January 12, 2017

1 Martingales

 (Ω, \mathcal{B}, P) is a probability space.

Definition 1. (Filtration) A filtration $\mathcal{F} = {\mathcal{F}_n}_{n\geq 0}$ is a collection of increasing sub- σ -fields such that for $m \leq n$, we have $\mathcal{F}_m \subset \mathcal{F}_n$.

Definition 2. (Adaptation) A sequence of random variables $X = \{X_n\}$ is adapted if for all n, X_n is \mathcal{F}_n measurable.

Definition 3. (Martingales) An adapted pair (X_n, \mathcal{F}_n) is called sub / super / martingale if

- 1. $X_n \in L_1(P)$ for all n
- 2. $EX_{n+1} | \mathcal{F}_n \ge / \le / = X_n$ a.e. [P].

Remark 1. a. X_n is n.n.g, L_2 sub-martingale, then X_n^2 is L_1 sub-martingale.

- b. X_n martingale, ϕ is a convex function. Then if $\phi(X_n)$ is L_1 , then $\phi(X_n)$ is a submartingale.
- c. X_n is a sub-martingale, ϕ is convex, non-decreasing (say |x|), then $\phi(X_n)$ is a sub-martingale.

Example:

1. $\{\xi_n\}$ i.i.d mean 0, $S_n = \sum_{i=1}^n \xi_i, \mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n) = \sigma(S_0, \dots, S_n)$, then (S_n, \mathcal{F}_n) is a martingale. (For a sequence of random variables $\{X_n\}, \mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$ is called a natural filtration.)

Theorem 1. (X_n, \mathcal{F}_n) is a martingale. $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\phi(X_n) \in L_1$ for all n. Then $(\phi(X_n), \mathcal{F}_n)$ is a sub-martingale.

Proof. (Use Jensen's Inequality).

Properties:

1. $\{X_n\}$ is a martingale. Then $|X_n|$ is a sub-martingale.

- 2. $\{X_n\}$ is a L_p -martingale for p > 1. Then $\{|X_n|^p\}$ is a sub-martingale.
- 3. $\{X_n\}$ is a sub-martingale. Then $\{X_n^+\}$ is a sub-martingale.
- 4. $\{X_n\}$ is a non-negative L_p submartingale, p > 1. Then $\{X_n^p\}$ is a sub-martingale.

Example:

- 1. Suppose (X_n, \mathcal{F}_n) is an adapted L_1 sequence and $E(X_{n+1} | \mathcal{F}_n) = a_n X_n$. How to convert it to a martingale? Let $Z_n = c_n X_n$ be a martingale. Then $E(Z_{n+1} | \mathcal{F}_n) = c_{n+1}a_n X_n$ which should be equal to $c_n X_n$. Hence we should have $c_{n+1}/c_n = a_n^{-1}$ for all n. Taking $c_0 = 1$, we have $c_n = \prod_{i=1}^n a_i^{-1}$. Hence $X_n / \prod_{i=1}^n a_i$ is a martingale. (Discussed in class. The case of $E(X_{n+1} | \mathcal{F}_n) = a_n X_n + b_n$ left as an exercise).
- 2. Suppose $([0,1), \mathcal{B}, P)$ be a probability space and Q be another probability measure such that $Q \ll P$. Let

$$\mathcal{F}_0 = \{\phi, [0, 1)\}$$
$$\mathcal{F}_n = \sigma(\{[r2^{-n}, (r+1)2^{-n}) : 0 \le r \le 2^n - 1\})$$

called a dyadic filtration. Clearly $\sigma(\cup \mathcal{F}_n) = \mathcal{B}$ and $X_n(\omega) = Q(A)/P(A)$ where A is an \mathcal{F}_n -atom containing ω . Clearly, X_n is \mathcal{F}_n -measurable since X_n is constant on \mathcal{F}_n atoms. It is easy to check that (X_n, \mathcal{F}_n) is a martingale. (Discussed in class).

