1 Martingales

(Ω, \mathcal{B}, P) is a probability space.
Definition 1. (Filtration) A filtration $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is a collection of increasing sub- σ fields such that for $m \leq n$, we have $\mathcal{F}_{m} \subset \mathcal{F}_{n}$.

Definition 2. (Adaptation) A sequence of random variables $X=\left\{X_{n}\right\}$ is adapted if for all n, X_{n} is \mathcal{F}_{n} measurable.

Definition 3. (Martingales) An adapted pair $\left(X_{n}, \mathcal{F}_{n}\right)$ is called sub / super / martingale if

1. $X_{n} \in L_{1}(P)$ for all n
2. $E X_{n+1} \mid \mathcal{F}_{n} \geq / \leq /=X_{n}$ a.e. $[P]$.

Remark 1. a. X_{n} is n.n.g, L_{2} sub-martingale, then X_{n}^{2} is L_{1} sub-martingale.
b. X_{n} martingale, ϕ is a convex function. Then if $\phi\left(X_{n}\right)$ is L_{1}, then $\phi\left(X_{n}\right)$ is a submartingale.
c. X_{n} is a sub-martingale, ϕ is convex, non-decreasing (say $|x|$), then $\phi\left(X_{n}\right)$ is a submartingale.

Example:

1. $\left\{\xi_{n}\right\}$ i.i.d mean $0, S_{n}=\sum_{i=1}^{n} \xi_{i}, \mathcal{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)=\sigma\left(S_{0}, \ldots, S_{n}\right)$, then $\left(S_{n}, \mathcal{F}_{n}\right)$ is a martingale. (For a sequence of random variables $\left\{X_{n}\right\}, \mathcal{F}_{n}=\sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ is called a natural filtration.)

Theorem 1. $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale. $\phi: \mathbb{R} \mapsto \mathbb{R}$ is convex and $\phi\left(X_{n}\right) \in L_{1}$ for all n. Then $\left(\phi\left(X_{n}\right), \mathcal{F}_{n}\right)$ is a sub-martingale.

Proof. (Use Jensen's Inequality).

Properties:

1. $\left\{X_{n}\right\}$ is a martingale. Then $\left|X_{n}\right|$ is a sub-martingale.
2. $\left\{X_{n}\right\}$ is a L_{p}-martingale for $p>1$. Then $\left\{\left|X_{n}\right|^{p}\right\}$ is a sub-martingale.
3. $\left\{X_{n}\right\}$ is a sub-martingale. Then $\left\{X_{n}^{+}\right\}$is a sub-martingale.
4. $\left\{X_{n}\right\}$ is a non-negative L_{p} submartingale, $p>1$. Then $\left\{X_{n}^{p}\right\}$ is a sub-martingale.

Example:

1. Suppose $\left(X_{n}, \mathcal{F}_{n}\right)$ is an adapted L_{1} sequence and $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=a_{n} X_{n}$. How to convert it to a martingale?
Let $Z_{n}=c_{n} X_{n}$ be a martingale. Then $E\left(Z_{n+1} \mid \mathcal{F}_{n}\right)=c_{n+1} a_{n} X_{n}$ which should be equal to $c_{n} X_{n}$. Hence we should have $c_{n+1} / c_{n}=a_{n}^{-1}$ for all n. Taking $c_{0}=1$, we have $c_{n}=\prod_{i=1}^{n} a_{i}^{-1}$. Hence $X_{n} / \prod_{i=1}^{n} a_{i}$ is a martingale. (Discussed in class. The case of $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=a_{n} X_{n}+b_{n}$ left as an exercise).
2. Suppose $([0,1), \mathcal{B}, P)$ be a probability space and Q be another probability measure such that $Q \ll P$. Let

$$
\begin{array}{r}
\mathcal{F}_{0}=\{\phi,[0,1)\} \\
\mathcal{F}_{n}=\sigma\left(\left\{\left[r 2^{-n},(r+1) 2^{-n}\right): 0 \leq r \leq 2^{n}-1\right\}\right)
\end{array}
$$

called a dyadic filtration. Clearly $\sigma\left(\cup \mathcal{F}_{n}\right)=\mathcal{B}$ and $X_{n}(\omega)=Q(A) / P(A)$ where A is an \mathcal{F}_{n}-atom containing ω. Clearly, X_{n} is \mathcal{F}_{n}-measurable since X_{n} is constant on \mathcal{F}_{n} atoms. It is easy to check that $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale. (Discussed in class).

