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1 Martingales

(Ω,B, P ) is a probability space.

Definition 1. (Filtration) A filtration F = {Fn}n≥0 is a collection of increasing sub-σ-
fields such that for m ≤ n, we have Fm ⊂ Fn.

Definition 2. (Adaptation) A sequence of random variables X = {Xn} is adapted if for
all n, Xn is Fn measurable.

Definition 3. (Martingales) An adapted pair (Xn,Fn) is called sub / super / martingale
if

1. Xn ∈ L1(P ) for all n

2. EXn+1 | Fn ≥ / ≤ / = Xn a.e. [P ].

Remark 1. a. Xn is n.n.g, L2 sub-martingale, then X2
n is L1 sub-martingale.

b. Xn martingale, φ is a convex function. Then if φ(Xn) is L1, then φ(Xn) is a sub-
martingale.

c. Xn is a sub-martingale, φ is convex, non-decreasing (say |x|), then φ(Xn) is a sub-
martingale.

Example:

1. {ξn} i.i.d mean 0, Sn =
∑n

i=1 ξi,Fn = σ(ξ1, . . . , ξn) = σ(S0, . . . , Sn), then (Sn,Fn) is
a martingale. (For a sequence of random variables {Xn}, Fn = σ(X0, X1, . . . , Xn) is
called a natural filtration. )

Theorem 1. (Xn,Fn) is a martingale. φ : R 7→ R is convex and φ(Xn) ∈ L1 for all n.
Then (φ(Xn),Fn) is a sub-martingale.

Proof. (Use Jensen’s Inequality).

Properties:

1. {Xn} is a martingale. Then |Xn| is a sub-martingale.
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2. {Xn} is a Lp-martingale for p > 1. Then {|Xn|p} is a sub-martingale.

3. {Xn} is a sub-martingale. Then {X+
n } is a sub-martingale.

4. {Xn} is a non-negative Lp submartingale, p > 1. Then {Xp
n} is a sub-martingale.

Example:

1. Suppose (Xn,Fn) is an adapted L1 sequence and E(Xn+1 | Fn) = anXn. How to
convert it to a martingale?
Let Zn = cnXn be a martingale. Then E(Zn+1 | Fn) = cn+1anXn which should be
equal to cnXn. Hence we should have cn+1/cn = a−1

n for all n. Taking c0 = 1, we
have cn =

∏n
i=1 a

−1
i . Hence Xn/

∏n
i=1 ai is a martingale. (Discussed in class. The

case of E(Xn+1 | Fn) = anXn + bn left as an exercise).

2. Suppose ([0, 1),B, P ) be a probability space and Q be another probability measure
such that Q� P . Let

F0 = {φ, [0, 1)}
Fn = σ({[r2−n, (r + 1)2−n) : 0 ≤ r ≤ 2n − 1})

called a dyadic filtration. Clearly σ(∪Fn) = B and Xn(ω) = Q(A)/P (A) where A is
an Fn-atom containing ω. Clearly, Xn is Fn-measurable since Xn is constant on Fn
atoms. It is easy to check that (Xn,Fn) is a martingale. (Discussed in class).

1.1 Doob’s maximal inequalities

Theorem 2. Let (Xj ,Fj)0≤j≤n is a sub-martingale and λ ∈ R. Then

1. λP [max0≤j≤nXj > λ] ≤
∫

maxXj>λ
XndP ≤ E |Xn|.

2. λP [min0≤j≤nXj ≥ λ] ≤
∫

minXj≤λXndP − E(Xn −X0) ≥ E(X0)− E |Xn|.

Proof. Proof of a.) Let

A0 = [X0 > λ] ∈ F0

A1 = [X0 ≤ λ,X1 > λ] ∈ F1

...

An = [X0 ≤ λ, . . . ,Xn−1 ≤ λ,Xn > λ] ∈ Fn.
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Then [maxXj > λ] = ∪nj=0Aj and

λP [maxXj > λ] =

n∑
j=0

λP (Aj) ≤
n∑
j=0

∫
Aj

λdP ≤
n∑
j=0

∫
Aj

XjdP =

n∑
j=0

∫
Aj

XndP =

∫
maxXj>λ

XndP,

where the penultimate inequality follows from the fact that since E(Xn | Fj) ≥ Xj ≡∫
AE(Xn | Fj)dP ≥

∫
AXjdP for all A ∈ Fj . Hence

∫
AXndP ≥

∫
AXjdP for all A ∈ Fj .

Proof of b.)