1.1 Doob's maximal inequalities

Theorem 2. Let $(X_j, \mathcal{F}_j)_{0 \le j \le n}$ is a sub-martingale and $\lambda \in \mathbb{R}$. Then

- 1. $\lambda P[\max_{0 \le j \le n} X_j > \lambda] \le \int_{\max X_j > \lambda} X_n dP \le E |X_n|.$
- 2. $\lambda P[\min_{0 \le j \le n} X_j \ge \lambda] \le \int_{\min X_j \le \lambda} X_n dP E(X_n X_0) \ge E(X_0) E|X_n|.$

Proof. Proof of a.) Let

$$A_0 = [X_0 > \lambda] \in \mathcal{F}_0$$
$$A_1 = [X_0 \le \lambda, X_1 > \lambda] \in \mathcal{F}_1$$
$$\vdots$$
$$A_n = [X_0 \le \lambda, \dots, X_{n-1} \le \lambda, X_n > \lambda] \in \mathcal{F}_n.$$

Then $[\max X_j > \lambda] = \cup_{j=0}^n A_j$ and

$$\lambda P[\max X_j > \lambda] = \sum_{j=0}^n \lambda P(A_j) \le \sum_{j=0}^n \int_{A_j} \lambda dP \le \sum_{j=0}^n \int_{A_j} X_j dP = \sum_{j=0}^n \int_{A_j} X_n dP = \int_{\max X_j > \lambda} X_n dP,$$

where the penultimate inequality follows from the fact that since $E(X_n | \mathcal{F}_j) \ge X_j \equiv \int_A E(X_n | \mathcal{F}_j) dP \ge \int_A X_j dP$ for all $A \in \mathcal{F}_j$. Hence $\int_A X_n dP \ge \int_A X_j dP$ for all $A \in \mathcal{F}_j$. <u>Proof of b.</u>

$$A_0 = [X_0 \le \lambda] \in \mathcal{F}_0$$
$$A_1 = [X_0 > \lambda, X_1 \le \lambda] \in \mathcal{F}_1$$
$$\vdots$$
$$A_n = [X_0 > \lambda, \dots, X_{n-1} > \lambda, X_n \le \lambda] \in \mathcal{F}_n$$
$$A_{n+1} = [X_0 > \lambda, \dots, X_n > \lambda] \in \mathcal{F}_n.$$

Then

$$\begin{split} EX_0 &= \int X_0 dP = \sum_{j=0}^{n+1} \int_{A_j} X_0 dP \\ &= \int_{A_0} X_0 dP + \int_{A_0^c} X_0 dP \\ &\leq \lambda P(A_0) + \int_{A_0^c} X_1 dP \\ &\leq \lambda P(A_0) + \int_{A_1} X_1 dP + \int_{\{A_0 \cup A_1\}^c} X_1 dP \\ &\leq \lambda P(A_0 \cup A_1) + \int_{\{A_0 \cup A_1\}^c} X_2 dP \\ &\vdots \\ &\vdots \\ &\leq \lambda P(\min X_j \leq \lambda) + \int X_n dP - \int_{A_{n+1}^c} X_n dP. \\ &\text{This implies } \lambda P[\min_{0 \leq j \leq n} X_j \leq \lambda] \geq \int_{\min X_j \leq \lambda} X_n dP - E(X_n - X_0) \geq E(X_0) - E |X_n|. \\ \\ &\Box \end{split}$$

2 Convergence of Martingales

<u>Goal</u>: What conditions do we need so that an L_1 bounded martingale converges in L_1 ?

Definition 4. A subset $S \subset L_1$ is called uniformly integrable if given $\epsilon > 0$, there exists c > 0 such that $\sup_{f \in S} \int_{|f| > c} |f| dP < \epsilon$.

Definition 5. A subset $S \subset L_1$ is called L_1 bounded if $\sup_{f \in S} E|f| < \infty$.

Examples:

- 1. Any finite L_1 -subset is uniformly integrable.
- 2. If S is dominated by an L_1 function, then S is uniformly integrable.
- 3. Any uniformly integrable L_1 subset is L_1 bounded. (Converse is not true in general: construct an L_1 bounded subset which is not uniformly integrable (Discussed in class).

Theorem 3. $S \subset L_1$ is uniformly integrable subset iff:

- 1. S is L_1 bounded.
- 2. For all $\epsilon > 0$, there exists $\delta > 0$ such that $P(A) < \delta$, then $\sup_S \int_A |f| < \epsilon$.

