Review

1 Measure and Integral

Definition 1. (Measurable space and measurable sets). Let Ω be the universal set (sample space) with σ-field \mathcal{A}. Then (Ω, \mathcal{A}) is called measurable space and the subsets of \mathcal{A} are called measurable sets.

Definition 2. (Measure or probability measure). A non-negative σ-additive set function μ on a σ-algebra is called measure. It is called probability measure if $\mu(\Omega)(=P(\Omega))=1$.

Definition 3. A Lebesgue-Stieljes measure on \mathbb{R} is a measure μ on $\mathcal{B}(\mathbb{R})$ such that $\mu(I)<$ ∞ for each bounded interval I. A distribution function on \mathbb{R} is a map $F: \mathbb{R} \rightarrow \mathbb{R}$ that is increasing ($a<b$ implies $F(a) \leq F(b)$) and right continuous $\lim _{h \downarrow 0} F(x+h)=F(x)$).

Theorem 1. Let μ be a Lebesgue-Stieljes (LS) measure on \mathbb{R}. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined, up to an additive constant, $F(b)-F(a)=\mu(a, b]$. Then F is a distribution function.

Theorem 2. Let F be a distribution function on \mathbb{R}, and let $\mu(a, b]=F(b)-F(a), a<b$. There is a unique extension of μ to a LS measure on \mathbb{R}.

Definition 4. (Measurable function). The function $f: \Omega_{1} \rightarrow \Omega_{2}$ is measurable relative to the σ-algebras $\mathcal{A}_{i}, i=1,2$ iff $f^{-1}(A) \in \mathcal{A}_{1}$ for all $A \in \mathcal{A}_{2}$, i.e., $f^{-1}\left(\mathcal{A}_{2}\right)=\mathcal{A}_{1}$.

Definition 5. A measurable function $f:(\Omega, \mathcal{A}) \rightarrow(\mathbb{R}, \mathcal{B})$ is called Borel measurable.
Theorem 3. Let f_{1}, f_{2}, \ldots, be Borel measurable and $f_{n} \rightarrow f$. Then $f\left(=\lim f_{n}\right)$ is Borel measurable. (The same applies to lim sup and lim inf.)

Theorem 4. Any Borel-measurable function $f \geq 0$ is the limit of an increasing sequence of simple functions.

Definition 6. (Integral). Let μ be a measure on a σ-algebra \mathcal{A}.
a. For $f=1_{A}, \mu f=\int f d \mu=\int 1_{A} d \mu=\mu A$.
b. For $f=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$, set $\mu f=\int \sum_{k=1}^{n} \alpha_{k} 1_{A_{k}} d \mu=\sum_{k=1}^{n} \alpha_{k} \mu A_{k}$ provided $+\infty$ and $-\infty$ do not occur in the sum together.
c. $f \geq 0$ is Borel-measurable, set $\mu f=\sup \{\mu s: s$ is simple, $0 \leq s \leq f\}$.
d. For Borel-measurable f, set $\mu f=\mu f^{+}-\mu f^{-}$provided $\infty-\infty$ can be excluded. f is called integrable if μf is finite.

Theorem 5. (Radon-Nikodym theorem). Let μ be a σ-finite measure and ν be a (σ finite) signed measure on \mathcal{A} with $\nu \ll \mu$. Then there is a measurable function $f: \Omega \rightarrow \mathbb{R}$ with

$$
\nu A=\mu 1_{A} f=\int_{A} f d \mu
$$

for all $A \in \mathcal{A}$. If g is another function with $\nu A=\mu 1_{A} g$, then, $f=g$ everywhere. f is called μ-density or Radon-Nikodym density.

Definition 7. (Measurable rectangles and product- σ-algebra). Let $\Omega=\Omega_{1} \times \cdots \times \Omega_{n}$ be the cartesian product of $\Omega_{k}, k=1,2, \ldots, n$, and \mathcal{A}_{k} the associated σ-algebras. A measurable rectangle in Ω is a set

$$
\times_{i=1}^{n} A_{i}=A_{1} \times \cdots \times A_{n}, A_{k} \in \mathcal{A}_{k} .
$$

The σ-algebra generated by the measurable rectangles is called product σ-algebra, $\mathcal{A}=$ $\otimes \mathcal{A}_{k}$, and (Ω, \mathcal{A}) is called product measurable space.