1.1 Doob's maximal inequalities

Theorem 2. Let $\left(X_{j}, \mathcal{F}_{j}\right)_{0 \leq j \leq n}$ is a sub-martingale and $\lambda \in \mathbb{R}$. Then

1. $\lambda P\left[\max _{0 \leq j \leq n} X_{j}>\lambda\right] \leq \int_{\max X_{j}>\lambda} X_{n} d P \leq E\left|X_{n}\right|$.
2. $\lambda P\left[\min _{0 \leq j \leq n} X_{j} \geq \lambda\right] \leq \int_{\min X_{j} \leq \lambda} X_{n} d P-E\left(X_{n}-X_{0}\right) \geq E\left(X_{0}\right)-E\left|X_{n}\right|$.

Proof. Proof of a.) Let

$$
\begin{array}{r}
A_{0}=\left[X_{0}>\lambda\right] \in \mathcal{F}_{0} \\
A_{1}=\left[X_{0} \leq \lambda, X_{1}>\lambda\right] \in \mathcal{F}_{1} \\
\vdots \\
A_{n}=\left[X_{0} \leq \lambda, \ldots, X_{n-1} \leq \lambda, X_{n}>\lambda\right] \in \mathcal{F}_{n} .
\end{array}
$$

Then $\left[\max X_{j}>\lambda\right]=\cup_{j=0}^{n} A_{j}$ and
$\lambda P\left[\max X_{j}>\lambda\right]=\sum_{j=0}^{n} \lambda P\left(A_{j}\right) \leq \sum_{j=0}^{n} \int_{A_{j}} \lambda d P \leq \sum_{j=0}^{n} \int_{A_{j}} X_{j} d P=\sum_{j=0}^{n} \int_{A_{j}} X_{n} d P=\int_{\max X_{j}>\lambda} X_{n} d P$,
where the penultimate inequality follows from the fact that since $E\left(X_{n} \mid \mathcal{F}_{j}\right) \geq X_{j} \equiv$ $\int_{A} E\left(X_{n} \mid \mathcal{F}_{j}\right) d P \geq \int_{A} X_{j} d P$ for all $A \in \mathcal{F}_{j}$. Hence $\int_{A} X_{n} d P \geq \int_{A} X_{j} d P$ for all $A \in \mathcal{F}_{j}$. Proof of b.)

$$
\begin{array}{r}
A_{0}=\left[X_{0} \leq \lambda\right] \in \mathcal{F}_{0} \\
A_{1}=\left[X_{0}>\lambda, X_{1} \leq \lambda\right] \in \mathcal{F}_{1} \\
\vdots \\
A_{n}=\left[X_{0}>\lambda, \ldots, X_{n-1}>\lambda, X_{n} \leq \lambda\right] \in \mathcal{F}_{n} \\
A_{n+1}=\left[X_{0}>\lambda, \ldots, X_{n}>\lambda\right] \in \mathcal{F}_{n} .
\end{array}
$$

Then

$$
\begin{aligned}
E X_{0}=\int X_{0} d P & =\sum_{j=0}^{n+1} \int_{A_{j}} X_{0} d P \\
& =\int_{A_{0}} X_{0} d P+\int_{A_{0}^{c}} X_{0} d P \\
& \leq \lambda P\left(A_{0}\right)+\int_{A_{0}^{c}} X_{1} d P \\
& \leq \lambda P\left(A_{0}\right)+\int_{A_{1}} X_{1} d P+\int_{\left\{A_{0} \cup A_{1}\right\}^{c}} X_{1} d P \\
& \leq \lambda P\left(A_{0} \cup A_{1}\right)+\int_{\left\{A_{0} \cup A_{1}\right\}^{c}} X_{2} d P \\
& \vdots \\
& \leq \lambda P\left(\min X_{j} \leq \lambda\right)+\int_{A_{n+1}} X_{n} d P \\
& =\lambda P\left(\min X_{j} \leq \lambda\right)+\int_{n} d P-\int_{A_{n+1}^{c}} X_{n} d P .
\end{aligned}
$$

This implies $\lambda P\left[\min _{0 \leq j \leq n} X_{j} \leq \lambda\right] \geq \int_{\min X_{j} \leq \lambda} X_{n} d P-E\left(X_{n}-X_{0}\right) \geq E\left(X_{0}\right)-E\left|X_{n}\right|$.

