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Example 1: Regression

» learning function fp : X — Y from training data {x;, y;}.
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Regression with Basis Functions

» Assume a set of basis functions ¢1, ..., ¢k and parameterize
a function

K
Foew) = 3 i (x)
k=1

Parameters w = {w, ..., wk}.
» Find optimal parameters
n K 2
argmin,, Z Vi — Z wi Pk (xi)
i=1 k=1
» As a Bayesian,
yi| xi,w = f(xj,w)+e, €~ N(O,cr2)

Wi~ N(077-2)

» Compute posterior p(w | {x;,yi})



Regression with Basis Functions

» What basis functions to use?
» How many basis functions to use?

» Do we really believe that the true fy(x) can be expressed as
fo(x) = f(x; wq) for some wyg

» Also ¢; ~ N(0,02). Do we really believe that the noise process
is Gaussian?



Gaussian process: a prior for function spaces

» A GP defines a distribution over functions, f, where f is a
function mapping some input space X to R, f : X — R. Let's
call it P(f).

» Mean and cov function: m: X - R,c: X x X — R. p.d.
function

» P(f) is a Gaussian process if for any finite subset
{x1,...,x,} € X the marginal distribution over that finite
subset P(f) has a multivariate Gaussian distribution.

f(x1) m(xy) c(x1,x2) -+ c(x1,xn)
~NEL ] '
f(xn) m(xp) c(Xpyx1) -+ c(xn,Xn)
» A random function f is a stochastic process. It is a collection

of random variables {f(x) : x € X} one for each possible
input value x (Kolmogorov Extension Theorem).



Gaussian process: a prior for function spaces

» E.g. c(xi,x;) = voexp{—r|x; — xj|*/A}, Gaussian kernel for
oa=2

Figure: Sample paths of a GP
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Gaussian process: why flexible

» Realizations of a GP

{g:g(x ZWkC(X Xk)s (X1, ..., xk) C X, k € Nyw, € R}

» Heuristics: We want to approximate an arbitrary function
fo : X — R. Setting c(x, x") = ¢o(x — x'), wix = fo(xk)

K
Zwkgbox—xk :Zfb Xk)bo (X — Xk) = ¢ * fo — foaso — 0.
k=1



RKHS of Gaussian processes

» The RKHS H is the completion of the linear space

F(t) =Y anC(sh.t), sn € [0,1], ap € R
h=1

> lllustration with the squared exponential kernel
C(s,t) = exp(—~|s — t|?)
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Why scaling works

» A or k plays the role of an inverse-bandwidth
> Large A implies more peaked kernels
» Stretching the sample paths




Gaussian process: posterior and posterior predictive

» How do we compute the posterior and predictive distributions?
» Training set (x1,y1), (x2,¥2), ..., (Xn; ¥n) and test input xp1.
» Qut of the uncountably many random variables
{f(x) : x € X} making up the GP only n+ 1 has to do with
the data: f(x1),f(x2), ..., f(xnt1)
» Training data gives observations f(x1) = y1,...,f(xn) = ya.
The predictive distribution of f(x,41) is simply

p(f(xn1) | F0a) = y1, -, F(xa) = ya)

which is easy to compute since f(x1), f(x2), ..., f(Xpt1) is
multivariate Gaussian.



Posterior and posterior predictive for noise free
observations

» Suppose we know {(x;, f;),i =1,...,n}
» The joinprior distribution of the training outputs, f, and the
test outputs f, according to the prior is
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» If there are n training points and n, test points then C(X, X.)
denotes the n x n, matrix of the covariances evaluated at all
pairs of training and test points, and similarly for the other
entries C(X, X), C(X., X.) and C(X,, X).



Posterior predictive for noise free observations

» Graphically you may think of generating functions from the
prior, and rejecting the ones that disagree with the
observations, although this strategy would not be
computationally very efficient.

» Fortunately, in probabilistic terms this operation is extremely
simple, corresponding to conditioning the joint Gaussian prior
distribution on the observations to give

f:k | X*aX’f ~ N(C(X*,X)C(X,X)_lf,
C(X., X.) — C(X, X)C(X, X)71C(X, X,)).

» Function values f, (corresponding to test inputs X,) can be
sampled from the joint posterior distribution by evaluating the
mean and covariance matrix



Posterior predictive for noise free observations
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Posterior covariance
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Prediction using noisy observations

» It is typical for more realistic modelling situations that we do
not have access to function values themselves, but only noisy
versions there of y; = f(x;) +¢;,i =1,...,n.

