
Review

January 4, 2016 Debdeep Pati

1 Measure and Integral

Definition 1. (Measurable space and measurable sets). Let Ω be the universal set (sample
space) with σ-field A. Then (Ω,A) is called measurable space and the subsets of A are
called measurable sets.

Definition 2. (Measure or probability measure). A non-negative σ-additive set function
µ on a σ-algebra is called measure. It is called probability measure if µ(Ω)(= P (Ω)) = 1.

Definition 3. A Lebesgue-Stieljes measure on R is a measure µ on B(R) such that µ(I) <
∞ for each bounded interval I. A distribution function on R is a map F : R → R that is
increasing (a < b implies F (a) ≤ F (b)) and right continuous limh↓0 F (x+ h) = F (x)).

Theorem 1. Let µ be a Lebesgue-Stieljes (LS) measure on R. Let F : R→ R be defined,
up to an additive constant, F (b)− F (a) = µ(a, b]. Then F is a distribution function.

Theorem 2. Let F be a distribution function on R, and let µ(a, b] = F (b)− F (a), a < b.
There is a unique extension of µ to a LS measure on R.

Definition 4. (Measurable function). The function f : Ω1 → Ω2 is measurable relative to
the σ-algebras Ai, i = 1, 2 iff f−1(A) ∈ A1 for all A ∈ A2, i.e., f−1(A2) = A1.

Definition 5. A measurable function f : (Ω,A)→ (R,B) is called Borel measurable.

Theorem 3. Let f1, f2, . . . , be Borel measurable and fn → f . Then f(= lim fn) is Borel
measurable. (The same applies to lim sup and lim inf.)

Theorem 4. Any Borel-measurable function f ≥ 0 is the limit of an increasing sequence
of simple functions.

Definition 6. (Integral). Let µ be a measure on a σ-algebra A.

a. For f = 1A, µf =
∫
fdµ =

∫
1Adµ = µA.

b. For f =
∑n

k=1 αk1Ak
, set µf =

∫ ∑n
k=1 αk1Ak

dµ =
∑n

k=1 αkµAk provided +∞ and −∞
do not occur in the sum together.

c. f ≥ 0 is Borel-measurable, set µf = sup{µs : s is simple, 0 ≤ s ≤ f}.

d. For Borel-measurable f , set µf = µf+ − µf− provided ∞−∞ can be excluded. f is
called integrable if µf is finite.
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Theorem 5. (Radon-Nikodym theorem). Let µ be a σ-finite measure and ν be a (σ-
finite) signed measure on A with ν � µ. Then there is a measurable function f : Ω → R
with

νA = µ1Af =

∫
A
fdµ

for all A ∈ A. If g is another function with νA = µ1Ag, then, f = g everywhere. f is
called µ-density or Radon-Nikodym density.

Definition 7. (Measurable rectangles and product-σ-algebra). Let Ω = Ω1×· · ·×Ωn be the
cartesian product of Ωk, k = 1, 2, . . . , n, and Ak the associated σ-algebras. A measurable
rectangle in Ω is a set

×ni=1Ai = A1 × · · · ×An, Ak ∈ Ak.

The σ-algebra generated by the measurable rectangles is called product σ-algebra, A =
⊗Ak, and (Ω,A) is called product measurable space.

Theorem 6. (Fubini’s theorem). Let (Ωk,Ak, µk), k = 1, 2 be σ-finite measure spaces
and let f ∈ L1(Ω1 × Ω2,A1 ⊗ A2, µ), where µ = µ1 ⊗ µ2 denotes the product mea-
sure (with µ(A1 × A2) = µ1(A1)µ2(A2)). Then there are sets B1 and B2 such that
µk(Ωk\Bk) = 0, for k = 1, 2, and (a) for ω1 ∈ B1, f(ω1, ·) ∈ L1(Ω2,A2, µ2) and g1(ω1) =∫

Ω2
f(ω1, ω2)µ2(dω2)1B1(ω1) is A1 measurable; (b) for ω2 ∈ B2, f(·, ω2) ∈ L1(Ω1,A1, µ1)

and g2(ω2) =
∫

Ω1
f(ω1, ω2)µ1(dω1)1B2(ω2) is A2 measurable.

In particular,∫
Ω1

∫
Ω2

f(ω1, ω2)µ2(dω2)µ1(dω1) =

∫
Ω2

∫
Ω1

f(ω1, ω2)µ1(dω1)µ2(dω2) =

∫
Ω1×Ω2

fd(µ1 ⊗ µ2).

2 Convergence of random variables and strong laws of large
numbers

In the following, we consider the probability space (Ω,A, P ).

Definition 8. A Borel measurable function X : Ω → Rn is caled a random vector (or
random variable if n = 1). The probability measure PX on Bn induced by X is defined by

PXB = P (X ∈ B) = P{ω : X(ω) ∈ B} = PX−1B,B ∈ Bn.