2 Convergence of Martingales

Goal: What conditions do we need so that an L_{1} bounded martingale converges in L_{1} ?

Definition 4. A subset $S \subset L_{1}$ is called uniformly integrable if given $\epsilon>0$, there exists $c>0$ such that $\sup _{f \in S} \int_{|f|>c}|f| d P<\epsilon$.

Definition 5. A subset $S \subset L_{1}$ is called L_{1} bounded if $\sup _{f \in S} E|f|<\infty$.
Examples:

1. Any finite L_{1}-subset is uniformly integrable.
2. If S is dominated by an L_{1} function, then S is uniformly integrable.
3. Any uniformly integrable L_{1} subset is L_{1} bounded. (Converse is not true in general: construct an L_{1} bounded subset which is not uniformly integrable (Discussed in class).

Theorem 3. $S \subset L_{1}$ is uniformly integrable subset iff:

1. S is L_{1} bounded.
2. For all $\epsilon>0$, there exists $\delta>0$ such that $P(A)<\delta$, then $\sup _{S} \int_{A}|f|<\epsilon$.

Proof. if part: Suppose $\sup _{f \in S} E|f|=M<\infty$. Fix $\epsilon>0$. Choose δ from 2. Observe that $\sup _{f \in S} P(|f|>c) \leq \sup _{f \in S} E|f| / c \leq M / c$. Choose $c=M / \delta$ with $A=\{|f|>c\}$ to get the result. only if part: Fix $\epsilon>0$. Choose c such that $\sup _{f \in S} \int_{|f|>c}|f|<\epsilon / 2$. Then

$$
\int_{A}|f| d P \leq \int_{A \cap|f| \leq c}|f|+\int_{|f|>c}|f|<c P(A)+\epsilon / 2 .
$$

Choose $\delta=\epsilon /(2 c)$ to get the result.
Theorem 4. $f \in L_{1}$. Let $S=\left\{E^{\mathcal{C}} f:=E(f \mid \mathcal{C}), \quad \mathcal{C}\right.$ a sub- σ-field of $\left.\mathcal{F}\right\}$. Then S is uniformly integrable.

Proof. Observe that

$$
\int_{\left|E^{\mathcal{C}} f\right|>c}\left|E^{\mathcal{C}} f\right| \leq \int_{\left|E^{\mathcal{C}} f\right|>c} E^{\mathcal{C}}|f|=\int_{\left|E^{\mathcal{C}} f\right|>c}|f| .
$$

So 1 . is satisfied. To verify 2 ., note that

$$
\sup _{\mathcal{C}} P\left(\left|E^{\mathcal{C}} f\right|>c\right) \leq \sup _{\mathcal{C}} \frac{E|f|}{c}=\frac{E|f|}{c} .
$$

Choose c large enough such that $\sup _{\mathcal{C}} P\left(\left|E^{\mathcal{C}} f\right|>c\right)$ is sufficiently small to have $\int_{\mid E^{\mathcal{C}}} f|>c| f \mid<$ $\epsilon / 2$. Observe that for any set A with $P(A)<\epsilon /(2 c)$,

$$
\int_{A}\left|E^{\mathcal{C}} f\right| \leq \int_{A \cap\left|E^{\mathcal{C}} f\right| \leq c}\left|E^{\mathcal{C}} f\right|+\int_{\left|E^{\mathcal{C}} f\right|>c}|f|<c P(A)+\epsilon / 2<\epsilon .
$$

Theorem 5. $f_{n} \in L_{1}, f_{n} \xrightarrow{\text { a.s. }} f$. Then $\left\{f_{n}\right\}$ is uniformly integrable iff $f \in L_{1}$ and $f_{n} \xrightarrow{L_{1}} f$.
Proof. only if part: Fix $\epsilon>0$. By Fatou's Lemma and L_{1} boundedness of $\left\{f_{n}\right\}, f \in L_{1}$. Next we show that $f_{n} \xrightarrow{L_{1}} f$. To that end, observe that

$$
E\left|f_{n}-f\right|=E\left|f_{n} 1_{\left|f_{n}\right| \leq c}-f 1_{|f| \leq c}\right|+E\left|f_{n} 1_{\left|f_{n}\right|>c}\right|+E\left|f 1_{|f|>c}\right| .
$$

