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 Summary

 This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises
 from a prior based on multivariate-normal scale mixtures. We describe the estimator's advantages
 over existing approaches, including its robustness, adaptivity to different sparsity patterns and
 analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator's
 tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct
 estimate of the sampling density in sparse situations. Finally, using both real and simulated
 data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by
 Bayesian model averaging under a point-mass mixture prior.

 Some key words: Normal scale mixture; Ridge regression; Robustness; Shrinkage; Sparsity; Thresholding.

 1. Introduction

 1 1. The proposed estimator

 Suppose we observe a /7-dimensional vector y \ 0 ~ N(0, a21). If 0 is believed to be sparse,
 we propose using the following model for estimation and prediction:

 Of | kt - N(0, X2), ki | r - C+(0, r), r | a ~ C+(0, a),

 where C+(0, a) is a standard half-Cauchy distribution on the positive reals with scale parameter
 a. Crucially, each 0,- is mixed over its own A.,-, and each A; has a half-Cauchy prior with common
 scale r. Additionally, we assume Jeffreys' prior for the variance, p(p2) oc 1 /a2. The prior for r
 also follows the treatment of Jeffreys, in that it is scaled by a, the standard deviation of the error
 model (Jeffreys, 1961, Ch. 5).

 We estimate 0 using the posterior mean under this model, which we call the horseshoe prior.
 This name arises from the observation that, for fixed values a2 = r2 = 1,

 m \y) = f\i - Ki)yiP(Ki\y)dKt = {\- E(Ki \y))yu Jo

 where /q = 1 /(l + A?), and where E(ki \ y) can be interpreted as the amount of shrinkage towards
 zero, a posteriori. The half-Cauchy prior on Az implies a horseshoe-shaped Be(l/2, 1 /2) prior for
 the shrinkage coefficient /q. The left side of the horseshoe, Kt ? 0, yields virtually no shrinkage,

This content downloaded from 146.201.203.140 on Thu, 06 Apr 2017 18:03:28 UTC
All use subject to http://about.jstor.org/terms



 466  Carlos M. Carvalho, Nicholas G. Polson and James G. Scott

 and describes signals. The right side of the horseshoe, /q ^ 1, yields near-total shrinkage and
 describes noise.

 Unlike other similar procedures, the horseshoe prior is free of user-chosen hyperparameters,
 since the priors for A.,-, r and a are all fully specified without additional inputs. Nonetheless, the
 prior is robust and highly adaptive, yielding strong performance across a variety of situations.

 This paper's goal, aside from introducing the horseshoe prior as a modelling tool, is to
 propose a theoretical framework under which the model can be compared with other simi
 lar shrinkage priors. The sparse normal-means problem, while simple, can be thought of as a
 proving ground for methodology aimed at solving many of the common challenges in modern
 statistics, such as regression, classification, function estimation and regularization of covariance

 matrices.
 We consider two major issues: robustness to large signals and shrinkage of noise. To address

 the first issue, we prove a new representation theorem that characterizes a prior's tail robustness
 in terms of the score function. This emphasizes the role of heavy-tailed priors in constructing
 robust estimators, and highlights the advantages of the horseshoe compared to other potential
 default priors. To address the second issue, we formally compare various estimators' asymptotic
 rates of convergence under the assumption that the true answer is sparse. This will highlight the
 importance of the prior's behaviour near the origin.

 Our procedure performs very strongly in light of both of these criteria. In sparse situations,
 the horseshoe prior will ensure that the Bayes estimator for the sampling density converges to
 the right answer at a super-efficient rate. Other common local shrinkage rules do not share this
 property. Yet when the true answer is far from zero, the horseshoe estimator exhibits a strong form

 of Bayesian robustness due to a redescending score function. In short, it will leave obvious signals
 unshrunk, even in the face of significant noise. This unique combination of super-efficiency when
 the real answer is sparse, coupled with robustness when the real answer is not sparse, proves
 to be quite powerful in forming a low-risk estimator that can accurately separate signals from
 noise.

 1-2. The horseshoe density function

 The univariate horseshoe density function lacks an analytic form, but very tight bounds are
 available. For ease of notation we assume fixed values of a2 = r2 ? 1 and suppress conditioning
 on these terms in writing p(6), though in general we use the priors specified in the previous
 section.

 Theorem 1. The univariate horseshoe density p(6) satisfies the following: (a) lim^o p(@) =
 oo. (b) For 0*0,

 f log (l + 1) if log (l + ^)f (1)
 where K = 1 /(27T3)1/2.

 Proof. See the Appendix.

 It is also possible to integrate explicitly over r, yielding a marginal density for A.,- given by
 p(ki) = 2logX2/{n2(X2 - 1)}, though of course the terms are not independent once r has been
 marginalized away. Indeed, the dependence structure induced by this marginalization will be
 difficult to visualize, making it easier to think in terms of p univariate conditionally independent

 priors p{Xi | r) rather than a complex joint prior p(X\,..., Xp) over W.
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 Comparison of different priors Tails of different priors

 ?i-1-1-1-1-1-1- -1-1-r
 -3 -2 -1 0 1 2 3 4 5 6

 Theta Theta

 Fig. 1. Comparison of the horseshoe (solid), Cauchy (dotted) and double-exponential (dashed) densities.