» Assuming additive independent identically distributed
Gaussian noise with variance o2 , the prior on the noisy
observations becomes

cov(yp: Ya) = Clxp. xg) + 0% Ipmq = couly) = C(X, X) + 01,

» The joint distribution of the observed target values and the
function values at the test locations under the prior as

AREE )



Prediction using noisy observations

» The predictive distribution is
f* ‘ X*7X7y ~ N(?*v COV(f*))-

where f, = E[f. | X,y, X.] = C(X., X)[C(X, X) + %] Ly,
and
cov(f.) = C(Xi, Xi) — C(Xs, X)[C(X, X) + 0?]LC(X, X,).
» Note first that the mean prediction is a linear combination of
observations y; this is sometimes referred to as a linear
predictor.
> Another way to look at this equation is to see it as a linear
combination of n kernel functions, each one centered on a
training point, by writing correspondence with weight-space
view compact notation predictive distribution linear predictor
representer theorem

f(x) = Za,-C(x,-,x*), a=(C(X,X)+ %) ty.
i=1



Gaussian process predictions using squared exponential cov

kernel

Figure: Prediction and predictive intervals
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Role of hyperparameters

» Typically the covariance functions that we use will have some
free parameters.

» For example, the squared-exponential covariance function in
one dimension has the following form

C(Xp, xq) = 02 exp{—1/(21%)(xp — x4)*}.



Gaussian process predictions using squared exponential cov

kernel
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FIgU re. (a) Data is generated from a GP with hyperparameters (/, of, o) = (1,1, 0.1), as shown by the +

symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence region for the
underlying function f (shown in grey). Panels (b) and (c) again show the 95% confidence region, but this time for

hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.



Choosing the hyperpriors

» Consider squared-exponential covariance function in one
dimension C(x,x’) = o2 exp{—A(x — x')?}.

» Conjugate Inverse Gamma hyperprior for o2, allow heavier tails

» van der Vaart & van Zanten (2008): If A9 ~ gamma(a, b),
optimal rate of convergence adaptively over C*[0,1]? for any
a > 0. Use Metropolis Hastings algorithm to update A

» Computationally cumbersome, requires matrix evaluation at
each stage of the MCMC.

> Use a discrete uniform prior with bounds chosen in such a way
that 0.05 < cor(f(x), f(x")) < 0.95 if |[x — x| = average of
the observed intersite distances

» You can save the matrices at the support of the uniform prior
before the MCMC.



Large spatial datasets (Problem of big n)

» Large observational and computer-generated datasets:
» Often have spatial and temporal aspects.

» Goal: Make inference on underlying spatial processes from
observations at n locations where n is large.



Computational bottleneck

» The posterior predictive involves (C(X, X) + o2/)~!
» The covariance matrix C(X, X) is large: n x n for n locations.

unstructured: irregular spaced locations. dense: non-negligible
correlations.

» Cholesky decomposition of n x n matrices Generally requires
O(n3) computations and O(n?) memory.



Options for large n

v

Use models that reduce computations and/or storage. Use
approximate methods.

v

Compactly supported covariance functions.

Reduced rank covariance functions.

v

v

Leads Statistical and computational efficiency.



Covariance Tapering (Furrer et al 2006)

» Covariance tapering: C(x,x') = C(x,x') o T(x,x;7),

» T(x,x’;v): an isotropic correlation function of compact
support, i.e., T(x,x";v) =0 for |[x — x| > ~.

» Assumptions: The covariance function has compact support.
Its range is sufficiently small.

» The tapered covariance matrix C retains the property of
positive definiteness, zero at large distances.

» Minimal distortion to C for nearby locations.

> Efficient sparse matrix algorithms can be used. Also saves
storage.



Reduced Rank approximations

» Find reduced rank covariance function representation,
Banerjee et al. (2008), JRSSB: proposed Gaussian predictive
processes f(x) to replace f(x) by projecting f(x) onto a
m-dimension (lower) subspace
f(x)=E(f(x) | f(x1),...,f(x3))-

» Cressie and Johannesson (2008), JRSSB proposed a reduced
rank approach by defining a low rank process
(x) = BT (x)nmx1, where B is a vector consisting of m basis
functions and var(n) = G.

» Have computational advantages but also limitations. (Stein,
2013, Spatial Statistics).

» Low rank+tapering: Sang and Huang (2011), JRSSB



Why Projections help

» For both prNedictive process and th(i basis function truncation
approach, C(X, X) is of the form C(X, X) = B'GB where B

isan m X n matrix, m < n.
» Need to invert o2/ + C(X,X) = ¢/ + B'GB

> Use Woodbury Inversion formula
(A+UCV)t=Al AU (Cr 4 vAalu) T vaT]

» Requires inverting m x m matrices !!!