Choose c such that

$$
P(|f|=c)=0, E\left|f_{n} 1_{\left|f_{n}\right|>c}\right|<\epsilon / 3, E\left|f 1_{|f|>c}\right|<\epsilon / 2
$$

for all n. Since $\left\{\omega:\left|f_{n}(\omega)\right|>c,\left|f_{n}(\omega)\right| \rightarrow|f(\omega)|=c\right\} \subset\{|f|=c\}$, we have

$$
f_{n} 1_{\left|f_{n}\right| \leq c}-f 1_{|f| \leq c} \rightarrow 0
$$

Choose N large enough such that for all $n \geq N, E\left|f_{n} 1_{\left|f_{n}\right| \leq c}-f 1_{|f| \leq c}\right|<\epsilon / 3$ by DCT. almost surely. Hence for large enough $n, E\left|f_{n}-f\right| \leq \epsilon / 3$.
if part: Assume $f_{n} \xrightarrow{L_{7}} f$. Then $\left\{f_{n}\right\}$ is L_{1} bounded and $f \in L_{1}$. Fix $\epsilon>0$. Then

$$
\int_{A}\left|f_{n}\right| \leq \int_{A}\left|f_{n}-f\right|+\int_{A}|f| .
$$

Choose N such that for all $n \geq N, \int\left|f_{n}-f\right|<\epsilon / 2$ and choose δ_{0} with $P(A)<\delta_{0}$ implies $\int|f|<\epsilon / 2$. Then for $n \geq N, P(A) \leq \delta_{0}$ implies $\int_{A}\left|f_{n}\right|<\epsilon$, implying $\left\{f_{n}\right\}$ uniformly integrable.

Theorem 6. $f_{n} \geq 0, f_{n} \xrightarrow{\text { a.s. }} f, f_{n}, f$ in L_{1}. Then $\left\{f_{n}\right\}$ is uniformly integrable if and only if $E f_{n} \rightarrow E f$.

Proof. The only if part follows from Theorem 5.
if part: It is enough to show that $f_{n} \xrightarrow{L_{1}} f$ (This follows from Scheff's Lemma). Note that

$$
E\left|f_{n}-f\right|=E f_{n}+E f-2 E \min \left\{f_{n}, f\right\}
$$

Since $E f_{n} \rightarrow E f$ by assumption and $E \min \left\{f_{n}, f\right\} \rightarrow E f$ by DCT, implying $f_{n} \xrightarrow{L_{7}} f$.

Theorem 7. $\left(X_{n}, \mathcal{F}_{n}\right)_{n \geq 0}$ is a martingale. Let $\mathcal{F}_{\infty}=\sigma\left(\cup_{n \geq 0} \mathcal{F}_{n}\right)$ and $\sup E\left|X_{n}\right|=K$. ($E\left|X_{n}\right| \uparrow K$ since $\left|X_{n}\right|$ is a submartingale). Then the following are equivalent.
i. $K<\infty, X_{n} \xrightarrow{L_{1}} X_{\infty}$.
ii. $\left(X_{n}, \mathcal{F}_{n}\right)_{0 \leq n \leq \infty}$ is a martingale.
iii. $K<\infty, E\left|X_{\infty}\right|=K$.
iv. $\left\{X_{n}\right\}_{n \geq 0}$ is uniformly integrable.

Proof. (Complete verification is left as an exercise).
(i) \Longrightarrow (iv): Since $K<\infty, X_{n} \rightarrow X_{\infty}$ a.e. (Since L_{1} bounded martingale converges almost surely, using Doobs's upcrossing inequality). Since $X_{n} \xrightarrow{L_{1}} X_{\infty}$, from Theorem 5, $\left\{X_{n}\right\}_{n \geq 0}$ is uniformly integrable.
 $K<\infty$. Since $X_{n} \xrightarrow{\text { a.s }} X_{\infty}, X_{n} \xrightarrow{L_{1}} X_{\infty}$ by Theorem 5. Hence (i) \Leftrightarrow (iv).
(ii) \Longrightarrow (iv): This follows directly from Theorem 4 .
(iv) \Longrightarrow (ii): We will infact show (iv), (i) \Longrightarrow (ii). X_{∞} is the almost sure limit of X_{n} and hence \mathcal{F}_{n} measurable for all $n<\infty$ and hence \mathcal{F}_{∞} measurable. Also (i) implies $X_{\infty} \in L_{1}$. It is enough to check that $E\left(X_{\infty} \mid \mathcal{F}_{n}\right)=X_{n}$ a.e. We already know that for $m>n$, $X_{n}=E\left(X_{m} \mid \mathcal{F}_{n}\right)$ a.s. It is enough to show that $E\left(X_{m}-X_{\infty} \mid \mathcal{F}_{n}\right) \rightarrow 0$ a.e. as $m \rightarrow \infty$. We know that $X_{m} \xrightarrow{L_{1}} X_{\infty}$. Then