A0 = [X0 ≤ λ] ∈ F0

A1 = [X0 > λ,X1 ≤ λ] ∈ F1

...

An = [X0 > λ, . . . ,Xn−1 > λ,Xn ≤ λ] ∈ Fn
An+1 = [X0 > λ, . . . ,Xn > λ] ∈ Fn.

Then

EX0 =

∫
X0dP =

n+1∑
j=0

∫
Aj

X0dP

=

∫
A0

X0dP +

∫
Ac

0

X0dP

≤ λP (A0) +

∫
Ac

0

X1dP

≤ λP (A0) +

∫
A1

X1dP +

∫
{A0∪A1}c

X1dP

≤ λP (A0 ∪A1) +

∫
{A0∪A1}c

X2dP

...

≤ λP (minXj ≤ λ) +

∫
An+1

XndP

= λP (minXj ≤ λ) +

∫
XndP −

∫
Ac

n+1

XndP.

This implies λP [min0≤j≤nXj ≤ λ] ≥
∫

minXj≤λXndP − E(Xn −X0) ≥ E(X0)− E |Xn|.

2 Convergence of Martingales

Goal: What conditions do we need so that an L1 bounded martingale converges in L1?
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Definition 4. A subset S ⊂ L1 is called uniformly integrable if given ε > 0, there exists
c > 0 such that supf∈S

∫
|f |>c |f | dP < ε.

Definition 5. A subset S ⊂ L1 is called L1 bounded if supf∈S E |f | <∞.

Examples:

1. Any finite L1-subset is uniformly integrable.

2. If S is dominated by an L1 function, then S is uniformly integrable.

3. Any uniformly integrable L1 subset is L1 bounded. (Converse is not true in general:
construct an L1 bounded subset which is not uniformly integrable (Discussed in class).

Theorem 3. S ⊂ L1 is uniformly integrable subset iff:

1. S is L1 bounded.

2. For all ε > 0, there exists δ > 0 such that P (A) < δ, then supS
∫
A |f | < ε.

Proof. if part: Suppose supf∈S E |f | = M <∞. Fix ε > 0. Choose δ from 2. Observe that
supf∈S P (|f | > c) ≤ supf∈S E |f | /c ≤ M/c. Choose c = M/δ with A = {|f | > c} to get
the result.
only if part: Fix ε > 0. Choose c such that supf∈S

∫
|f |>c |f | < ε/2. Then∫

A
|f | dP ≤

∫
A∩|f |≤c

|f |+
∫
|f |>c

|f | < cP (A) + ε/2.

Choose δ = ε/(2c) to get the result.

Theorem 4. f ∈ L1. Let S = {ECf := E(f | C), Ca sub-σ-field ofF}. Then S is
uniformly integrable.

Proof. Observe that∫
|ECf |>c

∣∣ECf ∣∣ ≤ ∫
|ECf |>c

EC |f | =
∫
|ECf |>c

|f | .

So 1. is satisfied. To verify 2., note that

sup
C
P (
∣∣ECf ∣∣ > c) ≤ sup

C

E |f |
c

=
E |f |
c

.
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Choose c large enough such that supC P (
∣∣ECf ∣∣ > c) is sufficiently small to have

∫
|ECf |>c |f | <

ε/2. Observe that for any set A with P (A) < ε/(2c),∫
A

∣∣ECf ∣∣ ≤ ∫
A∩|ECf |≤c

∣∣ECf ∣∣+

∫
|ECf |>c

|f | < cP (A) + ε/2 < ε.

Theorem 5. fn ∈ L1, fn
a.s.→ f . Then {fn} is uniformly integrable iff f ∈ L1 and fn

L1→ f .

Proof. only if part: Fix ε > 0. By Fatou’s Lemma and L1 boundedness of {fn}, f ∈ L1.

Next we show that fn
L1→ f . To that end, observe that

E |fn − f | = E
∣∣fn1|fn|≤c − f1|f |≤c

∣∣+ E
∣∣fn1|fn|>c

∣∣+ E
∣∣f1|f |>c

∣∣ .
Choose c such that

P (|f | = c) = 0, E
∣∣fn1|fn|>c

∣∣ < ε/3, E
∣∣f1|f |>c

∣∣ < ε/2

for all n. Since {ω : |fn(ω)| > c, |fn(ω)| → |f(ω)| = c} ⊂ {|f | = c}, we have

fn1|fn|≤c − f1|f |≤c → 0

Choose N large enough such that for all n ≥ N , E
∣∣fn1|fn|≤c − f1|f |≤c

∣∣ < ε/3 by DCT.
almost surely. Hence for large enough n, E |fn − f | ≤ ε/3.

if part: Assume fn
L1→ f . Then {fn} is L1 bounded and f ∈ L1. Fix ε > 0. Then∫

A
|fn| ≤

∫
A
|fn − f |+

∫
A
|f | .

