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1 Martingales

(Q, B, P) is a probability space.

Definition 1. (Filtration) A filtration F = {F,}n>0 is a collection of increasing sub-o-
fields such that for m < n, we have F,,, C F,.

Definition 2. (Adaptation) A sequence of random variables X = {X,,} is adapted if for
all n, X, is F,, measurable.

Definition 3. (Martingales) An adapted pair (X,,, F,,) is called sub / super / martingale
if

1. X,, € Ly(P) for all n
2. EXpi1 | Fn>/ < /=X, ae [P]
Remark 1. a. X, is n.n.g, Lo sub-martingale, then X2 is L; sub-martingale.

b. X,, martingale, ¢ is a convex function. Then if ¢(X,) is L1, then ¢(X,) is a sub-
martingale.

c. X, is a sub-martingale, ¢ is convex, non-decreasing (say |x|), then ¢(X,,) is a sub-
martingale.

Example:
1. {&}iidmean 0, S, =>" 1 &, Fn=0(&1,.... &) = (S0, ..., 5n), then (S, Fp) is

a martingale. (For a sequence of random variables {X,,}, F, = 0(Xo, X1,...,X,) is
called a natural filtration. )

Theorem 1. (X,,F,) is a martingale. ¢ : R — R is convex and ¢(X,) € L; for all n.
Then (¢(X,,), Fpn) is a sub-martingale.

Proof. (Use Jensen’s Inequality). O
Properties:

1. {X,} is a martingale. Then |X,,| is a sub-martingale.



2. {X,} is a Ly-martingale for p > 1. Then {|X,, |’} is a sub-martingale.
3. {X,} is a sub-martingale. Then {X, } is a sub-martingale.

4. {X,} is a non-negative L, submartingale, p > 1. Then {X},} is a sub-martingale.
Example:

1. Suppose (X, F,) is an adapted L; sequence and E(X, 1 | F,) = anX,. How to
convert it to a martingale?
Let Z,, = ¢, X,, be a martingale. Then E(Z,41 | Fp) = ¢nt1a, X, which should be
equal to ¢, X,,. Hence we should have ¢,,11/¢c, = a, L for all n. Taking ¢y = 1, we

have ¢, = [[I-, a;'. Hence X,/ [/, a; is a martingale. (Discussed in class. The

case of E(X,11 | Fn) = anXy + by, left as an exercise).

2. Suppose ([0,1), B, P) be a probability space and () be another probability measure
such that @ < P. Let

Fo={¢,0,1)}
Fo=o({r2™" (r+1)27"):0<r <2" - 1})

called a dyadic filtration. Clearly o(UF,) = B and X, (w) = Q(A)/P(A) where A is
an Fp-atom containing w. Clearly, X,, is F,-measurable since X,, is constant on F,
atoms. It is easy to check that (X, F,) is a martingale. (Discussed in class).

1.1 Doob’s maximal inequalities

Theorem 2. Let (X;, Fj)o<j<n is a sub-martingale and A € R. Then

1. )\P[maXOSjgn Xj > )\} < X,dP < E‘Xn|

max X ;>\

2. AP[ming<j<n, X; > A] < XndP — E(X, — Xo) > E(Xy) — E|X,|.

min X; <A
Proof. Proof of a.) Let

A(]:[X0>)\]E.F[)
Alz[Xog)\,X1>)\]Ef1

Ap=[Xo <A ..., Xno1 A Xy > N € Fon.



Then [max X; > A\] = U7_y4; and

AP[max X; > A = > AP(4;) < Z/ AP < Z/ X;dP = Z/ X, dP = / X, dP,
j*O ]:0 A]' ]:0 A]‘ j:0 Aj maij>)\

where the penultimate inequality follows from the fact that since E(X, | F;) > X; =
JLE(Xy | Fj)dP > [, X;dP for all A € F;. Hence [, X,dP > [, X;dP for all A € F;.
Proof of b.)

Aoz[X()S)\]EFO
Alz[X0>)\,X1§>\]€F1

An:[X0>/\>-"7Xn71>)\7Xn§)\]€~/—"n
A1 =[Xo> \,..., X, > A\ € Fp.
Then

EX, = / XodP = Z / XodP
j=0" 4

= XodP + XodP
Ao Ag

< AP(Ag)+ [ XidP
A4

)\P(AQ) + X1dP +/ X1dP
Ay {AoUA; }e

IN

< )\P(A() U A1) + / XodP
{A()UAl}C

< AP(min X; <)) —I—/ XndP
An+1
= AP(minX; <\)+ /XndP —/ X, dP.
Ant

This implies AP[ming<j<p X; < A] > XndP — E(X, — Xo) > E(Xo) — E | Xl

O]

min X; <A

2 Convergence of Martingales

Goal: What conditions do we need so that an L; bounded martingale converges in L17



Definition 4. A subset S C Ly is called uniformly integrable if given € > 0, there exists

¢ >0 such that supscg flf\>c |f|dP < e.