$$
E\left|E\left[X_{m}-X_{\infty} \mid \mathcal{F}_{n}\right]\right| \leq E E\left[\left|X_{m}-X_{\infty}\right| \mid \mathcal{F}_{n}\right]=E\left[\left|X_{m}-X_{\infty}\right|\right] \rightarrow 0
$$

as $m \rightarrow \infty$, implying $E\left|X_{n}-E\left[X_{\infty} \mid \mathcal{F}_{n}\right]\right|=0$ implying $X_{n}=E X_{\infty} \mid \mathcal{F}_{n}$ a.e. Hence we have shown that (i), (ii) and (iv) are equivalent.
(iii) \Longrightarrow (iv): Since $\left|X_{n}\right|$ is a sub-martingale, $E\left|X_{n}\right| \uparrow K$ implying $E\left|X_{n}\right| \uparrow E\left|X_{\infty}\right|$. By Scheffe's theorem $\left|X_{n}\right| \xrightarrow{L_{1}} X_{\infty}$. By Theorem $6\left\{\left|X_{n}\right|\right\}$ and hence $\left\{X_{n}\right\}$ is uniformly integrable. Now we will show that (i) and (iv) implies (iii). Since $X_{n} \xrightarrow{L_{1}} X_{\infty}$, by Scheffe's Lemma and Fatou's Lemma $E\left|X_{n}\right| \rightarrow E\left|X_{\infty}\right|<\infty$. Also $E\left|X_{n}\right| \uparrow K$. Hence $K<\infty$ and $E\left|X_{\infty}\right|=K$.

Theorem 8. $\left(X_{n}, \mathcal{F}_{n}\right)_{0 \leq n \leq N}$ is a non-negative martingale. Let $p>1$. Then

$$
\left\|\max _{0 \leq n \leq N} X_{n}\right\|_{p} \leq \frac{p}{p-1}\left\|X_{N}\right\|_{p}
$$

Proof. The proof follows from the following Lemma 1 and Doob's maximal inequality.

Lemma 1. U, V non-negative random variables. Let $\lambda>0, P(U>\lambda) \leq(1 / \lambda) \int_{U>\lambda} V d P$. Then, for $p>1$,

$$
\|U\|_{p} \leq \frac{p}{p-1}\|V\|_{p}
$$

Proof.

$$
\begin{aligned}
E U^{p} & =\int_{0}^{\infty} p \lambda^{p-1} P(U>\lambda) d \lambda \\
& =\int_{0}^{\infty} p \lambda^{p-2} \int_{U>\lambda} V d P d \lambda \\
& =\int_{0}^{\infty} p \lambda^{p-2} \int_{\Omega} V(\omega) 1_{U>\lambda}(\omega) d P(\omega) d \lambda \\
& =\int_{\Omega} V(\omega) \int_{0}^{\Omega} p \lambda^{p-2} d \lambda d P(\omega) \\
& =\frac{p}{p-1} \int_{\Omega} V(\omega) U^{p-1} d P=\frac{p}{p-1} E\left(V U^{p-1}\right) \\
& \leq \frac{p}{p-1}\left\{E\left(V^{p}\right)\right\}^{1 / p}\left\{E U^{(p-1) q}\right\}^{1 / q} \\
& =\frac{p}{p-1}\left\{E\left(V^{p}\right)\right\}^{1 / p}\left\{E U^{p}\right\}^{1 / q}
\end{aligned}
$$

implying $\|U\|_{p} \leq \frac{p}{p-1}\|V\|_{p}$ if $U \in L_{p}$. Otherwise, work with $\min \{U, n\}$.
Corollary 1. $\left(X_{n}, \mathcal{F}_{n}\right)_{n \geq 0}$ non-negative L_{p}-bounded sub-martingale. Then $X^{*}=\sup X_{n} \in$ $L_{p}\left(\right.$ True for L_{p} bounded martingale with $\left.X^{*}=\sup \left|X_{n}\right|\right)$.