Choose N such that for all n ≥ N ,
∫
|fn − f | < ε/2 and choose δ0 with P (A) < δ0 implies∫

|f | < ε/2. Then for n ≥ N , P (A) ≤ δ0 implies
∫
A |fn| < ε, implying {fn} uniformly

integrable.

Theorem 6. fn ≥ 0, fn
a.s.→ f , fn, f in L1. Then {fn} is uniformly integrable if and only

if Efn → Ef .

Proof. The only if part follows from Theorem 5.

if part: It is enough to show that fn
L1→ f (This follows from Scheff’s Lemma). Note that

E |fn − f | = Efn + Ef − 2Emin{fn, f}.

Since Efn → Ef by assumption and Emin{fn, f} → Ef by DCT, implying fn
L1→ f .
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Theorem 7. (Xn,Fn)n≥0 is a martingale. Let F∞ = σ(∪n≥0Fn) and supE |Xn| = K.
(E |Xn| ↑ K since |Xn| is a submartingale). Then the following are equivalent.

i. K <∞, Xn
L1→ X∞.

ii. (Xn,Fn)0≤n≤∞ is a martingale.

iii. K <∞, E |X∞| = K.

iv. {Xn}n≥0 is uniformly integrable.

Proof. (Complete verification is left as an exercise).
(i) =⇒ (iv): Since K < ∞, Xn → X∞ a.e. (Since L1 bounded martingale converges

almost surely, using Doobs’s upcrossing inequality). Since Xn
L1→ X∞, from Theorem 5,

{Xn}n≥0 is uniformly integrable.
(iv) =⇒ (i): Since {Xn}n≥0 is uniformly integrable, {Xn}n≥0 is L1 bounded implying

K <∞. Since Xn
a.s→ X∞, Xn

L1→ X∞ by Theorem 5. Hence (i) ⇔ (iv).
(ii) =⇒ (iv): This follows directly from Theorem 4.
(iv) =⇒ (ii): We will infact show (iv), (i) =⇒ (ii). X∞ is the almost sure limit of Xn and
hence Fn measurable for all n <∞ and hence F∞ measurable. Also (i) implies X∞ ∈ L1.
It is enough to check that E(X∞ | Fn) = Xn a.e. We already know that for m > n,
Xn = E(Xm | Fn) a.s. It is enough to show that E(Xm −X∞ | Fn)→ 0 a.e. as m→∞.

We know that Xm
L1→ X∞. Then

E |E[Xm −X∞ | Fn]| ≤ EE[|Xm −X∞| | Fn] = E[|Xm −X∞|]→ 0

as m → ∞, implying E |Xn − E[X∞ | Fn]| = 0 implying Xn = EX∞ | Fn a.e. Hence we
have shown that (i), (ii) and (iv) are equivalent.
(iii) =⇒ (iv): Since |Xn| is a sub-martingale, E |Xn| ↑ K implying E |Xn| ↑ E |X∞|.

By Scheffe’s theorem |Xn|
L1→ X∞. By Theorem 6 {|Xn|} and hence {Xn} is uniformly

integrable. Now we will show that (i) and (iv) implies (iii). Since Xn
L1→ X∞, by Scheffe’s

Lemma and Fatou’s Lemma E |Xn| → E |X∞| <∞. Also E |Xn| ↑ K. Hence K <∞ and
E |X∞| = K.

Theorem 8. (Xn,Fn)0≤n≤N is a non-negative martingale. Let p > 1. Then∥∥∥∥ max
0≤n≤N

Xn

∥∥∥∥
p

≤ p

p− 1
‖XN‖p

Proof. The proof follows from the following Lemma 1 and Doob’s maximal inequality.
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Lemma 1. U, V non-negative random variables. Let λ > 0, P (U > λ) ≤ (1/λ)
∫
U>λ V dP .

Then, for p > 1,

‖U‖p ≤
p

p− 1
‖V ‖p .

Proof.