Definition 5. A subset S C Ly is called Ly bounded if supseg E|f| < oc.
Examples:

1. Any finite Li-subset is uniformly integrable.
2. If S is dominated by an L; function, then S is uniformly integrable.

3. Any uniformly integrable L; subset is L; bounded. (Converse is not true in general:
construct an Ly bounded subset which is not uniformly integrable (Discussed in class).

Theorem 3. S C L1 is uniformly integrable subset iff:

1. S is L1 bounded.

2. For all € > 0, there exists 6 > 0 such that P(A) <6, then supg [, |f| < e.

Proof. if part: Suppose supscg F'[f| = M < oo. Fix € > 0. Choose d from 2. Observe that
supreg P(|f| > ¢) < supseg E|f| /e < M/c. Choose ¢ = M /6 with A = {[f| > c} to get
the result.

only if part: Fix € > 0. Choose ¢ such that supcg ~f|f\>c |f| < €/2. Then

dP P(A €/2.
[ﬁﬁ é[;ﬂQJWﬁADJﬂ<c (A) +¢/2

Choose § = €/(2¢) to get the result. O

Theorem 4. f € Ly. Let S = {E°f := E(f | C), Ca sub-o-field of F}. Then S is
uniformly integrable.

Proof. Observe that

I - i
|ch|>c |ch\>c |ch\>c

So 1. is satisfied. To verify 2., note that

Elfl _Elfl

supP(!ECﬂ > ¢) < sup ——
c c c c



Choose ¢ large enough such that sup, P( ‘ ECf ‘ > c) is sufficiently small to have f‘ EC f|>c lfl <
€/2. Observe that for any set A with P(A) < €¢/(2¢),

IREEEY) 2+ [ in<er@) o<
A AN|EC f|<c |E€ f|>c

]
Theorem 5. f, € L1, f,, ©3 f. Then {f.} is uniformly integrable iff f € L1 and f, Ly f.

Proof. only if part: Fix € > 0. By Fatou’s Lemma and L; boundedness of {f,}, f € L.
Next we show that f, ! f- To that end, observe that

Elfn = fl=E|faljg<e = flipizel + E|falipaise] + E 115l
Choose ¢ such that
P(Ifl=¢) =0,E|fulifysc| < €/3. E|f1jf5c| < €/2
for all n. Since {w : |fn(w)| > ¢, |fu(w)| = |f(w)] = c} C {|f] = ¢}, we have

Jalifai<e = flifj<e = 0

Choose N large enough such that for all n > N, FE |fn1\fn\§c — fl\f|§c‘ < €¢/3 by DCT.
almost surely. Hence for large enough n, E|f, — f| < €/3.

if part: Assume f, Iy f. Then {f,} is L; bounded and f € Ly. Fix € > 0. Then

Jaml< [ =+ [ 1.

Choose N such that for all n > N, [|f, — f| < €/2 and choose &y with P(A) < & implies
J1f] < €/2. Then for n > N, P(A) < & implies [, |fn] < €, implying {f,} uniformly
integrable.

O]

Theorem 6. f,, >0, f, “X f, fn,f in L1. Then {f,} is uniformly integrable if and only

Proof. The only if part follows from Theorem 5.
if part: It is enough to show that f, ! f (This follows from Scheff’s Lemma). Note that

Elfn = fl=Efn+ Ef —2Emin{f,, f}.

Since Ef,, — Ef by assumption and F min{ f,, f} — Ef by DCT, implying f, Ly fo O



Theorem 7. (X, Fn)n>0 95 a martingale. Let Foo = 0(Up>0Fn) and sup B | X, | = K.
(E|X,| 1 K since | X,,| is a submartingale). Then the following are equivalent.

i. K < oo, Xp 2 X0
it. (Xn, Fn)o<n<oo S a martingale.
iii. K < 00, E|Xs| = K.

iv. {Xn}n>o is uniformly integrable.

Proof. (Complete verification is left as an exercise).
(i) = (iv): Since K < o0, X;, = Xo a.e. (Since L; bounded martingale converges

almost surely, using Doobs’s upcrossing inequality). Since X, 2! X, from Theorem 5,
{Xy }n>0 is uniformly integrable.
(iv) = (i): Since {X,}n>0 is uniformly integrable, {X,}n>0 is L1 bounded implying

K < co. Since X, %5 Xoo, Xn 3 Xo by Theorem 5. Hence (i) < (iv).