Proof. if part: Suppose $\sup_{f \in S} E |f| = M < \infty$. Fix $\epsilon > 0$. Choose δ from 2. Observe that $\sup_{f \in S} \overline{P(|f| > c)} \leq \sup_{f \in S} E |f|/c \leq M/c$. Choose $c = M/\delta$ with $A = \{|f| > c\}$ to get the result.

<u>only if part</u>: Fix $\epsilon > 0$. Choose c such that $\sup_{f \in S} \int_{|f| > c} |f| < \epsilon/2$. Then

$$\int_A |f| \, dP \leq \int_{A \cap |f| \leq c} |f| + \int_{|f| > c} |f| < cP(A) + \epsilon/2.$$

Choose $\delta = \epsilon/(2c)$ to get the result.

Theorem 4. $f \in L_1$. Let $S = \{E^{\mathcal{C}}f := E(f \mid \mathcal{C}), Ca \text{ sub-}\sigma\text{-field of }\mathcal{F}\}$. Then S is uniformly integrable.

Proof. Observe that

$$\int_{|E^{\mathcal{C}}f|>c} \left|E^{\mathcal{C}}f\right| \leq \int_{|E^{\mathcal{C}}f|>c} E^{\mathcal{C}}\left|f\right| = \int_{|E^{\mathcal{C}}f|>c} \left|f\right|.$$

So 1. is satisfied. To verify 2., note that

$$\sup_{\mathcal{C}} P(\left| E^{\mathcal{C}} f \right| > c) \le \sup_{\mathcal{C}} \frac{E\left|f\right|}{c} = \frac{E\left|f\right|}{c}.$$

Choose c large enough such that $\sup_{\mathcal{C}} P(|E^{\mathcal{C}}f| > c)$ is sufficiently small to have $\int_{|E^{\mathcal{C}}f|>c} |f| < \epsilon/2$. Observe that for any set A with $P(A) < \epsilon/(2c)$,

$$\int_{A} \left| E^{\mathcal{C}} f \right| \leq \int_{A \cap |E^{\mathcal{C}} f| \leq c} \left| E^{\mathcal{C}} f \right| + \int_{|E^{\mathcal{C}} f| > c} |f| < cP(A) + \epsilon/2 < \epsilon.$$

Theorem 5. $f_n \in L_1, f_n \xrightarrow{a.s.} f$. Then $\{f_n\}$ is uniformly integrable iff $f \in L_1$ and $f_n \xrightarrow{L_1} f$.

Proof. <u>only if part</u>: Fix $\epsilon > 0$. By Fatou's Lemma and L_1 boundedness of $\{f_n\}, f \in L_1$. Next we show that $f_n \xrightarrow{L_1} f$. To that end, observe that

$$E|f_n - f| = E|f_n 1_{|f_n| \le c} - f 1_{|f| \le c}| + E|f_n 1_{|f_n| > c}| + E|f 1_{|f| > c}|.$$

Choose c such that

$$P(|f| = c) = 0, E \left| f_n 1_{|f_n| > c} \right| < \epsilon/3, E \left| f 1_{|f| > c} \right| < \epsilon/2$$

for all n. Since $\{\omega : |f_n(\omega)| > c, |f_n(\omega)| \to |f(\omega)| = c\} \subset \{|f| = c\}$, we have

$$f_n \mathbf{1}_{|f_n| \le c} - f \mathbf{1}_{|f| \le c} \to 0$$

Choose N large enough such that for all $n \ge N$, $E |f_n 1_{|f_n| \le c} - f 1_{|f| \le c}| < \epsilon/3$ by DCT. almost surely. Hence for large enough n, $E |f_n - f| \le \epsilon/3$. if part: Assume $f_n \xrightarrow{L_1} f$. Then $\{f_n\}$ is L_1 bounded and $f \in L_1$. Fix $\epsilon > 0$. Then

$$\int_{A} |f_n| \le \int_{A} |f_n - f| + \int_{A} |f|.$$

Choose N such that for all $n \ge N$, $\int |f_n - f| < \epsilon/2$ and choose δ_0 with $P(A) < \delta_0$ implies $\int |f| < \epsilon/2$. Then for $n \ge N$, $P(A) \le \delta_0$ implies $\int_A |f_n| < \epsilon$, implying $\{f_n\}$ uniformly integrable.