 Figure 1 plots the density in (1) with the standard double-exponential and standard Cauchy
 densities. The horseshoe prior has heavy, Cauchy-like tails decaying like 0-2, along with a pole
 at 0 = 0. These key features allow the prior to perform well in handling sparse vectors.

 1 3. Relationship with similar methods

 The horseshoe prior assumes independent mixing densities upon p idiosyncratic scale terms
 A,, and is thus in the well-known family of multivariate scale mixtures of normals. We call these
 local shrinkage rules, to distinguish them from global shrinkage rules that have only a shared
 global scale parameter t. This section, while far from exhaustive, summarizes some other popular
 local shrinkage rules that have been considered in the literature.
 The discrete mixture prior, 0; ~ wg(0i) + (1 ? w)&o, can also be represented as a variance
 mixture, with A; ~ wh(kj) + (l ? w)So. The choice of h will induce the form of the nonnull
 density g. If, for example, h is a point mass at r, then g is a N(0, r2) distribution. Scott & Berger
 (2006) study this prior extensively.
 The Student-^ prior, 0,- ~ f?(0, r), is defined by an inverse-gamma mixing density, A2 ~
 IG(?/2, ?t2/2). Tipping (2001) uses this model for sparsity by finding posterior modes under
 the assumption that ? -> 0.

 The double-exponential prior has mixing density p(kj | r2) = (2r2)-1 exp{?A2/2r2}, r2 ~
 IG(?/2, ^d2/2). The standard Markov chain Monte Carlo algorithm for working with the double
 exponential model is due to Carlin & Poison (1991), and the use of this model in robust Bayesian
 inference dates at least to Pericchi & Smith (1992). A theory for the wider class of powered
 exponential priors appears in West (1987). More recently, Park & Casella (2008) and Hans (2009)
 have revitalized interest in this prior as a Bayesian alternative to the lasso (Tibshirani, 1996).
 The normal-Jeffreys prior has been studied by Figueiredo (2003) and Bae & Mallick (2004).
 This improper prior is induced by placing the Jeffreys' prior upon each variance term, p(kf) oc
 1 /A2, leading to p(9{) oc \0t- independently. This choice is commonly used in the absence of a
 global scale parameter, posing issues that are considered more carefully in ? 3-1.
 The Strawderman-Berger prior (Strawderman, 1971; Berger, 1980) lacks an analytic form,

 but arises from assuming 0,-1 k\ ~ N(0, k^~1 ? 1), with /q ~ Be(l/2, 1). Johnstone & Silverman
 (2004) call this the quasi-Cauchy density, and study it as a possible choice of g in the discrete

 mixture model. Denison and George also consider variations on this prior in an Imperial College
 technical report from 2000.

 The normal-exponential-gamma family of priors, proposed by Griffin and Brown in a 2005
 technical report from the University of Kent and further analyzed by Scheipl & Kneib (2009), is
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 468  Carlos M. Carvalho, Nicholas G. Polson and James G. Scott

 Table 1. Priors for A./ and k\ associated with some common local shrinkage rules. For the
 normal-exponential-gamma prior, it is assumed thatd = 1. Densities are given up to constants.

 Density for /c, Prior for 0,

 Double-exponential
 Cauchy
 Strawderman-Berger
 Normal-exponential-gamma
 Normal-Jeffreys
 Horseshoe

 Density for A,

 A,exp(-A?/2)
 V2exp{l/(2A2)}
 MI+A?)-3/2

 v1

 ,,-2

 r1/2(i - *,r3/2 exP [-if,/ {2/(1 - *,)}] -1/2

 rap {-1/(2*,)}

 '1/2(l-^.)-|/2

 Double-exponential  Cauchy  Strawderman-Berger

 n-1-1-1-1-r
 00 02 04 06 08 1 0  00 02 04 0-6 08 1 0

 Normal-Exp-Gamma  Normal-Jeffreys
 200

 ? 100
 S3
 ?

 50

 0
 00 0-2 0-4 0-6 08

 kappa
 00 02 04 0-6 08 10

 kappa
 00 0-2 04 06 08 1 0

 kappa

 Fig. 2. The implied densities up to proportionality for six priors: the double exponential, Cauchy, Strawderman
 Berger, normal-exponential-gamma, normal-Jeffreys and horseshoe. In the bottom-left panel for the normal

 exponential prior, the solid line is for c = 4 and d = 1, while the dashed line is for c = 1 /4 and d = 1.

 also based upon the exponential mixing density, but generalizes the lasso specification using a
 Ga(c, d2) density to mix over the exponential rate parameter. This leads to

 c f k2\-(c~l)

 The two hyperparameters c and d allow control over tail weight and scale, respectively.

 1 -4. An intuitive basis for comparing shrinkage rules

 Priors on shrinkage coefficients ki ? 1/(1 + X2) provide an intuitive way of understanding
 local shrinkage rules, since E(0t | j^/) = {1 ? E(Ki \y)} y\ under a multivariate normal scale

 mixture prior. The behaviour of p(k\) near k\ ? 0 will control the tail robustness of the prior, and
 the behaviour near k\ = 1 will control the shrinkage of noise. Table 1 lists the priors for A,,- and
 Ki implied by the six different local shrinkage rules described above. Figure 2 also plots these
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 Horseshoe estimator for sparse signals  469

 six priors on the k scale, which helps to frame the more formal developments of the rest of the
 paper.