Proof. Let $X_{N}^{*}=\max _{0 \leq n \leq N} X_{n}, X_{N}^{*} \uparrow X^{*}$. By MCT, $E\left(X_{N}^{*}\right)^{p} \uparrow E\left(X^{*}\right)^{p}$. Since $\left\{X_{n}\right\}$ are L_{p} bounded,

$$
E\left(X_{N}^{*}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} E\left|X_{N}\right|^{p}<M
$$

implying $X^{*} \in L_{p}$.
Theorem 9. Let $p>1$. $\left\{X_{n}\right\}$ is L_{p}-bounded martingale or a non-negative sub-martingale. Then

1. $\left\{X_{n}\right\}$ is uniformly integrable.
2. $X_{n} \xrightarrow{L_{p}} X_{\infty}$.

Proof. Proof is left as an Exercise.
Remark 2. Counter example to show that one cannot get rid of the non-negativity in case of sub-martingale. Let $([0,1), \mathcal{B}, \lambda)$ be the measure space and \mathcal{F}_{n} is a dyadic filtration. Let $X_{n}=-2^{n / 2} 1_{\left[0,2^{-n}\right)} \rightarrow 0$ a.s. Check that $\left\{X_{n}, \mathcal{F}_{n}\right\}$ is a sub-martingale. Clearly $X_{n} \stackrel{L_{2}}{\nrightarrow} 0$ as $\left\|X_{n}\right\|_{2}=1$. Complete verification is left as an Exercise.

3 Example: Two color urn model

Suppose $\left(X_{n}, \mathcal{F}_{n}\right)$ adapted L_{1}-sequence. $E X_{n+1} \mid \mathcal{F}_{n}=a_{n} X_{n}+b_{n} a_{n} \neq 0$. Find the associated martingale. Start with $\left(W_{0}, B_{0}\right)$ balls with $0 \leq W_{0}, B_{0}$ and $W_{0}+B_{0}=1$. At n th stage, W_{n-1} white, B_{n-1} black balls are available with $W_{n-1}+B_{n-1}=n$. Draw a ball at random and $R_{2 \times 2}$ is a stochastic matrix. If you see a white ball, add R_{11} white and R_{12} black balls. If you see black ball, add according to second row. X_{n+1} is a vector which is $(1,0)^{\prime}$ if white is drawn in nth stage, $(0,1)^{\prime}$ if black. $Z_{n}=\left(W_{n}, B_{n}\right)$. Since Z_{n} is bounded for each fixed $n, Z_{n} \in L_{1}$. Observe that

$$
Z_{n+1}=Z_{n}+X_{n+1}^{\prime} R
$$

Find the associated martingale. (Discussed in class).

4 Stopping Time

$\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is a filtration. $\tau: \Omega \mapsto\{0,1,2, \ldots, \infty\}$ is a measurable random time. σ field on $\{0,1, \ldots, \infty\}$ is $\mathcal{P}(\{0,1, \ldots, \infty\})$. A random time is called a stopping time if $[\tau=n] \in \mathcal{F}_{n}$ for all $n \in\{0,1,2, \ldots, \infty\}$.
Example: Time at which one starts smoking is a stopping time. However, the time at which one stops smoking is not a stopping time.
$[\tau=n]$ is equivalent to $[\tau \leq n] \in \mathcal{F}_{n}$ for all $n \in\{0,1,2, \ldots, \infty\}$. This is easy to see for discrete dime. For continuous time $[\tau \leq t] \in \mathcal{F}_{t}$ for all $t \geq 0$. $[\tau=t]=[\tau \leq t]-\cup_{n}[\tau \leq$ $t-1 / n: n \in \mathbb{N}]$.
In the discrete time case $[\tau<n] \in \mathcal{F}_{n},[\tau \leq n-1] \in \mathcal{F}_{n-1} \subset \mathcal{F}_{n}$.
Theorem 10. For discrete parameter spaces $[\tau=n] \in \mathcal{F}_{n} \Leftrightarrow[\tau \leq n] \in \mathcal{F}_{n} \Leftrightarrow[\tau<n] \in$ \mathcal{F}_{n}.