Theorem 6. $f_n \ge 0$, $f_n \xrightarrow{a.s.} f$, f_n , f in L_1 . Then $\{f_n\}$ is uniformly integrable if and only if $Ef_n \to Ef$.

Proof. The only if part follows from Theorem 5. <u>if part:</u> It is enough to show that $f_n \xrightarrow{L_1} f$ (This follows from Scheff's Lemma). Note that

$$E|f_n - f| = Ef_n + Ef - 2E\min\{f_n, f\}.$$

Since $Ef_n \to Ef$ by assumption and $E\min\{f_n, f\} \to Ef$ by DCT, implying $f_n \xrightarrow{L_1} f$. \Box

Theorem 7. $(X_n, \mathcal{F}_n)_{n\geq 0}$ is a martingale. Let $\mathcal{F}_{\infty} = \sigma(\bigcup_{n\geq 0}\mathcal{F}_n)$ and $\sup E |X_n| = K$. ($E |X_n| \uparrow K$ since $|X_n|$ is a submartingale). Then the following are equivalent.

- i. $K < \infty, X_n \xrightarrow{L_1} X_\infty$.
- ii. $(X_n, \mathcal{F}_n)_{0 \le n \le \infty}$ is a martingale.
- *iii.* $K < \infty$, $E|X_{\infty}| = K$.
- iv. $\{X_n\}_{n>0}$ is uniformly integrable.

Proof. (Complete verification is left as an exercise).

(i) \implies (iv): Since $K < \infty$, $X_n \to X_\infty$ a.e. (Since L_1 bounded martingale converges almost surely, using Doobs's upcrossing inequality). Since $X_n \stackrel{L_1}{\to} X_\infty$, from Theorem 5, $\{X_n\}_{n\geq 0}$ is uniformly integrable.

 $(iv) \implies (i)$: Since $\{X_n\}_{n\geq 0}$ is uniformly integrable, $\{X_n\}_{n\geq 0}$ is L_1 bounded implying $K < \infty$. Since $X_n \stackrel{a.s}{\to} X_\infty, X_n \stackrel{L_1}{\to} X_\infty$ by Theorem 5. Hence (i) \Leftrightarrow (iv).

(ii) \implies (iv): This follows directly from Theorem 4.

 $(iv) \implies (ii)$: We will infact show (iv), (i) \implies (ii). X_{∞} is the almost sure limit of X_n and hence \mathcal{F}_n measurable for all $n < \infty$ and hence \mathcal{F}_{∞} measurable. Also (i) implies $X_{\infty} \in L_1$. It is enough to check that $E(X_{\infty} | \mathcal{F}_n) = X_n$ a.e. We already know that for m > n, $X_n = E(X_m | \mathcal{F}_n)$ a.s. It is enough to show that $E(X_m - X_{\infty} | \mathcal{F}_n) \to 0$ a.e. as $m \to \infty$. We know that $X_m \stackrel{L_1}{\longrightarrow} X_{\infty}$. Then

$$E\left|E[X_m - X_{\infty} \mid \mathcal{F}_n]\right| \le EE[|X_m - X_{\infty}| \mid \mathcal{F}_n] = E[|X_m - X_{\infty}|] \to 0$$

as $m \to \infty$, implying $E |X_n - E[X_\infty | \mathcal{F}_n]| = 0$ implying $X_n = EX_\infty | \mathcal{F}_n$ a.e. Hence we have shown that (i), (ii) and (iv) are equivalent.

(iii) \implies (iv): Since $|X_n|$ is a sub-martingale, $E |X_n| \uparrow K$ implying $E |X_n| \uparrow E |X_{\infty}|$. By Scheffe's theorem $|X_n| \stackrel{L_1}{\rightarrow} X_{\infty}$. By Theorem 6 $\{|X_n|\}$ and hence $\{X_n\}$ is uniformly integrable. Now we will show that (i) and (iv) implies (iii). Since $X_n \stackrel{L_1}{\rightarrow} X_{\infty}$, by Scheffe's Lemma and Fatou's Lemma $E |X_n| \to E |X_{\infty}| < \infty$. Also $E |X_n| \uparrow K$. Hence $K < \infty$ and $E |X_{\infty}| = K$.