(i) = (iv): This follows directly from Theorem 4.

(iv) = (ii): We will infact show (iv), (i) = (ii). X is the almost sure limit of X,, and
hence F,, measurable for all n < co and hence F., measurable. Also (i) implies Xo € Lj.
It is enough to check that EF(X | Fn) = X, a.e. We already know that for m > n,
Xn = E(Xy, | Fn) a.s. It is enough to show that E(X,, — Xo | Fn) — 0 a.e. as m — oo.

We know that X, L# Xo. Then
E|EXm — Xeo | Full S EE[| X — Xool | Fu] = Bl Xm — Xo|] = 0

as m — oo, implying F |X,, — E[X | F»]| = 0 implying X,, = EX | F,, a.e. Hence we
have shown that (i), (ii) and (iv) are equivalent.
(iii) = (iv): Since |X,| is a sub-martingale, F'|X,| T K implying F |X,| 1 E|Xo|.

By Scheffe’s theorem |X,,| 5 oX.. By Theorem 6 {|X,|} and hence {X,} is uniformly

integrable. Now we will show that (i) and (iv) implies (iii). Since X, 2\ X0, by Scheffe’s
Lemma and Fatou’s Lemma E | X,,| - E |X| < c0. Also F | X,| T K. Hence K < oo and
E|Xe| = K. O

Theorem 8. (X, F,,)o<n<n IS a non-negative martingale. Let p > 1. Then

max X,
0<n<N

P
< —
p— XN,

Proof. The proof follows from the following Lemma 1 and Doob’s maximal inequality. [J



Lemma 1. U,V non-negative random variables. Let A >0, P(U > X) < (1/X) [;;., VdP.
Then, forp > 1,

p
Ul < ——1V]|,.
| ||p_p_1|\ Iy
Proof.

EUP —/ pAPTIP(U > N)d)
0

= / pAP2 / VdPd\
0 U>\

_ /0 A2 /Q V(@) 1yo(w)dP(w)dA

— /Q V(w) /0 ’ PN 2dNdP(w)

p —1 p

- 2 [ ywurtap= -2
p—1Jg ) p-

< p%l{E(Vp)}l/p{EU(p_l)q}l/q

= LBV rBUry e

E(Wvurh

implying |U||, < ;2 [V, if U € Ly. Otherwise, work with min{U, n}. O

Corollary 1. (X, Fp,)n>0 non-negative Ly-bounded sub-martingale. Then X* = sup X,, €
L, (True for L, bounded martingale with X* = sup|Xy|).

Proof. Let X% = maxo<n<n Xpn, Xy T X*. By MCT, E(X})P T E(X*)P. Since {X,,} are
L,, bounded,

p
B(X3) < (791) B Xyl < M,
o

implying X™* € L,,. O

Theorem 9. Letp > 1. {X,,} is L,-bounded martingale or a non-negative sub-martingale.
Then

1. {X,} is uniformly integrable.

2 X, 2 x...



Proof. Proof is left as an Exercise. O

Remark 2. Counter example to show that one cannot get rid of the non-negativity in case
of sub-martingale. Let ([0,1),B,\) be the measure space and F, is a dyadic filtration. Let

Lo
X, = —2"/21[072771) — 0 a.s. Check that {X,,F,} is a sub-martingale. Clearly X,, />0 as
| Xnll, = 1. Complete verification is left as an Exercise.

3 Example: Two color urn model

Suppose (X, F,) adapted Li-sequence. EXpy1 | Fnn = an Xy + by an # 0. Find the
associated martingale. Start with (Wy, By) balls with 0 < Wy, By and Wy + By = 1. At n
th stage, W, _1 white, B,,_1 black balls are available with W,,_1 + B,_1 = n. Draw a ball
at random and Royo is a stochastic matrix. If you see a white ball, add Ry1 white and Rqo
black balls. If you see black ball, add according to second row. X, ;1 is a vector which is
(1,0)" if white is drawn in nth stage, (0,1)" if black. Z, = (W,, By,). Since Z, is bounded
for each fixed n, Z, € L. Observe that
Znt1=2Zn+ X, 1 R.

n

Find the associated martingale. (Discussed in class).

4 Stopping Time

F = (Fu)n>o is a filtration. 7 : Q — {0,1,2,...,00} is a measurable random time. o-
field on {0,1,...,00} is P({0,1,...,00}). A random time is called a stopping time if
[r=n] € F, foralln € {0,1,2,...,00}.

Example: Time at which one starts smoking is a stopping time. However, the time at
which one stops smoking is not a stopping time.

