
Gaussian processes

Jonathan Bradley
Florida State University

October 15, 2016



Example 1: Regression

I learning function f0 : X→ Y from training data {xi , yi}.



Regression with Basis Functions

I Assume a set of basis functions φ1, . . . , φK and parameterize
a function

f (x ,w) =
K∑

k=1

wkφk(x)

Parameters w = {w1, . . . ,wK}.
I Find optimal parameters

argminw

n∑
i=1

∣∣∣∣∣yi −
K∑

k=1

wkφk(xi )

∣∣∣∣∣
2

I As a Bayesian,

yi | xi ,w = f (xi ,w) + εi , εi ∼ N(0, σ2)

wk ∼ N(0, τ2)

I Compute posterior p(w | {xi , yi})



Regression with Basis Functions

I What basis functions to use?

I How many basis functions to use?

I Do we really believe that the true f0(x) can be expressed as
f0(x) = f (x ;w0) for some w0

I Also εi ∼ N(0, σ2). Do we really believe that the noise process
is Gaussian?



Gaussian process: a prior for function spaces

I A GP defines a distribution over functions, f , where f is a
function mapping some input space X to R, f : X→ R. Let’s
call it P(f ).

I Mean and cov function: m : X→ R, c : X× X→ R. p.d.
function

I P(f ) is a Gaussian process if for any finite subset
{x1, . . . , xn} ⊂ X, the marginal distribution over that finite
subset P(f ) has a multivariate Gaussian distribution. f (x1)

...
f (xn)

 ∼ N


 m(x1)

...
m(xn)

 ,
 c(x1, x2) · · · c(x1, xn)

...
. . .

...
c(xn, x1) · · · c(xn, xn)




I A random function f is a stochastic process. It is a collection
of random variables {f (x) : x ∈ X} one for each possible
input value x (Kolmogorov Extension Theorem).



Gaussian process: a prior for function spaces

I E.g. c(xi , xj) = v0 exp{−κ|xi − xj |α/λ}, Gaussian kernel for
α = 2

Figure: Sample paths of a GP



Gaussian process: why flexible

I Realizations of a GP

{g : g(x) =
K∑

k=1

wkC (x , xk), (x1, . . . , xk) ⊂ X, k ∈ N,wk ∈ R}

I Heuristics: We want to approximate an arbitrary function
f0 : X→ R. Setting c(x , x ′) = φσ(x − x ′), wk = f0(xk)

K∑
k=1

wkφσ(x − xk) =
K∑

k=1

f0(xk)φσ(x − xk) ≈ φσ ? f0 → f0 as σ → 0.



RKHS of Gaussian processes

I The RKHS H is the completion of the linear space

f (t) =
m∑

h=1

ahC (sh, t), sh ∈ [0, 1], ah ∈ R

I Illustration with the squared exponential kernel
C (s, t) = exp(−κ|s − t|2)



RKHS of Gaussian processes

I The RKHS H is the completion of the linear space

f (t) =
m∑

h=1

ahC (sh, t), sh ∈ [0, 1], ah ∈ R

I Illustration with the squared exponential kernel
C (s, t) = exp(−κ|s − t|2)



Why scaling works

I A or κ plays the role of an inverse-bandwidth

I Large A implies more peaked kernels

I Stretching the sample paths



Gaussian process: posterior and posterior predictive

I How do we compute the posterior and predictive distributions?

I Training set (x1, y1), (x2, y2), . . . , (xn; yn) and test input xn+1.

I Out of the uncountably many random variables
{f (x) : x ∈ X} making up the GP only n + 1 has to do with
the data: f (x1), f (x2), . . . , f (xn+1)

I Training data gives observations f (x1) = y1, . . . , f (xn) = yn.
The predictive distribution of f (xn+1) is simply

p(f (xn+1) | f (x1) = y1, . . . , f (xn) = yn)

which is easy to compute since f (x1), f (x2), . . . , f (xn+1) is
multivariate Gaussian.



Posterior and posterior predictive for noise free
observations

I Suppose we know {(xi , fi ), i = 1, . . . , n}
I The joinprior distribution of the training outputs, f , and the

test outputs f∗ according to the prior is

[
f
f∗

]
∼ N

(
0,

[
C (X ,X ) C (X ,X∗)
C (X∗,X ) C (X∗,X∗)

])

I If there are n training points and n∗ test points then C (X ,X∗)
denotes the n × n∗ matrix of the covariances evaluated at all
pairs of training and test points, and similarly for the other
entries C (X ,X ),C (X∗,X∗) and C (X∗,X ).



Posterior predictive for noise free observations

I Graphically you may think of generating functions from the
prior, and rejecting the ones that disagree with the
observations, although this strategy would not be
computationally very efficient.

I Fortunately, in probabilistic terms this operation is extremely
simple, corresponding to conditioning the joint Gaussian prior
distribution on the observations to give

f∗ | X∗,X , f ∼ N(C (X∗,X )C (X ,X )−1f ,

C (X∗,X∗)− C (X∗,X )C (X ,X )−1C (X ,X∗)).

I Function values f∗ (corresponding to test inputs X∗) can be
sampled from the joint posterior distribution by evaluating the
mean and covariance matrix



Posterior predictive for noise free observations



Posterior covariance



Prediction using noisy observations

I It is typical for more realistic modelling situations that we do
not have access to function values themselves, but only noisy
versions there of yi = f (xi ) + εi , i = 1, . . . , n.