Theorem 8. $(X_n, \mathcal{F}_n)_{0 \le n \le N}$ is a non-negative martingale. Let p > 1. Then

$$\left\| \max_{0 \le n \le N} X_n \right\|_p \le \frac{p}{p-1} \left\| X_N \right\|_p$$

Proof. The proof follows from the following Lemma 1 and Doob's maximal inequality. \Box

Lemma 1. U, V non-negative random variables. Let $\lambda > 0$, $P(U > \lambda) \leq (1/\lambda) \int_{U > \lambda} V dP$. Then, for p > 1,

$$\|U\|_p \le \frac{p}{p-1} \, \|V\|_p \, .$$

Proof.

$$\begin{split} EU^p &= \int_0^\infty p\lambda^{p-1}P(U > \lambda)d\lambda \\ &= \int_0^\infty p\lambda^{p-2} \int_{U > \lambda} V dP d\lambda \\ &= \int_0^\infty p\lambda^{p-2} \int_\Omega V(\omega) \mathbf{1}_{U > \lambda}(\omega) dP(\omega) d\lambda \\ &= \int_\Omega V(\omega) \int_0^\Omega p\lambda^{p-2} d\lambda dP(\omega) \\ &= \frac{p}{p-1} \int_\Omega V(\omega) U^{p-1} dP = \frac{p}{p-1} E(VU^{p-1}) \\ &\leq \frac{p}{p-1} \{E(V^p)\}^{1/p} \{EU^{(p-1)q}\}^{1/q} \\ &= \frac{p}{p-1} \{E(V^p)\}^{1/p} \{EU^p\}^{1/q} \end{split}$$

implying $||U||_p \leq \frac{p}{p-1} ||V||_p$ if $U \in L_p$. Otherwise, work with $\min\{U, n\}$.

Corollary 1. $(X_n, \mathcal{F}_n)_{n \geq 0}$ non-negative L_p -bounded sub-martingale. Then $X^* = \sup X_n \in L_p$ (True for L_p bounded martingale with $X^* = \sup |X_n|$).

Proof. Let $X_N^* = \max_{0 \le n \le N} X_n$, $X_N^* \uparrow X^*$. By MCT, $E(X_N^*)^p \uparrow E(X^*)^p$. Since $\{X_n\}$ are L_p bounded,

$$E(X_N^*)^p \le \left(\frac{p}{p-1}\right)^p E |X_N|^p < M,$$

implying $X^* \in L_p$.

Theorem 9. Let p > 1. $\{X_n\}$ is L_p -bounded martingale or a non-negative sub-martingale. Then

- 1. $\{X_n\}$ is uniformly integrable.
- 2. $X_n \stackrel{L_p}{\to} X_{\infty}$.

Proof. Proof is left as an Exercise.

Remark 2. Counter example to show that one cannot get rid of the non-negativity in case of sub-martingale. Let $([0,1), \mathcal{B}, \lambda)$ be the measure space and \mathcal{F}_n is a dyadic filtration. Let $X_n = -2^{n/2} \mathbb{1}_{[0,2^{-n}]} \to 0$ a.s. Check that $\{X_n, \mathcal{F}_n\}$ is a sub-martingale. Clearly $X_n \not\xrightarrow{L_2} 0$ as $\|X_n\|_2 = 1$. Complete verification is left as an Exercise.

3 Example: Two color urn model

Suppose (X_n, \mathcal{F}_n) adapted L_1 -sequence. $EX_{n+1} \mid \mathcal{F}_n = a_nX_n + b_n a_n \neq 0$. Find the associated martingale. Start with (W_0, B_0) balls with $0 \leq W_0, B_0$ and $W_0 + B_0 = 1$. At n th stage, W_{n-1} white, B_{n-1} black balls are available with $W_{n-1} + B_{n-1} = n$. Draw a ball at random and $R_{2\times 2}$ is a stochastic matrix. If you see a white ball, add R_{11} white and R_{12} black balls. If you see black ball, add according to second row. X_{n+1} is a vector which is (1,0)' if white is drawn in nth stage, (0,1)' if black. $Z_n = (W_n, B_n)$. Since Z_n is bounded for each fixed $n, Z_n \in L_1$. Observe that

$$Z_{n+1} = Z_n + X'_{n+1}R.$$

Find the associated martingale. (Discussed in class).