Definition 9. Consider random variables X,X1, X2, . . . ∈ Lp, p > 0.
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a. Xn convergence to X in Lp (in p-th norm or “in pth mean”), Xn → X in Lp, if
‖Xn −X‖p = E(|Xn −X|p)1/p → 0

b. Xn converges to X in probability, Xn
p→ X, if ∀ε > 0, P (|Xn −X| ≥ ε)→ 0 as n→∞.

c. Xn converges to X almost surely if there is a N ⊂ Ω with PN = 0 such that for all
ω /∈ N , Xn(ω)→ X(ω) (or P{(limn→∞Xn = X)} = 1).

Remark 1. Xn
Lp→ X ⇒ Xn

p→ X, Xn
a.s.→ X ⇒ Xn

p→ X. The reverse is not always true.

Theorem 7. (SLLN). Suppose that X1, X2, . . . ∈ L2 are independent and (bn)n∈N is a
sequence with 0 < bn ↑ ∞. If

∑∞
n=1 Var(Xn)/b2n <∞, then, for Sn =

∑n
i=1Xi,

Sn − ESn
bn

n→∞→ 0

almost surely. A special case isX1, X2, . . . are i.i.d and bn = n. Then Sn/bn = (1/n)
∑n

i=1Xi
a.s.→

EX1.

Remark 2. Marcinkiewics-Zygmund SLLNs. Suppose X1, X2, . . . are identically dis-
tributed random variables and p ∈ (0, 2). Then

a. If X1, X2, . . . , are pairwise independent and (Sn − nc)/n1/p converges a.s. for some
c ∈ R, then E |X1|p <∞.

b. If E |X1|p <∞ and X1, X2, . . . are independent, then (Sn−nc)/n1/p converges a.s. with
any c ∈ R if p ∈ (0, 1) and c = EX1 if p ∈ [1, 2).

Corollary 1. (Kolmogorov’s SLLN). Suppose X1, X2, . . . , are i.i.d. random variables.
Then (Sn − nc)/n converges a.s. for some c ∈ R if and only if E |X1| <∞, in which case,
c = EX1.

Definition 10. Consider probability measures P, P1, P2, . . . on B. Then Pn converges to P ,
written as Pn ⇒ P , if for all bounded continuous functions f , Pnf → Pf . If X,X1, X2, . . .
are random variables with PXn ⇒ PX , then we say Xn converges to X in distribution and

write Xn ⇒ X or Xn
d→ X.

Remark 3. Xn
p→ X ⇒ Xn

d→ X. The reverse is in general not true.

3 Convergence of integrals and expectations

We begin with (Ω,A, µ) (which contains µ = P as a special case).
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Theorem 8. (Beppo Levi’s monotone convergence theorem). Let 0 ≤ f1 ≤ f2 ≤ · · · and
f = limn→∞ fn. Then, µfn → µf , i.e., limn→∞ µfn = µ(limn→∞ fn). In the special case
µ = P and fn = Xn, we have limn→∞EXn = E(limn→∞Xn).

Lemma 1. (Fatou’s Lemma). Consider fn ≥ 0, n ∈ N are measurable. Then,

a. limn→∞ infk≥n µfk ≥ µ(limn→∞ infk≥n fk).

b. limn→∞ supk≥n µfk ≤ µ(limn→∞ supk≥n fk).

Theorem 9. (Lebesgue dominated convergence theorem). Consider f1, f2, . . . , are mea-
surable, fn → f , and |fn| ≤ g where g is integrable. Then, f is integrable and µfn → µf ,
i.e., limn→∞ µfn = µ(limn→∞ fn).

Theorem 10. If {Tλ : λ ∈ Λ} is UI and Tn
d→ T , then ETn → ET .

4 Important Asymptotic Theorems

Theorem 11. (Scheffé Lemma). Consider probability measures P, P1, P2, . . . with Lebesgue-
densities f, f1, f2, . . .. If fn

n→∞→ f pointwise, then

sup
A∈B
|PnA− PA| → 0.

Theorem 12. Suppose X,X1, X2, . . . are random variables with distribution functions
F, F1, F2, . . . , i.e., Fn(t) = P (Xn ≤ t). Then the following two statements are equivalent

a. PXn ⇒ PX

b. Fn(t)→ F (t) if F is continuous at t.

Remark 4. a. A sequence of random vectors X1, X2, . . . , (taking values in Rd) is said to

converge in distribution to a random vector X, “Xn
d
= X ′′ or “PXn ⇒ PX”, if

P (Xn ≤ x)→ P (X ≤ x), for all x ∈ C(n→∞),

where “≤” refers to the components and where C = {x ∈ Rd : P (Xi = xi) = 0 for 1, . . . , d}.

b. Cramer-Wold device:

Xn
d
= X ⇔ aTXn

d
= aTX, for all a ∈ Rd.