 The normal-Jeffreys and horseshoe priors both yield pfc) unbounded near 1, reflecting their
 poles at Oi = 0. The double-exponential, Strawderman-Berger, Cauchy and normal-exponential
 gamma priors all tend to fixed constants at k\ ? 1. These differences are highly significant for
 the behaviour of the posterior mean when the true vector is sparse.

 The heavier-tailed priors, which are the Cauchy, Strawderman-Berger, normal-Jeffreys, horse
 shoe and nornial-exponential-gamma with c < 1, all yield p{Ki) unbounded near 0. The lighter
 tailed priors, which are the double-exponential and nonnal-exponential-gamma with c ^ 1, all
 cause p(i<i) to vanish at Kt = 0. These differences affect the treatment of large, obvious signals.

 To provide additional insight as to how p(Kt) affects the behaviour of the resulting estimator,
 observe that if k( ~ Be(a, b), then the implied prior for k( is p(kt) a k2b~l (1 + k?)-(a+b\

 This behaves like kf near the origin, and like A,r(2a+1) in the upper tail. The horseshoe
 prior thus marks a sharp phase transition between two extremes. If b < 1/2, then p{k{) will be
 unbounded at zero, unlike under the horseshoe prior. Yet if b > 1 /2, then p(kf) vanishes at zero,
 and consequently p(6i) will be bounded. Choosing b = 1/2 is the only choice for which p(kj)
 tends to a nonzero constant at the origin. The horseshoe prior does just this, yet it remains fairly
 noninformative on the k scale, since it places 1 /3 of its mass on 1/4 ^ /cz ^ 3/4.

 The normal-Jeffreys prior, of course, is the improper limiting case of k\ ~ Be(e, e) as e -+ 0.
 This will lead to tails that are even heavier, and a pole at 0 = 0 that is even more pronounced,
 compared to the horseshoe prior. Plotting this prior on the k scale shows just how informative it
 truly is, since most of the probability is highly concentrated near the extremes of 0 and 1.

 The following theorem characterizes an estimator's tail robustness, or its behaviour in situations
 where y is very different from the prior mean. Tail robustness is a useful property in sparse settings,

 where one would like to shrink observations near zero much more forcefully than those far from
 zero.

 Theorem 2. Let p(\y ? 6\) be the likelihood, and suppose that p(6) is a zero-mean scale
 mixture of normals: 6 \ k ~ N(0, k2), with k having proper prior p(k). Assume further that the
 likelihood and p(0) are such that the marginal density m(y) is finite for all y. Define the following
 three pseudo-densities, which may be improper:

 2. Robustness to large signals

 2 -1. A representation of the posterior mean

 Then

 m*(y) d
 m{y) dy

 logm*(y) =
 1 d

 m*(y).  (2) E{6\y) =  m(y)dy

 Proof. See the Appendix.

 If p(\y ? 6\) is a normal likelihood, then (2) reduces to

 d
 E(P\y) = y + ?logm(y).  (3)
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 Versions of (3) appear in Masreliez (1975), Poison (1991) and Pericchi & Smith (1992). But these
 results do not apply for the horseshoe prior, which fails to satisfy the common regularity condition
 that the density p(0) is bounded. Theorem 2 relaxes this boundedness condition and extends the
 result to situations where p(0) is a scale mixture of normals with proper mixing density and finite
 marginal m(y).

 The theorem provides a key insight into an estimator's behaviour in the presence of large
 signals: Bayesian robustness may be achieved by choosing a prior for 6 such that the derivative
 of the log predictive density is bounded as a function of y. Ideally, of course, this bound should
 converge to 0, which from (3) will lead to E(9 \y) % y, for large \y\. This is precisely what
 happens under the horseshoe prior and others with sufficiently heavy tails, ensuring that large
 signals will not be overshrunk.

 2-2. The horseshoe score function

 Due to its heavy tails, the horseshoe prior is of bounded influence, leading to an estimator that
 is tail-robust.

 Theorem 3. Suppose y ~ N(0, 1). Letm(y) denote the predictive density under the horseshoe
 prior for known scale parameter x < oo, i.e. where (6 \ X) ~ N(0, x2k2) and k ~ C1-(0, 1). Let
 E(0 | y) denote the posterior mean. Then \y ? E(6 \ y)\ ^ bTfor some bT < oo that depends upon
 x, and\\m\y\^oQd\ogm(y)/dy ? 0.

 Proof. See the Appendix.

 The following corollary is immediate, and shows that the risk of the horseshoe estimator is
 bounded for all possible configurations of the true mean vector, whether sparse or not.

 Corollary 1. The value of Ey\o(\\6 - 0H ||2) is bounded for all 9.

 Proof. Regardless of #, the risk satisfies

 ? jl>. -^)2} < ES^2(\ei-y\ + bx)2^p + pb2r.
 Finally, although the horseshoe prior itself has no analytic form, it does yield an expression for

 the posterior mean:

 E(Q\v\-v\\ *?i (1A1. 3/2, >?/2,1-1/t2)]
 E(0i ly0 -yi\l~ 3*, (1/2, 1, 5/2, yf/2,l-l/r2)} ' W

 where 4>i(a, )8, y, jc, y) is the degenerate hypergeometric function of two variables
 (Gradshteyn & Ryzhik, 1965,9.261). Combining (4) with the marginal density in (Al) allows an
 empirical-Bayes estimate E(6 \ y, f) to be computed very rapidly.