EUp =

∫ ∞
0

pλp−1P (U > λ)dλ

=

∫ ∞
0

pλp−2

∫
U>λ

V dPdλ

=

∫ ∞
0

pλp−2

∫
Ω
V (ω)1U>λ(ω)dP (ω)dλ

=

∫
Ω
V (ω)

∫ Ω

0
pλp−2dλdP (ω)

=
p

p− 1

∫
Ω
V (ω)Up−1dP =

p

p− 1
E(V Up−1)

≤ p

p− 1
{E(V p)}1/p{EU (p−1)q}1/q

=
p

p− 1
{E(V p)}1/p{EUp}1/q

implying ‖U‖p ≤
p
p−1 ‖V ‖p if U ∈ Lp. Otherwise, work with min{U, n}.

Corollary 1. (Xn,Fn)n≥0 non-negative Lp-bounded sub-martingale. Then X∗ = supXn ∈
Lp (True for Lp bounded martingale with X∗ = sup |Xn|).

Proof. Let X∗N = max0≤n≤N Xn, X∗N ↑ X∗. By MCT, E(X∗N )p ↑ E(X∗)p. Since {Xn} are
Lp bounded,

E(X∗N )p ≤
(

p

p− 1

)p
E |XN |p < M,

implying X∗ ∈ Lp.

Theorem 9. Let p > 1. {Xn} is Lp-bounded martingale or a non-negative sub-martingale.
Then

1. {Xn} is uniformly integrable.

2. Xn
Lp→ X∞.
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Proof. Proof is left as an Exercise.

Remark 2. Counter example to show that one cannot get rid of the non-negativity in case
of sub-martingale. Let ([0, 1),B, λ) be the measure space and Fn is a dyadic filtration. Let

Xn = −2n/21[0,2−n) → 0 a.s. Check that {Xn,Fn} is a sub-martingale. Clearly Xn

L2

6→ 0 as
‖Xn‖2 = 1. Complete verification is left as an Exercise.

3 Example: Two color urn model

Suppose (Xn,Fn) adapted L1-sequence. EXn+1 | Fn = anXn + bn an 6= 0. Find the
associated martingale. Start with (W0, B0) balls with 0 ≤W0, B0 and W0 +B0 = 1. At n
th stage, Wn−1 white, Bn−1 black balls are available with Wn−1 +Bn−1 = n. Draw a ball
at random and R2×2 is a stochastic matrix. If you see a white ball, add R11 white and R12

black balls. If you see black ball, add according to second row. Xn+1 is a vector which is
(1, 0)′ if white is drawn in nth stage, (0, 1)′ if black. Zn = (Wn, Bn). Since Zn is bounded
for each fixed n, Zn ∈ L1. Observe that

Zn+1 = Zn +X ′n+1R.

Find the associated martingale. (Discussed in class).

4 Stopping Time

F = (Fn)n≥0 is a filtration. τ : Ω 7→ {0, 1, 2, . . . ,∞} is a measurable random time. σ-
field on {0, 1, . . . ,∞} is P({0, 1, . . . ,∞}). A random time is called a stopping time if
[τ = n] ∈ Fn for all n ∈ {0, 1, 2, . . . ,∞}.
Example: Time at which one starts smoking is a stopping time. However, the time at
which one stops smoking is not a stopping time.
[τ = n] is equivalent to [τ ≤ n] ∈ Fn for all n ∈ {0, 1, 2, . . . ,∞}. This is easy to see for
discrete dime. For continuous time [τ ≤ t] ∈ Ft for all t ≥ 0. [τ = t] = [τ ≤ t] − ∪n[τ ≤
t− 1/n : n ∈ N].

In the discrete time case [τ < n] ∈ Fn, [τ ≤ n− 1] ∈ Fn−1 ⊂ Fn.

Theorem 10. For discrete parameter spaces [τ = n] ∈ Fn ⇔ [τ ≤ n] ∈ Fn ⇔ [τ < n] ∈
Fn.

Definition 6. (Xn,Fn) adapted sequence. τ is a random time, [τ < ∞] = Ω. Stopping
random variable Xτ (ω) = Xτ(ω)(ω).

Theorem 11. Xτ is B measurable.
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Proof. For B ∈ B(R), X−1
τ (B) = ∪∞n=0[Xτ ∈ B] ∩ [τ = n] = ∪∞n=0[Xn ∈ B] ∩ [τ = n].

Definition 7. (Stopping σ-field) Fτ = {A ∈ B : A ∩ [τ = n] ∈ Fn for all n}

Clearly Xτ is Fτ measurable.

4.1 Properties

1. τ ≡ σ ⇒ Fτ = Fσ

2. τ, σ are stop times, then [τ < σ], [τ > σ], [τ = σ] are all Fτ ∩ Fσ-measurable. ([τ <
σ] ∩ [τ = n] = [σ > n] ∩ [τ = n] ∈ Fn)

3. τ is Fτ measurable. Then [τ = k] ∩ [τ = n] ∈ Fn for k ≤ n.