Theorem 13. (Portmanteau theorem). Consider probability measures P, P1, P2, . . . , on
B. Then the following statements are equivalent.
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a. Pn ⇒ P .

b. liminfPnA ≥ PA, for all open sets A ⊂ R.

c. limsupPnA ≤ PA, for all closed sets A ⊂ R.

d. PnA→ PA, for all A with P (δA) = 0, where δA denotes the boundary of A.

Remark 5. a. Portmanteau’s theorem can also be phrased for random variables: replace
Pn and P by the induced measures PXn and PX .

b. Another statement refers to te characteristic function: if Xn
d
= X as n → ∞, then

E(eitXn)→ E(eitX). The reverse holds if E(eitX) is continuous at 0.

c. Further, if E |Xn|k <∞ for all k ∈ N and EetX <∞ for all |t| < ε, and

EXk
n → EXk asn→∞, for all k ∈ N,

then Xn
d
= X as n→∞.

Theorem 14. (Polya’s theorem). If Tn
d→ T and if, additionally, the distribution function

of T is continuous on R, then P (Tn ≤ x) converges uniformly,

sup
t∈R
|P (Tn ≤ t)− P (T ≤ t)| → 0 (n→∞).

Theorem 15. (Continuous mapping theorem). Let h be a measurable function and
X,X1, X2, . . . , Xn are random variables. Then,

a. If Xn
d→ X and h is continuous, then h(Xn)

d→ h(X).

b. If Xn
p→ c and h is continuous, then h(Xn)

p→ h(c).

Theorem 16. (Classical Slutsky’s theorem). Consider random variables (Xn, Yn)n∈N de-

fined on (ΩnAn, Pn). Suppose Xn
d→ X and Yn

p→ c for some c ∈ R. Then

a. Xn + Yn
d→ X + c.

b. XnYn
d→ cX.

c. Xn/Yn
d→ X/c, provided c 6= 0.

Theorem 17. (Generalized Slutsky’s theorem). Consider (Xn, Yn) with Xn
d→ X and

Yn
p→ c. Suppose h is continuous, then h(Xn, Yn)

d→ h(X, c).
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Theorem 18. (Central limit theorem (i.i.d. version)). If X1, X2, . . . are i.i.d random
variables with E(Xi) = µ and Var(Xi) = σ2 <∞, then

n−1/2
n∑
i=1

(Xi − µ)⇒ N(0, σ2)

or ∑
Xi − E(

∑
Xi)√

Var(Xi)
⇒ X ∼ N(0, 1).

Remark 6. There are many generalizations.

a. Example: the Lindeberg- Feller central limit theorem for independent but not identi-
cally distributed random variables Xn1, . . . , Xnn with E(Xni) = µni and Var(Xi) = σ2

ni

(which contains the i.i.d version as a special case). Then

n−1/2
∑

(Xi − µni)⇒ N(0, σ2).

follows from the Feller condition n−1
∑n

i=1 σ
2
ni → σ2 <∞ and the Lindeberg condition

1

n

n∑
i=1

E
(
1{|Xni−µni|>

√
nε} |Xni − µni|2

) n→∞→ X.

b. A multivariate version of the Lindeberg central limit theorem: For each n ≥ 1, let
{Xin, i = 1, . . . , rn} be a collection of independent mean zero variables satisfying

∑rn
i=1E(XinX

T
in) =

I. Suppose that

lim
n→∞

rn∑
i=1

E[‖Xin‖2 1(‖Xin‖ > ε)] = 0 for all ε > 0,

Then
∑rn

i=1Xin
d→ N(0, I).

5 Conditional expectation

Definition 11. (Conditional Expectation). Let B ∈ A and PB > 0. Suppose X is
A-measurable and integrable. The conditional expectation X given B is

E(X | B) =
1

PB
E1BX =

∫
X(ω)P (dω | B).
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Theorem 19. (Alternative definition). G is a sub-σ-algebra of A. Suppose X is A-
measurable and integrable. The conditional expectation E(X | G) of X given G is defined
as

a. E(X | G) is G measurable

b. E1CX = E1CE(X | G) for all C ∈ G.

E(X | G) exists and is almost unique.

Theorem 20. The conditional expectation E(X | A(Y )) can be written as E(X | Y ) ◦ Y .
It is characterized by

E1Y ∈BX =

∫
B
E(X | Y = y)P Y (dy).

Theorem 21. (Monotone convergence theorem for conditional expectations). Suppose
0 ≤ Xn ↑ X. Then E(Xn | G) ↑ E(X | G).

Theorem 22. (Dominated convergence theorem for conditional expectations). Suppose
Xn → X Then E(Xn | G) ↑ E(X | G).

Theorem 23. Assume Y is G-measurable, X and XY are integrable. Then E(XY | G =
Y E(X | G). Hence E(XY | Y ) = Y E(X | Y )).

Theorem 24. (Jensen’s inequality). Let I be an open interval and f : I 7→ R be convex.
X : Ω 7→ I is A-measurable and integrable. Then

E(f ◦X | G) ≥ f ◦ E(X | G).
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