 3. Efficiency in handling sparsity

 3 -1. Joint distribution for x and the XiS

 With the exception of Corollary 1, the above results describe the behaviour of the horseshoe
 estimator for each Of when r is known. Usually, however, r is unknown, leading to a joint
 distribution p(y, x, k\,..., kp) under the assumed half-Cauchy prior for t. Inspecting this joint
 distribution yields an understanding of how sparsity is handled under the global-local framework
 of the horseshoe model.
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 Horseshoe estimator for sparse signals  471

 Let y = (y\,..., yp). Recall that k,; = 1/(1 + r2kj), and let k = (k\,..., kp). For the horse
 shoe prior, p(\j) a 1/(1 + kf), and so

 p(Ki | t) a *-1/2(l - Kiy1'2-l

 Some straightforward algebra leads to

 i + (t2 - iy,

 P GXp(-Kirf/2)
 p(y, k. r2) oc p(r2) r* JT II TTi  (5)

 which yields several insights. As in other common multivariate scale mixtures, the global shrink
 age parameter r is conditionally independent of y, given k. Similarly, the /c;S are conditionally
 independent of each other, given r.

 More interestingly, (5) clarifies that the global shrinkage parameter r is estimated by the
 average signal density. To see this, observe that if p is large, the conditional posterior distribution

 for r2, given /c, is well approximated by substituting k = p~x Ylf=\ Ki f?r each Ki- Ignoring the
 contribution of the prior for r2, this gives

 p(r2 | K) * (r2)-'/2 (l + l-^Y ? (r2)-'/2 exp {-1^-^} ,
 or approximately a Ga {(p + 2)/2, (p ? pic)/ic} distribution for 1 /r2. If ic is close to 1, implying
 that most observations are shrunk near 0, then r2 will be very small with high probability, with
 an approximate mean ji = 2(1 ? k)/k and standard deviation of ii/{p ? 2)1/2.

 Shared global parameters are of fundamental importance in high-dimensional inference. This
 is the insight of Stein (1956), and it applies regardless of whether sparsity is present. This fact
 is also central to the work of Johnstone & Silverman (2004) in the context of discrete mixtures,

 where a global parameter that characterizes sparsity in a data-adaptive way is crucial in bounding
 the risk of the resulting procedure.

 Models that lack global parameters, or do not estimate them from the data, will not enjoy the
 benefits of this adaptivity. This issue is intimately related to the notion of multiplicity control in
 Bayesian hypothesis testing (Berry, 1988; Scott & Berger, 2006), where global parameters play
 a central role in controlling the rate of Type I errors. In fact, one way of viewing our procedure
 is that we are asking r to play the role of u>, the so-called prior inclusion probability in the
 discrete-mixture model. This highlights the importance of p(^ ): if /c; is constrained by the prior
 from being very close to either 0 or 1, then the interpretation of k as an average signal density
 breaks down, and r will not be a faithful measure of underlying sparsity even if it is learned from
 the data.

 3-2. Comparison with other Bayes rules

 The advantages of the horseshoe prior are not shared by other common scale-mixture rules.
 Under the double-exponential prior, for example, small values of r can also lead to strong
 shrinkage near the origin. This shrinkage, however, can severely compromise performance in the
 tails. Results from Pericchi & Smith (1992) and Mitchell (1994) show that the posterior mean
 E(6i | yt) = Wiiyi + b) + (1 - w;)(y; - b\ where

 Wi = F(yi)/{F(yi) + G(yf}, F(yf) = ec> <D(-y - b),

 Giyt) = e Cl <t>(-y + b), b = ?, a =-,
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 (a) Horseshoe Score Function (b) Double-Exponential Score Function

 y y

 Fig. 3. A comparison of the score function for horseshoe and double-exponential priors for different
 values of the global scale parameter r. (a) r = 01, solid line; r = 10, dotted line; r = 100, dashed
 line, (b) r = 0-5, solid line; r = 10, dotted line; r = 4 0, dashed line.

 and where 4> is the normal cumulative distribution function. The double-exponential posterior
 mean thus has an interpretation as a data-based average of y ? b and y + b. This can be seen in
 the score function, plotted in Fig. 3. Small values of r may help to reduce risk at the origin, but
 do so at the expense of increased risk in the tails, since \E(9i \ yt) ? yt \ ^ V 2/r for large \yt\.

 Therefore, when 6 is sparse, estimation of r under the double-exponential model must balance
 two competing forces: risk due to undershrinking noise, and risk due to overshrinking large
 signals. This compromise is forced by the structure of the prior, and will be required under any
 model without tails sufficiently heavy to ensure a redescending score function. As Fig. 3 shows,
 the horseshoe prior requires no compromise of this sort.
 Other local shrinkage priors with tails at least as heavy as the Cauchy will be similarly robust.
 This includes the Strawderman-Berger, the normal-Jeffreys, the normal-exponential-gamma with
 c < 1 /2 and of course the Cauchy itself. Tails lighter than Cauchy but heavier than exponential
 may also be sufficient in practice, though we have not investigated this fully.