I Assuming additive independent identically distributed
Gaussian noise with variance σ2 , the prior on the noisy
observations becomes

cov(yp, yq) = C (xp, xq) + σ2Ip=q =⇒ cov(y) = C (X ,X ) + σ2I ,

I The joint distribution of the observed target values and the
function values at the test locations under the prior as[

y
f∗

]
∼ N

(
0,

[
C (X ,X ) + σ2I C (X ,X∗)

C (X∗,X ) C (X∗,X∗)

])



Prediction using noisy observations

I The predictive distribution is

f∗ | X∗,X , y ∼ N(f̄∗, cov(f∗)).

where f̄∗ = E [f∗ | X , y ,X∗] = C (X∗,X )[C (X ,X ) + σ2]−1y ,
and
cov(f∗) = C (X∗,X∗)− C (X∗,X )[C (X ,X ) + σ2]−1C (X ,X∗).

I Note first that the mean prediction is a linear combination of
observations y; this is sometimes referred to as a linear
predictor.

I Another way to look at this equation is to see it as a linear
combination of n kernel functions, each one centered on a
training point, by writing correspondence with weight-space
view compact notation predictive distribution linear predictor
representer theorem

f̄ (x∗) =
n∑

i=1

αiC (xi , x∗), α = (C (X ,X ) + σ2I )−1y .



Gaussian process predictions using squared exponential cov
kernel

Figure: Prediction and predictive intervals



Role of hyperparameters

I Typically the covariance functions that we use will have some
free parameters.

I For example, the squared-exponential covariance function in
one dimension has the following form
C (xp, xq) = σ2

f exp{−1/(2l2)(xp − xq)2}.



Gaussian process predictions using squared exponential cov
kernel

Figure: (a) Data is generated from a GP with hyperparameters (l, σf , σn) = (1, 1, 0.1), as shown by the +

symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence region for the

underlying function f (shown in grey). Panels (b) and (c) again show the 95% confidence region, but this time for

hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.



Choosing the hyperpriors

I Consider squared-exponential covariance function in one
dimension C (x , x ′) = σ2

f exp{−A(x − x ′)2}.
I Conjugate Inverse Gamma hyperprior for σ2

f , allow heavier tails

I van der Vaart & van Zanten (2008): If Ad ∼ gamma(a, b),
optimal rate of convergence adaptively over Cα[0, 1]d for any
α > 0. Use Metropolis Hastings algorithm to update A

I Computationally cumbersome, requires matrix evaluation at
each stage of the MCMC.

I Use a discrete uniform prior with bounds chosen in such a way
that 0.05 < cor(f (x), f (x ′)) < 0.95 if |x − x ′| = average of
the observed intersite distances

I You can save the matrices at the support of the uniform prior
before the MCMC.



Large spatial datasets (Problem of big n)

I Large observational and computer-generated datasets:

I Often have spatial and temporal aspects.

I Goal: Make inference on underlying spatial processes from
observations at n locations where n is large.



Computational bottleneck

I The posterior predictive involves (C (X ,X ) + σ2I )−1

I The covariance matrix C (X ,X ) is large: n× n for n locations.
unstructured: irregular spaced locations. dense: non-negligible
correlations.

I Cholesky decomposition of n × n matrices Generally requires
O(n3) computations and O(n2) memory.



Options for large n

I Use models that reduce computations and/or storage. Use
approximate methods.

I Compactly supported covariance functions.

I Reduced rank covariance functions.

I Leads Statistical and computational efficiency.



Covariance Tapering (Furrer et al 2006)

I Covariance tapering: C̃ (x , x ′) = C (x , x ′) ◦ T (x , x ′; γ),

I T (x , x ′; γ): an isotropic correlation function of compact
support, i.e., T (x , x ′; γ) = 0 for |x − x ′| ≥ γ.

I Assumptions: The covariance function has compact support.
Its range is sufficiently small.

I The tapered covariance matrix C̃ retains the property of
positive definiteness, zero at large distances.

I Minimal distortion to C for nearby locations.

I Efficient sparse matrix algorithms can be used. Also saves
storage.



Reduced Rank approximations

I Find reduced rank covariance function representation,
Banerjee et al. (2008), JRSSB: proposed Gaussian predictive
processes f̃ (x) to replace f (x) by projecting f (x) onto a
m-dimension (lower) subspace
f̃ (x) = E (f (x) | f (x∗1 ), . . . , f (x∗m)).

I Cressie and Johannesson (2008), JRSSB proposed a reduced
rank approach by defining a low rank process
f̃ (x) = BT (x)ηm×1, where B is a vector consisting of m basis
functions and var(η) = G .

I Have computational advantages but also limitations. (Stein,
2013, Spatial Statistics).

I Low rank+tapering: Sang and Huang (2011), JRSSB



Why Projections help

I For both predictive process and the basis function truncation
approach, C̃ (X ,X ) is of the form C̃ (X ,X ) = B ′GB where B
is an m × n matrix, m� n.

I Need to invert σ2I + C̃ (X ,X ) = σ2I + B ′GB

I Use Woodbury Inversion formula

(A + UCV )−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1

I Requires inverting m ×m matrices !!!


