STA 4442/5440 Midterm 1 Review Sheet

This guide contains a list of some important concepts/formulas and corresponding textbook problems (bold, in parentheses).
This guide is NOT intended to be used as your only study resource; rather, it should help you navigate your notes, textbook, and homework assignments as you study for your first exam.

Chapter 1: Counting

Chapter 2 \& 3: Axioms of Probability, Conditional probability and Independence

- Terminology: experiment, sample space S, elementary outcome e, event (E)
- $P(A)$: probability of an event A

1. $0 \leq P(A) \leq 1$
2. $P(S)=1$
3. $P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$ for mutually exclusive events A_{i}.

- Methods of assigning probability

1. Uniform model: all outcomes equally likely,

$$
P(A)=\frac{\text { number of outcomes in } A}{\text { number of outcomes in } S}
$$

2. Alternative (long-run relative frequency) model: perform experiment many times, set

$$
P(A)=\text { rel. freq. of } A \text { in } N \text { trials }=\frac{\text { number of times } A \text { occurs in } N \text { trials }}{N}
$$

- Event relations: complement $\left(A^{c}\right)$, union $(A \cup B)$, intersection $(A \cap B$ or $A \cap B)$; Venn diagram
- Law of complement: $P(A)=1-P\left(A^{c}\right)$
- Addition law: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Incompatible/mutually exclusive events: $P(A \cap B)=0$
- Finding probabilities by using a frequency table
- Conditional probability of A given B:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Equivalent form: multiplication law $P(A \cap B)=P(B) P(A \mid B)$

- Law of Total probability: $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)$.
- Bayes Theorem: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}$
- Independence - 3 ways to check:

1. $P(A \cap B)=P(A) P(B)$
2. $P(A \mid B)=P(A)$
3. $P(B \mid A)=P(B)$
4. $P(B \mid A)=P\left(B \mid A^{c}\right)$

Chapter 4: Random variables

- A random variable is a real valued function defined on the sample space $S, X: S \rightarrow \Re$. A discrete random variable can take countably many values x_{1}, x_{2}, \ldots.
- For a discrete random variable X, the probability mass function (p.m.f.) is defined as $p(x)=P(X=x)$ and the cumulative distribution function (c.d.f) is defined as $F(x)=P(X \leq x)$.
- For a discrete random variable $X, E(X)=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right), E(g(X))=\sum_{i=1}^{\infty} g\left(x_{i}\right) p\left(x_{i}\right)$ and $V(X)=$ $E(X-E(X))^{2}=E\left(X^{2}\right)-(E(X))^{2}$.