 3 3. Kullback-Leibler risk bounds

 We have argued at an intuitive level that the horseshoe is better at suppressing noise than many
 other scale-mixture priors. This intuition can be formalized by relating the behaviour of the prior
 near the origin to its efficiency in handling sparsity.
 The following theorem demonstrates that, when the true mean is zero, the horseshoe Bayes
 estimator for the sampling density converges to the right answer at a super-efficient rate compared

 to that of other common estimators. This efficiency is measured using the Kullback-Leibler
 divergence between the true sampling model and the Bayes estimator of the density function. The
 theorem is proved for the univariate case, with convergence in the multivariate case following
 from a componentwise application of the results for a fixed value of r.
 A preliminary lemma is required. To avoid notational confusion between priors and sampling
 models, we use #o to denote the true value of the parameter, po = p(y \ 6) to denote a sampling
 model with parameter 6 and ji(A) to denote the prior or posterior measure of some set A. We

 also let L(p\, pi) = EPl {log(p\/p2)} denote the Kullback-Leibler divergence of pi from p\.

 Lemma 1. Let A = {6 : L(pe0, po)^e} C K denote the Kullback-Leibler information neigh
 bourhood of size 6, centred at 6q. Let jJLn{d6) be the posterior distribution under some prior
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 Horseshoe estimator for sparse signals  473

 measure /z(</0) after observing data y^ = (y\,..., yn), and let pn = J Po l^n{dO) be the poste
 rior mean estimator of the density function.

 Suppose that the prior jji{d6) is information dense at po0, in the sense that fji(A ) > 0 for all
 e > 0. Then the following boundfor Rn, the Cesdro-average risk of the Bayes estimator pn, holds
 for all > 0:

 The proof of this lemma can be found in Clarke & Barron (1990). Intuitively, it follows from
 the fact that, for any 9,{n~l log(po0/pe)} converges to L(po0, po) almost surely under po0, which
 allows the following approximation:

 This lemma can be used to characterize the Kullback-Leibler risk in terms of ii(A ), the
 amount of prior mass in a neighbourhood of 9q. The horseshoe prior's pole at zero produces a
 super-efficient rate of convergence when 0o = 0.

 Theorem 4. Suppose the true sampling model po0 is yj ~ N(6q, a2). Then:

 (1) For pn under the horseshoe prior, the optimal rate of convergence of Rn when 0o = 0 is
 Rn ? 0{?_1(log? ? b loglogw)}, where b is a constant. When 9q =t= 0, the optimal rate is
 Rn = 0{n~x\ogn).

 (2) Suppose p{9) is any other density that is continuous, bounded above, and strictly positive
 on a neighbourhood of the true value 9$. For pn under p{9), the optimal rate ofconvergence
 of Rn, regardless of 9^, is Rn = 0(n~l logn).

 Proof. See the Appendix.

 Two further remarks help to set this theorem in context. First, the horseshoe estimator's super
 efficient rate occurs only on a set of prior measure zero. But this set is of special importance in
 sparse situations, since the hypothesis that some components of 9 are zero has been explicitly
 flagged as an interesting possibility. Yet if 9o =N 0, the horseshoe yields no worse a rate than any
 other common prior.

 Second, this super-efficient rate of Kullback-Leibler convergence cannot be shared by any
 prior whose density function is bounded at the origin. Of course, priors with bounded density
 functions may exhibit large differences in the constant that multiplies the basic 0(n~l log n) rate,

 which can lead to substantial differences in performance on real problems.

 We now describe a simple thresholding rule for the horseshoe estimator that can yield accurate
 decisions about whether each 0,- is signal or noise. The decision rule, though informal, appears
 nearly indistinguishable from the formal Bayes rule under the discrete-mixture model and a
 symmetric loss function where false negatives and false positives are penalized equally. This
 suggests an interesting correspondence between the two procedures.

 Under the discrete mixture-model described in ? 1, the Bayes estimator for each component

 is the posterior mean 0,- = WiEg(9i \yi\ where tu,- is the posterior inclusion probability for 0Z,
 and g is the distribution of the nonzero means. Accordingly, Wi serves a dual role. First, it is
 a posterior probability giving rise to a formal Bayes decision rule about whether 0/ should be

 n

 Rn=n lJ2L(pe0, pj)^ - n Xn{A ).
 7=1

 n EP9o{log(peJp?)}^n log exp{nL(peo, po)}fj,(d9).

 3-4. Thresholding
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 Table 2. Posterior probabilities Wi under the discrete-mixture model, expressed as percentages,
 for 10 fixed signals of varying strength. These same ten signals are tested in nine datasets where
 there are increasingly many standard-normal noise observations, with numbers given in the
 left-most column. The bracketed numbers are the corresponding shrinkage weights 1 ? under

 the horseshoe model, also expressed as percentages.
 Signal strength

 Noise 0-5 1 0 1 5 2 0 2 5 3 0 3 5 4-0 4 5 5 0 FP
 25 18(15) 20(17) 23 (18) 27(21) 31 (24) 35 (28) 39(32) 44(37) 49(42) 54(47) 0(0)
 50 8(11) 10(12) 12(14) 15 (17) 19(20) 25 (26) 32(33) 41 (40) 50(49) 60(57) 0(0)
 100 8(14) 10(17) 15(22) 27(31) 46(46) 69(62) 86(75) 95(85) 99(89) 100(92) 0(0)
 200 5(11) 6(12) 11 (17) 21 (26) 42(43) 70(63) 90(79) 98(87) 100(91) 100(93) 2(1)
 500 1 (4) 2(4) 3 (6) 6(10) 14(18) 35(36) 67(61) 91 (80) 98(89) 100(92) 1 (1)
 1000 0(1) 1 (1) 1 (2) 2(3) 3 (5) 9(10) 24(25) 55 (52) 85 (76) 97(88) 0(0)
 2000 0(1) 0(1) 1 (1) 1 (2) 3(4) 8(9) 24(24) 59(54) 89(80) 98(90) 0(0)
 5000 0(0) 0(0) 0(0) 0(1) 1 (1) 3 (3) 9(10) 32(33) 72(67) 95(86) 0(0)
 10000 0(0) 0(0) 0(0) 0(1) 1 (1) 3 (3) 9(10) 32(30) 74(68) 96(88) 3 (2)
 FP, the number of false positive declarations, reflecting cases where the posterior probability u>i or shrinkage weight
 1 ? Ki is larger than 0-5 for a noise observation.