Definition 6. $\left(X_{n}, \mathcal{F}_{n}\right)$ adapted sequence. τ is a random time, $[\tau<\infty]=\Omega$. Stopping random variable $X_{\tau}(\omega)=X_{\tau(\omega)}(\omega)$.

Theorem 11. X_{τ} is \mathcal{B} measurable.

Proof. For $B \in \mathcal{B}(\mathbb{R}), X_{\tau}^{-1}(B)=\cup_{n=0}^{\infty}\left[X_{\tau} \in B\right] \cap[\tau=n]=\cup_{n=0}^{\infty}\left[X_{n} \in B\right] \cap[\tau=n]$.
Definition 7. (Stopping σ-field) $\mathcal{F}_{\tau}=\left\{A \in \mathcal{B}: A \cap[\tau=n] \in \mathcal{F}_{n}\right.$ for all $\left.n\right\}$
Clearly X_{τ} is \mathcal{F}_{τ} measurable.

4.1 Properties

1. $\tau \equiv \sigma \Rightarrow \mathcal{F}_{\tau}=\mathcal{F}_{\sigma}$
2. τ, σ are stop times, then $[\tau<\sigma],[\tau>\sigma],[\tau=\sigma]$ are all $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$-measurable. ([$\tau<$ $\left.\sigma] \cap[\tau=n]=[\sigma>n] \cap[\tau=n] \in \mathcal{F}_{n}\right)$
3. τ is \mathcal{F}_{τ} measurable. Then $[\tau=k] \cap[\tau=n] \in \mathcal{F}_{n}$ for $k \leq n$.
4. $\tau \leq \sigma$, then $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$.
5. $\left(X_{n}, \mathcal{F}_{n}\right)_{0 \leq n \leq N}$ is a (sub)-martingale. $\tau \leq \sigma$ is a stopping time. $\left(X_{\tau}, X_{\sigma}\right)$ is a (sub)martingale corresponding to ($\mathcal{F}_{\tau}, \mathcal{F}_{\sigma}$).

4.2 Doob's Upcrossing Inequality

$\left\{X_{n}\right\}_{0 \leq n \leq N}, a<b$. Define

$$
\begin{aligned}
\tau_{0} & =0 \\
\tau_{1} & =\inf \left\{n: X_{n} \leq a\right\} \\
\vdots & \\
\tau_{2 k+1} & =\inf \left\{n \geq \tau_{2 k}: X_{n} \leq a\right\} \\
\tau_{2 k+2} & =\inf \left\{n \geq \tau_{2 k+1}: X_{n} \geq b\right\}
\end{aligned}
$$

with the convention that $\inf \{\phi\}=N$. Define

$$
\begin{aligned}
\mathrm{U}\left(\left\{X_{n}\right\}_{0 \leq n \leq N} ;[a, b]\right) & =\sup \left\{l: X_{\tau_{2 l-1}} \leq a<b \leq X_{\tau_{2 l}}\right\} \\
\mathrm{U}\left(\left\{X_{n}\right\}_{n \geq 0} ;[a, b]\right) & =\uparrow \lim _{N}\left\{l: X_{\tau_{2 l-1}} \leq a<b \leq X_{\tau_{2 l}}\right\} .
\end{aligned}
$$

Lemma 2. $\tau_{i} s$ are stop times.
Proof. τ_{0}, τ_{1} are stop times. Assume $\tau_{2 k}$ is a stop time. Then

$$
\begin{aligned}
\left\{\tau_{2 k+1}=i\right\} & =\cup_{j=0}^{i-1}\left\{\tau_{2 k+1}=i, \tau_{2 k}=j\right\} \\
\left\{\tau_{2 k+1}=i, \tau_{2 k}=j\right\} & =\left\{\tau_{2 k}=j\right\} \cap\left\{X_{j+1}>a\right\} \cap \cdots \cap\left\{X_{i-1}>a\right\} \cap\left\{X_{i} \leq a\right\} \in \mathcal{F}_{i}
\end{aligned}
$$

