{N}\left(\mathbf{0}, \begin{bmatrix} C(X,X) + \sigma^2 I & C(X,X_*) \\ C(X_*,X) & C(X_*,X_*) \end{bmatrix}\right)$$

Prediction using noisy observations

The predictive distribution is

 $f_* \mid X_*, X, y \sim \mathsf{N}(\overline{f}_*, cov(f_*)).$

where $\overline{f}_* = E[f_* \mid X, y, X_*] = C(X_*, X)[C(X, X) + \sigma^2]^{-1}y$, and

 $cov(f_*) = C(X_*, X_*) - C(X_*, X)[C(X, X) + \sigma^2]^{-1}C(X, X_*).$

- Note first that the mean prediction is a linear combination of observations y; this is sometimes referred to as a linear predictor.
- Another way to look at this equation is to see it as a linear combination of *n* kernel functions, each one centered on a training point, by writing correspondence with weight-space view compact notation predictive distribution linear predictor representer theorem

$$\bar{f}(x_*) = \sum_{i=1}^n \alpha_i C(x_i, x_*), \quad \alpha = (C(X, X) + \sigma^2 I)^{-1} y.$$

Gaussian process predictions using squared exponential cov kernel

Figure: Prediction and predictive intervals

A sample from the prior for each covariance function:

Corresponding predictions, mean with two standard deviations:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - の々で

- Typically the covariance functions that we use will have some free parameters.
- For example, the squared-exponential covariance function in one dimension has the following form C(x_p, x_q) = σ²_f exp{−1/(2l²)(x_p − x_q)²}.

Gaussian process predictions using squared exponential cov kernel

Figure: (a) Data is generated from a GP with hyperparameters $(l, \sigma_f, \sigma_n) = (1, 1, 0.1)$, as shown by the + symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence region for the underlying function f (shown in grey). Panels (b) and (c) again show the 95% confidence region, but this time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively: $\Box \Rightarrow \langle \Box \rangle \Rightarrow \langle \Box$

Choosing the hyperpriors

- Consider squared-exponential covariance function in one dimension C(x, x') = σ²_f exp{−A(x − x')²}.
- Conjugate Inverse Gamma hyperprior for σ_f^2 , allow heavier tails
- van der Vaart & van Zanten (2008): If A^d ~ gamma(a, b), optimal rate of convergence adaptively over C^α[0, 1]^d for any α > 0. Use Metropolis Hastings algorithm to update A
- Computationally cumbersome, requires matrix evaluation at each stage of the MCMC.
- ► Use a discrete uniform prior with bounds chosen in such a way that 0.05 < cor(f(x), f(x')) < 0.95 if |x x'| = average of the observed intersite distances</p>
- You can save the matrices at the support of the uniform prior before the MCMC.

Large spatial datasets (Problem of big n)

- Large observational and computer-generated datasets:
- Often have spatial and temporal aspects.
- ▶ Goal: Make inference on underlying spatial processes from observations at *n* locations where *n* is large.

- The posterior predictive involves $(C(X, X) + \sigma^2 I)^{-1}$
- ► The covariance matrix C(X, X) is large: n × n for n locations. unstructured: irregular spaced locations. dense: non-negligible correlations.
- Cholesky decomposition of $n \times n$ matrices Generally requires $O(n^3)$ computations and $O(n^2)$ memory.

 Use models that reduce computations and/or storage. Use approximate methods.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Compactly supported covariance functions.
- Reduced rank covariance functions.
- Leads Statistical and computational efficiency.

Covariance Tapering (Furrer et al 2006)

- Covariance tapering: $\tilde{C}(x, x') = C(x, x') \circ T(x, x'; \gamma)$,
- T(x, x'; γ): an isotropic correlation function of compact support, i.e., T(x, x'; γ) = 0 for |x − x'| ≥ γ.
- Assumptions: The covariance function has compact support. Its range is sufficiently small.
- The tapered covariance matrix C̃ retains the property of positive definiteness, zero at large distances.
- Minimal distortion to C for nearby locations.
- Efficient sparse matrix algorithms can be used. Also saves storage.

Reduced Rank approximations

- ► Find reduced rank covariance function representation, Banerjee et al. (2008), JRSSB: proposed Gaussian predictive processes f̃(x) to replace f(x) by projecting f(x) onto a m-dimension (lower) subspace f̃(x) = E(f(x) | f(x₁^{*}),..., f(x_m^{*})).
- Cressie and Johannesson (2008), JRSSB proposed a reduced rank approach by defining a low rank process *f̃*(x) = B^T(x)η_{m×1}, where B is a vector consisting of m basis functions and var(η) = G.
- Have computational advantages but also limitations. (Stein, 2013, Spatial Statistics).

► Low rank+tapering: Sang and Huang (2011), JRSSB

Why Projections help

- For both predictive process and the basis function truncation approach, $\tilde{C}(X, X)$ is of the form $\tilde{C}(X, X) = B'GB$ where B is an $m \times n$ matrix, $m \ll n$.
- Need to invert $\sigma^2 I + \tilde{C}(X, X) = \sigma^2 I + B' GB$
- Use Woodbury Inversion formula

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Requires inverting m × m matrices !!!