 classified as signal or noise. Second, it measures how aggressively yi should be shrunk to zero
 when estimating 0/ under squared-error loss.

 For appropriately heavy-tailed g, the posterior mean under the discrete-mixture rule is ap
 proximately wiyt. Compare this form to the horseshoe estimator: 0; = (1 ? where is
 the posterior mean of /q . Clearly, the shrinkage weight 1 ? ki plays the same role as wt in the
 discrete-mixture model. It is therefore natural to ask whether these weights, even though they
 cannot be interpreted as posterior probabilities, can nonetheless be used to construct an informal
 decision rule for classifying each 6t as signal or noise.

 By analogy with the decision rule one would apply to the discrete-mixture w;S under a sym
 metric 0-1 loss function, one possible threshold based on the horseshoe prior is to call 0; a signal
 if (1 ? ki) ^ 0-5, and to call it noise otherwise. To test this thresholding rule, we fixed ten true
 signals at the half-integers between 0-5 and 5-0, and repeatedly applied the horseshoe threshold
 ing rule to nine simulated datasets having an increasingly large number of standard-normal noise
 observations. We compared the horseshoe shrinkage weights 1 ? ki to the posterior inclusion
 probabilities from the discrete-mixture rule using Strawderman-Berger priors. Results are shown
 in Table 2.

 These simulations demonstrate the surprising fact that, even though the horseshoe wz s are
 not posterior probabilities, and even though the horseshoe model itself makes no allowance for
 two different groups, this simple thresholding rule nonetheless displays very strong control over
 the number of false-positive classifications. Indeed, in all situations we have investigated, there
 is a striking correspondence between the shrinkage weights from the horseshoe model and the
 true posterior probabilities from the discrete-mixture model. This can be seen from Table 2, in

 which the horseshoe Wi are quite close to the corresponding posterior probabilities under the
 discrete-mixture prior across a wide variety of sparsity configurations.

 Though the weights (1 ? ki) under the double-exponential prior are not shown, they do not
 behave at all like the Wi from the discrete mixture model. These results, and many more simula
 tions along these lines, can be found in the third author's unpublished doctoral thesis, available
 from Duke University.
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 Table 3. Realized squared^
 w = 005

 ? = 2 ? = 10
 MLE 250 248

 Double-exponential 171 127
 NEG (c = 4 0, d = 3) 121 121
 NEG (c = 2-0, d = 3) 165 164
 NEG(c = 10, d = 3) 199 197
 NEG (c = 0-5, d = 3) 219 217
 Empirical-Bayes 32 38
 NEG (best fixed c, d) 33 39
 Horseshoe 32 33

 w, the degree of sparsity; ?, the tail weight of the true t$

 normal-exponential-gamma model.

 loss under different estimators
 w = 0-2 w = 0-5

 ?=2 ? = 10 ?=2 ? = 10
 249 251 252 251

 237 217 247 235
 134 134 186 183

 170 171 187 187
 201 202 208 208

 220 222 227 225
 111 129 417 442

 96 98 179 178
 94 95 178 244

 density; MLE, maximum likelihood estimator; NEG,

 4. Examples
 4 1. Simulated data

 Table 3 shows the results of a simulation study to assess the risk properties of the horseshoe
 prior. In this study, we benchmarked our model's performance against four alternatives: the
 maximum-likelihood estimator, the double-exponential model, the normal-exponential-gamma
 model and the empirical-Bayes model due to Johnstone & Silverman (2004). This last approach
 uses a mixture of a point mass at zero with a double-exponential prior to differentiate signals
 from noise, and estimates 0,- using the posterior median. This last comparison is an especially
 important benchmark, as it is widely recognized as the gold standard in handling sparsity.
 Our study involved simulating from the following sparse model:

 G>/10t) ~ N(0i9 1), 0t - w *f (0, r) + (1 - w)S0,

 where So is a point mass at zero, and where ^(0, r) is a Student-^ density centred at zero, with ?
 degrees of freedom and scale parameter r.
 In all our simulations, we set r = 3, and investigated six configurations of tail weight and

 sparsity by choosing ? e {2, 10} and w e {0-05, 0-2, 0-5}. These combinations span a wide range
 of behaviours, from very sparse signals with very heavy tails, to mildly sparse signals with much
 lighter tails. For each combination we simulated 500 datasets.
 When fitting the scale-mixture priors, we used Jeffreys' prior for the variance, p(cr2) oc 1 /a2.
 In the empirical-Bayes approach, a, r and w were estimated by marginal maximum likelihood.
 The nonrial-exponential-gamma prior requires specifying two hyperparameters: c for tail