[T = n] is equivalent to [T < n] € F, for all n € {0,1,2,...,00}. This is easy to see for
discrete dime. For continuous time [7 < ¢] € F; forall t > 0. [t =t] = [7 < t] — Uy <
t—1/n:neN].

In the discrete time case [T < n] € F,, [t <n—1] € F_1 C Fy.

Theorem 10. For discrete parameter spaces [T =n| € Fp, < [r <n| € F, & [T <n] €
F.

Definition 6. (X, F,) adapted sequence. T is a random time, [T < oo] = Q. Stopping
random variable X (w) = X (w).

Theorem 11. X, is B measurable.



Proof. For B € B(R), X;Y(B) =UX ([X; € BlN[r=n]=UX([X, € Bln[r=n]. O

Definition 7. (Stopping o-field) Fr ={A € B: AN[r=n] € F, foral n}

Clearly X is F, measurable.

4.1 Properties

l.r=o=F=F,

2. 7,0 are stop times, then [T < o], [T > o], [T = o] are all F; N F,-measurable. ([T <
olNjr=n]=lc>n|N[r=n]€F,)

3. 7 is F,r measurable. Then [r = k] N [r = n] € F, for k < n.
4. 7 < o, then F, C F,.

5. (Xn, Fn)o<n<n is a (sub)-martingale. 7 < o is a stopping time. (X;, X,) is a (sub)-
martingale corresponding to (Fr, Fs).

4.2 Doob’s Upcrossing Inequality

{Xn}o<n<n,a < b. Define

™ = 0

= inf{n:X, <a}
T2k+1 = mf{n > Tk - Xn < CL}
Tokte = inf{n > 7oy Xy > b}

with the convention that inf{¢} = N. Define

U({XH}OSHSN; [av b]) = SUP{Z : X721—1 <a<b< XTzl}
U({XR}NZU; [CL, b]) =1 h]{[n{l : XTzl—l <a<b< XTzl}'

Lemma 2. 7;s are stop times.

Proof. 79, are stop times. Assume 7o, is a stop time. Then

{rop1 =1} = Ué;%{TzkH =i, T =J}
{rkri =i, =7} = {m=7rn{Xj1>afn---N{X;1 >a}N{X; <a} € F

O



For an adapted sequence, {71} forms a stopping time, which implies sup{l : X

T21—1 S a <
b < X, } is measurable implying U({X,, },>0; [a, b]) is measurable.

Theorem 12. (Doob’s Upcrossing Inequality). {X,,Fn} is a submartingale and a < b.
Then
E[(Xy —a)'] - E[(Xo — a)*]
b—a
E|Xn|+ |a|
- b—a

EU({Xn}o<n<n;[a,b]) <

Corollary 2. An Li-bounded martingale converges almost surely.

5 Problem

A branching process is defined as follows: We start with one member, namely the popula-
tion size is Zg = 1. Let £',i = 1,2,...,n denote the number of children of ith individual
in the nth generation. Assume ' are independent with common mean ;o > 0. Let Z,
denote the population size in the nth generation. Let py, = P(§]' = k), k > 0,u = E(&").
Zny1 = EZZ:”l & It is easy to see that X, = Z,,/u" is a martingale.

1. Does {X,} has a limit?
Since X, is non-negative, {X,,} converges almost everywhere to an integrable random
variable X.

2. If p <1, Z, = 0 almost surely for large n.
Zn = Xpu™. Since X, 2% X and ut — 0, Z, 2% 0. There exists a P-null set N
such that for all w ¢ N, Z,(w) — 0. Given € = 1/2, there exists Ny(w) such that
Zn(w) < € for all n > Ny(w) implying Z,,(w) = 0 for all n > Ny(w). This implies Z,
converges to 0 with probability 1 for all large n.

3. If p <1, X,, =0 almost surely for large n.
Do P(Xn > 0) = 37, P(Zy > 0) = 37, P(Zy 2 1) < 37, E(Zy) =
oo " < oo. Hence by Borel Cantelli Lemma P(lim supA,) = 0 which means
PN, Ug>n Ag) = 0 implying P(A,, occurs infinitely often) = 0 implying P(X,, =
0 for all large n) = 1. Hence Xy = 0 eventually with probability 1.

4. If p=1and P(& > 1) >0, then Z, — 0 ass.
Zy, non-negative martingale, hence Z,, -+ Z, a.e and Z,, € L. It is enough to show
that P(Zs = k) = 0 for all £ > 1, or in other words P(Z, = keventually) = 0.
Observe that P(Z, = keventually) < P(one of{7, ..., & < 1, eventually). It is
enough to show that P(&7, ..., &} > 1, infinitely often) = 1. To that end, note that
> P(&" > 1)k = 0o. The result follows from second Borel Cantelli Lemma.
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