4 Stopping Time

 $\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}$ is a filtration. $\tau : \Omega \mapsto \{0, 1, 2, \dots, \infty\}$ is a measurable random time. σ -field on $\{0, 1, \dots, \infty\}$ is $\mathcal{P}(\{0, 1, \dots, \infty\})$. A random time is called a stopping time if $[\tau = n] \in \mathcal{F}_n$ for all $n \in \{0, 1, 2, \dots, \infty\}$.

Example: Time at which one starts smoking is a stopping time. However, the time at which one stops smoking is not a stopping time.

 $[\tau = n]$ is equivalent to $[\tau \leq n] \in \mathcal{F}_n$ for all $n \in \{0, 1, 2, \dots, \infty\}$. This is easy to see for discrete dime. For continuous time $[\tau \leq t] \in \mathcal{F}_t$ for all $t \geq 0$. $[\tau = t] = [\tau \leq t] - \bigcup_n [\tau \leq t - 1/n : n \in \mathbb{N}]$.

In the discrete time case $[\tau < n] \in \mathcal{F}_n, [\tau \le n-1] \in \mathcal{F}_{n-1} \subset \mathcal{F}_n.$

Theorem 10. For discrete parameter spaces $[\tau = n] \in \mathcal{F}_n \Leftrightarrow [\tau \leq n] \in \mathcal{F}_n \Leftrightarrow [\tau < n] \in \mathcal{F}_n$.

Definition 6. (X_n, \mathcal{F}_n) adapted sequence. τ is a random time, $[\tau < \infty] = \Omega$. Stopping random variable $X_{\tau}(\omega) = X_{\tau(\omega)}(\omega)$.

Theorem 11. X_{τ} is \mathcal{B} measurable.

Proof. For $B \in \mathcal{B}(\mathbb{R})$, $X_{\tau}^{-1}(B) = \bigcup_{n=0}^{\infty} [X_{\tau} \in B] \cap [\tau = n] = \bigcup_{n=0}^{\infty} [X_n \in B] \cap [\tau = n]$. **Definition 7.** (Stopping σ -field) $\mathcal{F}_{\tau} = \{A \in \mathcal{B} : A \cap [\tau = n] \in \mathcal{F}_n \text{ for all } n\}$

Clearly X_{τ} is \mathcal{F}_{τ} measurable.

4.1 Properties

- 1. $\tau \equiv \sigma \Rightarrow \mathcal{F}_{\tau} = \mathcal{F}_{\sigma}$
- 2. τ, σ are stop times, then $[\tau < \sigma], [\tau > \sigma], [\tau = \sigma]$ are all $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$ -measurable. $([\tau < \sigma] \cap [\tau = n] = [\sigma > n] \cap [\tau = n] \in \mathcal{F}_n)$
- 3. τ is \mathcal{F}_{τ} measurable. Then $[\tau = k] \cap [\tau = n] \in \mathcal{F}_n$ for $k \leq n$.
- 4. $\tau \leq \sigma$, then $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$.
- 5. $(X_n, \mathcal{F}_n)_{0 \le n \le N}$ is a (sub)-martingale. $\tau \le \sigma$ is a stopping time. (X_τ, X_σ) is a (sub)martingale corresponding to $(\mathcal{F}_\tau, \mathcal{F}_\sigma)$.

4.2 Doob's Upcrossing Inequality

 $\{X_n\}_{0 \le n \le N}, a \le b$. Define

$$\tau_{0} = 0$$

$$\tau_{1} = \inf\{n : X_{n} \le a\}$$

$$\vdots$$

$$\tau_{2k+1} = \inf\{n \ge \tau_{2k} : X_{n} \le a\}$$

$$\tau_{2k+2} = \inf\{n \ge \tau_{2k+1} : X_{n} \ge b\}$$

with the convention that $\inf\{\phi\} = N$. Define

$$U(\{X_n\}_{0 \le n \le N}; [a, b]) = \sup\{l : X_{\tau_{2l-1}} \le a < b \le X_{\tau_{2l}}\} \\ U(\{X_n\}_{n \ge 0}; [a, b]) = \uparrow \lim_N \{l : X_{\tau_{2l-1}} \le a < b \le X_{\tau_{2l}}\}.$$

Lemma 2. $\tau_i s$ are stop times.