 weight and d2 for scale. To study the effect of these choices, we computed posterior means using
 a grid of values spanning 0-1 ^ d < 10 and 1 /2 ^ c ^ 8. We report results for five of these choices
 in Table 3. Four of these choices involve fixing the scale hyperparameter d at 3 to reflect the
 known, true scale of the coefficients. The fifth result reported is the single best performer for
 each configuration of ? and w, which could only be judged after the fact.
 Our results show the double-exponential prior systematically losing out to the horseshoe. We

 attribute this to the two features mentioned previously: that exponential tails are insufficiently
 heavy to estimate large signals when noise is present, and that a pole at zero aids in reducing the
 substantial amount of noise in these problems.
 The horseshoe prior also systematically beats the default normal-exponential-gamma priors,

 and has a slight edge over the best fixed choice of c and d. Given the difficulty of eliciting
 these hyperparameters, we judge this to be a major advantage of the horseshoe prior as a default
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 choice. Empirical-Bayes thresholding can do quite poorly in the signal-rich configurations, when
 w = 0-5. The horseshoe prior was beaten only in the situation when the signal was neither sparse
 nor heavy-tailed, with w = 0-5 and ? = 10. This is unsurprising, since the normal-exponential
 gamma priors yield admissible estimators that seem especially well suited to signals fitting this
 description.

 The above results strongly support our claims that the horseshoe prior is indeed a good default
 choice for the estimation of sparse vectors.

 4-2. Vanguard mutual-fund data

 We now describe the use of the horseshoe prior in linear regression, with an example intended
 to show how the horseshoe can provide a regularized estimate of a large covariance matrix whose
 inverse may be sparse. As a test problem, we use the data on Vanguard mutual funds from
 Carvalho & Scott (2009), which contains n = 86 weekly returns for p = 59 funds.

 The connection with regression is as follows. Suppose we observe a matrix of samples YT =
 (yl - - yn), with each /?-dimensional vector yl drawn from a zero-mean normal distribution with
 unknown covariance matrix E. When p is large relative to ?, traditional estimators of E are
 known to perform poorly, and some form of regularization is necessary to reduce their variance.
 We choose to model the Cholesky decomposition of E ~1 and estimate the ensemble of regression

 models in the implied triangular system [Yj-\ Y\,..., F/-i}y=2,.where Yj is the y'th column
 of the matrix of samples. Horseshoe priors were assumed for the vector of coefficients in each
 of these regressions, and posterior means were computed using the Markov chain Monte Carlo
 method.

 The intuition here is that some of these conditional regressions may be sparse, reflecting a joint
 distribution with a conditional-independence, or Markov, structure. Such joint distributions are
 often called Gaussian graphical models.

 We will compare the out-of-sample predictive performance of the horseshoe model against four
 different approaches for estimating E: the maximum-likelihood estimate E = YTY; the AND
 and the OR versions of the lasso, described by Meinshausen & Buhlmann (2006); and Bayesian

 model-averaging over different Gaussian graphical models, using fractional Bayes factors for
 computing marginal likelihoods and feature-inclusion stochastic search for model determination
 (Scott & Carvalho, 2008).

 To assess out-of-sample performance, we used each of the above procedures to estimate E after
 observing the first 60 samples. We then attempted to impute random subsets of missing values
 among the remaining 26 samples, using the nonmissing values as regressors. The full details of
 this exercise are in Carvalho & Scott (2009). Both the data and relevant Matlab code are available
 from the authors upon request.

 The results are in Table 4, and are expressed in terms of the error relative to the Bayesian
 model-averaging solution. It is clear that the horseshoe performs very closely to this benchmark,
 which is much more computationally intensive than any procedure based on local shrinkage rules.
 At the same time, the horseshoe significantly outperforms the classical lasso solution, regardless
 of which version is used.

 5. Final remarks

 The goal of this paper has not been to show that the horseshoe is a panacea for sparse problems,
 rather merely to show that it is a good default option. It is both surprising and interesting that
 its answers coincide so closely with the answers from the gold standard of a Bayesian discrete

 mixture model, both on simulated and real data.
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 Table A. Covariance-estimation example. The table entries are risk ratios versus Bayesian model
 averaging in the out-of sample prediction exercise

 MLE Lasso AND Lasso OR Horseshoe BMA

 Risk ratio (SE) 10-63 1-25 2 12 1 07 1 00
 Risk ratio (AE) 3-51 1-22 1 47 1 04 1 00
 SE, squared-error loss; AE, absolute-error loss; MLE, maximum likelihood estimator; BMA, Bayesian model
 averaging.

 Indeed, these results show an interesting duality between the two procedures. While the discrete

 mixture arrives at a good shrinkage rule by way of a procedure for sparsity, the horseshoe estimator
 goes in the opposite direction, arriving at a good procedure for sparsity by way of a shrinkage
 rule. Its combination of strong global shrinkage through r, along with robust local adaptation to
 signals through the A.,-s, is unmatched by other common scale-mixture priors.

 Finally, a word on sparsity. Many similar procedures, most notably the lasso, estimate 0 using
 the posterior mode. This can cause some components of the estimated vector to be identically
 zero. Nonetheless, we prefer the posterior mean, and have chosen to study this rather than the
 mode. For one thing, the posterior mean is the Bayes estimator under quadratic loss, while the
 mode is the Bayes estimator under so-called 0-1 loss. In situations where estimation and prediction
 are the goals, the mean therefore embodies a loss function that is more likely to be closer to the
 true loss function, even though the mean itself is not sparse. Moreover, the insight of Bayesian

 model averaging is that different configurations of zeros in 6 can always be treated as a nuisance
 parameter to be averaged over, and that averaging over models typically produces better results
 than selecting a single model. This marginalization over different sparsity patterns will produce
 an estimator for 6 like ours, in that it will contain no entries that are exactly zero.

