STA5172 Random Variables in R

Course Instructor: Dr. Debdeep Pati

January 24, 2013

1 Counting in R

1. In R, combinations can be calculated using the choose () function. The choose function calculates the combinatorial of the parameters it is given. Choose (n, r), with parameter n and r, calculates $\binom{n}{r}$. For example:
```
> #calculate number of combinations of
> #choosing 3 nucleotides from 4
> choose (4,3)
[1] 4
```

2. Gamma functions can be used together to perform any permutation or combinatorial counting procedure. For example, to calculate the numbers of unique 8 -mer peptide arrangements taken from the 20 amino acids (order is important here so it is a permutation), simply use the formulae
```
> gamma(21)/gamma(13)
```

[1] 5079110400

2 Random variables

For example, consider the RNA sequence: AUGCUUCGAAUGCUGUAUGAUGUC In this sequence there are 5 As, 9 Us, 6 Gs , and 4 Cs with a total of 24 residues. To model this sequence, the random variable X can be used where X represents the nucleotide residues. Because there are advantages to working with quantitative information, when the data is described qualitatively a random variable is used to assign a number to the non-numerical outcomes. For this experiment lets assign the random variable values representing A as $0, \mathrm{C}$ as $1, \mathrm{G}$ as 2 and U as 3 . A small letter represents the outcome of the random variable, so little x can be used here. So, in probability terms, the model represented using the random variable X for this experiment is given in Table 6-1.

In R a simple histogram can be used to model the probability distribution function for this example.

```
> X<-c(0,1,2,3)
> Prob<-c(0.208,0.167,0.25,0.375)
> N<-c (A, C, G, U)
> barplot(Prob,names=N,ylab="Probability", main="RNA Residue Analysis")
```

To model cdf

```
    > CumProb<-c(0.208, 0.375, 0.625, 1)
> plot(X,CumProb,xlim=range(0,1,2,3,4), main="RNA Residue Analysis CDF",
xlab="X=", type="S")
```


3 Random variables

- Functions are provided to evaluate the cumulative distribution function $P(X \leq x)$, the probability density function and the quantile function (given q, the smallest x such that $P(X \leq x)>q)$, and to simulate from the distribution.

Distribution	R name	additional arguments
beta	beta	shape1, shape2, ncp
binomial	binom	size, prob
Cauchy	cauchy	location, scale
chi-squared	chisq	df, ncp
exponential	exp	rate
F	f	df1, df2, ncp
gamma	gamma	shape, scale
geometric	geom	prob
hypergeometric hyper	m,n,k	
log-normal	lnorm	meanlog, sdlog
logistic	logis	location, scale
neg. binomial	nbinom	size, prob
normal	norm	mean, sd
Poisson	pois	lambda
Students t	t	df, ncp
uniform	unif	min, max
Weibull	weibull	shape, scale
Wilcoxon	wilcox	m, n

- Plot the pmf and cdf of Binomial random variables

```
> x<-0:10
> y<-dbinom(0:10,10,0.16)
> data.frame("Prob"=y,row.names=x)
> plot(0:10,dbinom(0:10,10,0.16),,type='h',xlab="",ylab="Probability",
sub="Number of kids with blue eyes")
> par(mfrow=c(2,2))
> plot(0:10,dbinom(0:10,10,0.05),type='h',xlab="",ylab="Prob", sub="p=0.05")
> plot(0:10,dbinom(0:10,10,0.2),type='h',xlab="",ylab="Prob", sub="p=0.2")
> plot(0:10,dbinom(0:10,10,0.5),type='h',xlab="",ylab="Prob", sub="p=0.5")
> plot(0:10,dbinom(0:10,10,0.8),type='h',xlab="",ylab="Prob", sub="p=0.8")
> par(mfrow=c(2,2))
> plot(0:10,pbinom(0:10,10,0.05),type='s',xlab="",ylab="Prob", sub="p=0.05")
> plot(0:10,pbinom(0:10,10,0.2),type='s',xlab="",ylab="Prob",sub="p=0.2")
```

> plot ($0: 10$, pbinom ($0: 10,10,0.5$), type='s', xlab="", ylab="Prob", sub="p=0.5")
> plot(0:10,pbinom(0:10,10,0.8),type='s',xlab="",ylab="Prob", sub="p=0.8")