For an adapted sequence, $\left\{\tau_{k}\right\}$ forms a stopping time, which implies $\sup \left\{l: X_{\tau_{2 l-1}} \leq a<\right.$ $\left.b \leq X_{\tau_{2 l}}\right\}$ is measurable implying $\mathrm{U}\left(\left\{X_{n}\right\}_{n \geq 0} ;[a, b]\right)$ is measurable.
Theorem 12. (Doob's Upcrossing Inequality). $\left\{X_{n}, \mathcal{F}_{n}\right\}$ is a submartingale and $a<b$. Then

$$
\begin{aligned}
E U\left(\left\{X_{n}\right\}_{0 \leq n \leq N} ;[a, b]\right) & \leq \frac{E\left[\left(X_{N}-a\right)^{+}\right]-E\left[\left(X_{0}-a\right)^{+}\right]}{b-a} \\
& \leq \frac{E\left|X_{N}\right|+|a|}{b-a} .
\end{aligned}
$$

Corollary 2. An L_{1}-bounded martingale converges almost surely.

5 Problem

A branching process is defined as follows: We start with one member, namely the population size is $Z_{0}=1$. Let $\xi_{i}^{n}, i=1,2, \ldots, n$ denote the number of children of i th individual in the nth generation. Assume ξ_{i}^{n} are independent with common mean $\mu>0$. Let Z_{n} denote the population size in the nth generation. Let $p_{k}=P\left(\xi_{i}^{n}=k\right), k \geq 0, \mu=E\left(\xi_{i}^{n}\right)$. $Z_{n+1}=\sum_{i=1}^{Z_{n}} \xi_{i}^{n}$. It is easy to see that $X_{n}=Z_{n} / \mu^{n}$ is a martingale.

1. Does $\left\{X_{n}\right\}$ has a limit?

Since X_{n} is non-negative, $\left\{X_{n}\right\}$ converges almost everywhere to an integrable random variable X.
2. If $\mu<1, Z_{n}=0$ almost surely for large n.
$Z_{n}=X_{n} \mu^{n}$. Since $X_{n} \xrightarrow{\text { a.s. }} X$ and $\mu^{n} \rightarrow 0, Z_{n} \xrightarrow{\text { a.s. }} 0$. There exists a P-null set N such that for all $\omega \notin N, Z_{n}(\omega) \rightarrow 0$. Given $\epsilon=1 / 2$, there exists $N_{0}(\omega)$ such that $Z_{n}(\omega)<\epsilon$ for all $n \geq N_{0}(\omega)$ implying $Z_{n}(\omega)=0$ for all $n \geq N_{0}(\omega)$. This implies Z_{n} converges to 0 with probability 1 for all large n.
3. If $\mu<1, X_{n}=0$ almost surely for large n.
$\sum_{n=1}^{\infty} P\left(X_{n}>0\right)=\sum_{n=1}^{\infty} P\left(Z_{n}>0\right)=\sum_{n=1}^{\infty} P\left(Z_{n} \geq 1\right) \leq \sum_{n=1}^{\infty} E\left(Z_{n}\right)=$ $\sum_{n=1}^{\infty} \mu^{n}<\infty$. Hence by Borel Cantelli Lemma $P\left(\lim \sup A_{n}\right)=0$ which means $P\left(\cap_{n=1}^{\infty} \cup_{k \geq n} A_{k}\right)=0$ implying $P\left(A_{n}\right.$ occurs infinitely often $)=0$ implying $P\left(X_{n}=\right.$ 0 for all large $n)=1$. Hence $X_{0}=0$ eventually with probability 1 .
4. If $\mu=1$ and $P\left(\xi_{1}^{1}>1\right)>0$, then $Z_{n} \rightarrow 0$ a.s.
Z_{n} non-negative martingale, hence $Z_{n} \rightarrow Z_{\infty}$ a.e and $Z_{\infty} \in L_{1}$. It is enough to show that $P\left(Z_{\infty}=k\right)=0$ for all $k \geq 1$, or in other words $P\left(Z_{n}=k\right.$ eventually $)=0$. Observe that $P\left(Z_{n}=k\right.$ eventually) $\leq P$ (one of $\xi_{1}^{n}, \ldots, \xi_{k}^{n} \leq 1$, eventually). It is enough to show that $P\left(\xi_{1}^{n}, \ldots, \xi_{k}^{n}>1\right.$, infinitely often $)=1$. To that end, note that $\sum_{n=1}^{\infty} P\left(\xi_{i}^{n}>1\right)^{k}=\infty$. The result follows from second Borel Cantelli Lemma.