4. τ ≤ σ, then Fτ ⊂ Fσ.

5. (Xn,Fn)0≤n≤N is a (sub)-martingale. τ ≤ σ is a stopping time. (Xτ , Xσ) is a (sub)-
martingale corresponding to (Fτ ,Fσ).

4.2 Doob’s Upcrossing Inequality

{Xn}0≤n≤N , a < b. Define

τ0 = 0

τ1 = inf{n : Xn ≤ a}
...

τ2k+1 = inf{n ≥ τ2k : Xn ≤ a}
τ2k+2 = inf{n ≥ τ2k+1 : Xn ≥ b}

with the convention that inf{φ} = N . Define

U({Xn}0≤n≤N ; [a, b]) = sup{l : Xτ2l−1
≤ a < b ≤ Xτ2l}

U({Xn}n≥0; [a, b]) = ↑ lim
N
{l : Xτ2l−1

≤ a < b ≤ Xτ2l}.

Lemma 2. τis are stop times.

Proof. τ0, τ1 are stop times. Assume τ2k is a stop time. Then

{τ2k+1 = i} = ∪i−1
j=0{τ2k+1 = i, τ2k = j}

{τ2k+1 = i, τ2k = j} = {τ2k = j} ∩ {Xj+1 > a} ∩ · · · ∩ {Xi−1 > a} ∩ {Xi ≤ a} ∈ Fi
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For an adapted sequence, {τk} forms a stopping time, which implies sup{l : Xτ2l−1
≤ a <

b ≤ Xτ2l} is measurable implying U({Xn}n≥0; [a, b]) is measurable.

Theorem 12. (Doob’s Upcrossing Inequality). {Xn,Fn} is a submartingale and a < b.
Then

EU({Xn}0≤n≤N ; [a, b]) ≤ E[(XN − a)+]− E[(X0 − a)+]

b− a

≤ E |XN |+ |a|
b− a

.

Corollary 2. An L1-bounded martingale converges almost surely.

5 Problem

A branching process is defined as follows: We start with one member, namely the popula-
tion size is Z0 = 1. Let ξni , i = 1, 2, . . . , n denote the number of children of ith individual
in the nth generation. Assume ξni are independent with common mean µ > 0. Let Zn
denote the population size in the nth generation. Let pk = P (ξni = k), k ≥ 0, µ = E(ξni ).
Zn+1 =

∑Zn
i=1 ξ

n
i . It is easy to see that Xn = Zn/µ

n is a martingale.

1. Does {Xn} has a limit?
Since Xn is non-negative, {Xn} converges almost everywhere to an integrable random
variable X.

2. If µ < 1, Zn = 0 almost surely for large n.
Zn = Xnµ

n. Since Xn
a.s.→ X and µn → 0, Zn

a.s.→ 0. There exists a P -null set N
such that for all ω /∈ N , Zn(ω) → 0. Given ε = 1/2, there exists N0(ω) such that
Zn(ω) < ε for all n ≥ N0(ω) implying Zn(ω) = 0 for all n ≥ N0(ω). This implies Zn
converges to 0 with probability 1 for all large n.

3. If µ < 1, Xn = 0 almost surely for large n.∑∞
n=1 P (Xn > 0) =

∑∞
n=1 P (Zn > 0) =

∑∞
n=1 P (Zn ≥ 1) ≤

∑∞
n=1E(Zn) =∑∞

n=1 µ
n < ∞. Hence by Borel Cantelli Lemma P (lim supAn) = 0 which means

P (∩∞n=1 ∪k≥n Ak) = 0 implying P (An occurs infinitely often) = 0 implying P (Xn =
0 for all large n) = 1. Hence X0 = 0 eventually with probability 1.

4. If µ = 1 and P (ξ1
1 > 1) > 0, then Zn → 0 a.s.

Zn non-negative martingale, hence Zn → Z∞ a.e and Z∞ ∈ L1. It is enough to show
that P (Z∞ = k) = 0 for all k ≥ 1, or in other words P (Zn = k eventually) = 0.
Observe that P (Zn = k eventually) ≤ P (one of ξn1 , . . . , ξ

n
k ≤ 1, eventually). It is

enough to show that P (ξn1 , . . . , ξ
n
k > 1, infinitely often) = 1. To that end, note that∑∞

n=1 P (ξni > 1)k =∞. The result follows from second Borel Cantelli Lemma.
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