 Under normal scale-mixture priors, using the mode is akin to selecting a model, while using
 the mean is akin to averaging over models, or in this context, averaging over the two peaks at
 0 and 1 in the posterior distribution for each local shrinkage parameter k\ . While the mean will
 lack zeros, the example of Bayesian model averaging demonstrates quite clearly that estimators
 of sparse objects need not be sparse themselves in order to yield excellent performance.
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 Appendix

 Proof of Theorem \. Clearly,

 P{6) = L p^M"^J*T + *5)<*
 Lett* = 1/A.2. Then

 f?? 1 / 02u\ ,
 m = Ki TT^exp(-TjdM'
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 or equivalently, for z = 1 + w:

 ^) = ^2/2/^exp(-^)dz

 where E\(-) is the exponential integral function. This function satisfies tight upper and lower bounds:

 eXp("? log (l + -)< Ex{t) < exp(-01og (1 + 1 2 ?v t) V t
 for all t > 0, which proves Part (b). Part (a) then follows from the lower bound in Equation (1), which
 approaches oo as 0 -? 0.

 Proof of Theorem 2. First, m*(y) exists for any proper prior, since it exists for p(X2) = 1, which leads
 to the harmonic estimator in the case of a normal likelihood. This is sufficient to allow the interchange of
 integration and differentiation.
 We make use of the following identities:

 ?p(y _ 0) = _?p(y _ e)j X2?{N(G I 0, A.2)} = -9N(0 10, A2). ay ad av
 Clearly,

 E(0 | y) = -\- fe p(y-0) N(6 | 0, X2)n(X) d0 dX. m(y) J *(v)
 Using integration by parts and the above identities, we obtain

 E(0\y)=-^- f ^-p(y-e)N(0\0,X2)p\X)d0dX, (y) J dv
 from which the result follows directly.

 Proof of Theorem 3. Clearly,

 1 f?? ( y2/2 \ 1 1 J
 mM=(2^WJ0 eXP("TT^J (l+rV)i/2i+/

 Make a change of variables to z = 1/(1 + x2X2). Then

 m(y) = (dy^ 11 exp(-^2/2)(1 - zr'/2 {h + 0 - *

 By a similar transformation, it is easy to show that

 d < \ 4y * (x , 5 ^2 , 1
 Hence

 d 1 , , 2v (1/2, 1,3/2, vf2/2, 1 - 1/r2) ? \ogm(y) =--r-~-(A2)
 dv 3 w 34)! (1/2, 1,3/2,^/2,1 -1/r2) V 7

 Next, we use the following identity from Gordy (1998):
 00

 Ql(pt,p,y,x,y) = exp(x)Y] ^^-^-iFiCk - a, y + n, -x), (A3)
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 for0^j><l,0<a<y, where \F\(a, b, x) is Kummer's function of the first kind, and (a)n is the rising
 factorial. Also, if y < 0 and 0 < a < y, then

 <Di(cx, p, y, x, y) = exp(x)(l - y)~^x (^y - a, /}, y, -x, j^Tjj
 The final identities necessary are from Chapter 4 of Slater (1960). For a real number x,

 I
 + 0(jc-1)}, x < 0.

 rme*xa-b{l +
 lFl(a,b,x)={r{'a)

 m^^a-bn _L(9(x-i)}? x >0>

 Hence regardless of the sign of 1 ? 1/r2, expanding (A2) using these identities yields a polynomial
 of order y2 or greater left in the denominator, from which the redescending score function follows. The
 bound \y ? E(0 | y)\ ^ bT then follows from the continuity of (Al), which evaluates to 0 at y = 0.

 Proof of Theorem 4. The optimal rate of convergence, following Clarke & Barron (1990), comes from
 choosing n = 1 /n, which reflects the ideal case of independent samples y\,..., yn.

 First, for any prior p(G) satisfying the stated regularity conditions in Part 2 of the theorem,

 li(A )= [ p(0)d0^ p(6)de = 0(n-l/1),
 since the density is bounded above. Applying Lemma 1, the optimal rate for Part 2 is

 ^A-ilog(C?^) = o(^Y n n / \ n J
 Under the horseshoe prior, this same bound holds when Go 4= 0, since the horseshoe density function is

 bounded by a constant on a sufficiently small neighbourhood near Go. When Go = 0, we can use the bound
 on the density given previously, 2(2jt3y/2p(G) ^ log(l + 4G~2). Ignoring constant factors not depending
 upon ?, this leads to

 H(A )> ^\og(l + ^) dG.
 Letw = l/G2. This yields

 r
 Upon integrating by parts, we then have

 G2

 V(A )^ I -3-du.
 4/6 i/2

 li{A ) > 1/2 log fl + -)+2f -r-^-du. \ * J Ja/ w2(l + u)
 This last integral is easily computed and of order 61/2. Setting e = l/n and applying Lemma 1 then gives
 the optimal rate bound as Rn = 0{n~l (log n ? b log log ?)}, proving Part 1.
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