Proof. τ_0, τ_1 are stop times. Assume τ_{2k} is a stop time. Then

$$\{\tau_{2k+1} = i\} = \bigcup_{j=0}^{i-1} \{\tau_{2k+1} = i, \tau_{2k} = j\}$$

$$\{\tau_{2k+1} = i, \tau_{2k} = j\} = \{\tau_{2k} = j\} \cap \{X_{j+1} > a\} \cap \dots \cap \{X_{i-1} > a\} \cap \{X_i \le a\} \in \mathcal{F}_i$$

For an adapted sequence, $\{\tau_k\}$ forms a stopping time, which implies $\sup\{l : X_{\tau_{2l-1}} \leq a < b \leq X_{\tau_{2l}}\}$ is measurable implying $U(\{X_n\}_{n \geq 0}; [a, b])$ is measurable.

Theorem 12. (Doob's Upcrossing Inequality). $\{X_n, \mathcal{F}_n\}$ is a submartingale and a < b. Then

$$EU(\{X_n\}_{0 \le n \le N}; [a, b]) \le \frac{E[(X_N - a)^+] - E[(X_0 - a)^+]}{b - a}$$
$$\le \frac{E|X_N| + |a|}{b - a}.$$

Corollary 2. An L_1 -bounded martingale converges almost surely.

5 Problem

A branching process is defined as follows: We start with one member, namely the population size is $Z_0 = 1$. Let $\xi_i^n, i = 1, 2, ..., n$ denote the number of children of *i*th individual in the *n*th generation. Assume ξ_i^n are independent with common mean $\mu > 0$. Let Z_n denote the population size in the *n*th generation. Let $p_k = P(\xi_i^n = k), k \ge 0, \mu = E(\xi_i^n)$. $Z_{n+1} = \sum_{i=1}^{Z_n} \xi_i^n$. It is easy to see that $X_n = Z_n/\mu^n$ is a martingale.

- 1. Does $\{X_n\}$ has a limit? Since X_n is non-negative, $\{X_n\}$ converges almost everywhere to an integrable random variable X.
- 2. If $\mu < 1$, $Z_n = 0$ almost surely for large n.

 $Z_n = X_n \mu^n$. Since $X_n \xrightarrow{a.s.} X$ and $\mu^n \to 0$, $Z_n \xrightarrow{a.s.} 0$. There exists a *P*-null set *N* such that for all $\omega \notin N$, $Z_n(\omega) \to 0$. Given $\epsilon = 1/2$, there exists $N_0(\omega)$ such that $Z_n(\omega) < \epsilon$ for all $n \ge N_0(\omega)$ implying $Z_n(\omega) = 0$ for all $n \ge N_0(\omega)$. This implies Z_n converges to 0 with probability 1 for all large *n*.

- 3. If $\mu < 1$, $X_n = 0$ almost surely for large n. $\sum_{n=1}^{\infty} P(X_n > 0) = \sum_{n=1}^{\infty} P(Z_n > 0) = \sum_{n=1}^{\infty} P(Z_n \ge 1) \le \sum_{n=1}^{\infty} E(Z_n) = \sum_{n=1}^{\infty} \mu^n < \infty$. Hence by Borel Cantelli Lemma $P(\limsup A_n) = 0$ which means $P(\bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k) = 0$ implying $P(A_n \text{ occurs infinitely often}) = 0$ implying $P(X_n = 0 \text{ for all large } n) = 1$. Hence $X_0 = 0$ eventually with probability 1.
- 4. If $\mu = 1$ and $P(\xi_1^1 > 1) > 0$, then $Z_n \to 0$ a.s.

 Z_n non-negative martingale, hence $Z_n \to Z_\infty$ a.e and $Z_\infty \in L_1$. It is enough to show that $P(Z_\infty = k) = 0$ for all $k \ge 1$, or in other words $P(Z_n = k \text{ eventually}) = 0$. Observe that $P(Z_n = k \text{ eventually}) \le P(\text{one of } \xi_1^n, \dots, \xi_k^n \le 1$, eventually). It is enough to show that $P(\xi_1^n, \dots, \xi_k^n > 1)$, infinitely often) = 1. To that end, note that $\sum_{n=1}^{\infty} P(\xi_i^n > 1)^k = \infty$. The result follows from second Borel Cantelli Lemma.