Theorem 6. (Fubini's theorem). Let $\left(\Omega_{k}, \mathcal{A}_{k}, \mu_{k}\right), k=1,2$ be σ-finite measure spaces and let $f \in L_{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{A}_{1} \otimes \mathcal{A}_{2}, \mu\right)$, where $\mu=\mu_{1} \otimes \mu_{2}$ denotes the product measure (with $\left.\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)\right)$. Then there are sets B_{1} and B_{2} such that $\mu_{k}\left(\Omega_{k} \backslash B_{k}\right)=0$, for $k=1,2$, and (a) for $\omega_{1} \in B_{1}, f\left(\omega_{1}, \cdot\right) \in L_{1}\left(\Omega_{2}, \mathcal{A}_{2}, \mu_{2}\right)$ and $g_{1}\left(\omega_{1}\right)=$ $\int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) \mu_{2}\left(d \omega_{2}\right) 1_{B_{1}}\left(\omega_{1}\right)$ is \mathcal{A}_{1} measurable; (b) for $\omega_{2} \in B_{2}, f\left(\cdot, \omega_{2}\right) \in L_{1}\left(\Omega_{1}, \mathcal{A}_{1}, \mu_{1}\right)$ and $g_{2}\left(\omega_{2}\right)=\int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) \mu_{1}\left(d \omega_{1}\right) 1_{B_{2}}\left(\omega_{2}\right)$ is \mathcal{A}_{2} measurable.

In particular,

$$
\int_{\Omega_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) \mu_{2}\left(d \omega_{2}\right) \mu_{1}\left(d \omega_{1}\right)=\int_{\Omega_{2}} \int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) \mu_{1}\left(d \omega_{1}\right) \mu_{2}\left(d \omega_{2}\right)=\int_{\Omega_{1} \times \Omega_{2}} f d\left(\mu_{1} \otimes \mu_{2}\right) .
$$

2 Convergence of random variables and strong laws of large numbers

In the following, we consider the probability space (Ω, \mathcal{A}, P).
Definition 8. A Borel measurable function $X: \Omega \rightarrow \mathbb{R}^{n}$ is caled a random vector (or random variable if $n=1$). The probability measure P^{X} on \mathcal{B}^{n} induced by X is defined by

$$
P^{X} B=P(X \in B)=P\{\omega: X(\omega) \in B\}=P X^{-1} B, B \in \mathcal{B}^{n}
$$

Definition 9. Consider random variables $X, X_{1}, X_{2}, \ldots \in L_{p}, p>0$.
a. X_{n} convergence to X in L_{p} (in p-th norm or "in p th mean"), $X_{n} \rightarrow X$ in L_{p}, if $\left\|X_{n}-X\right\|_{p}=E\left(\left|X_{n}-X\right|^{p}\right)^{1 / p} \rightarrow 0$
b. X_{n} converges to X in probability, $X_{n} \xrightarrow{p} X$, if $\forall \epsilon>0, P\left(\left|X_{n}-X\right| \geq \epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
c. X_{n} converges to X almost surely if there is a $N \subset \Omega$ with $P N=0$ such that for all $\omega \notin N, X_{n}(\omega) \rightarrow X(\omega)$ (or $P\left\{\left(\lim _{n \rightarrow \infty} X_{n}=X\right)\right\}=1$).

Remark 1. $X_{n} \xrightarrow{L_{p}} X \Rightarrow X_{n} \xrightarrow{p} X, X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow X_{n} \xrightarrow{p} X$. The reverse is not always true.
Theorem 7. (SLLN). Suppose that $X_{1}, X_{2}, \ldots \in L_{2}$ are independent and $\left(b_{n}\right)_{n \in \mathbb{N}}$ is a sequence with $0<b_{n} \uparrow \infty$. If $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right) / b_{n}^{2}<\infty$, then, for $S_{n}=\sum_{i=1}^{n} X_{i}$,

$$
\frac{S_{n}-E S_{n}}{b_{n}} \xrightarrow{n \rightarrow \infty} 0
$$

almost surely. A special case is X_{1}, X_{2}, \ldots are i.i.d and $b_{n}=n$. Then $S_{n} / b_{n}=(1 / n) \sum_{i=1}^{n} X_{i} \xrightarrow{\text { a.s. }}$ $E X_{1}$.

Remark 2. Marcinkiewics-Zygmund SLLNs. Suppose X_{1}, X_{2}, \ldots are identically distributed random variables and $p \in(0,2)$. Then
a. If X_{1}, X_{2}, \ldots, are pairwise independent and $\left(S_{n}-n c\right) / n^{1 / p}$ converges a.s. for some $c \in \mathbb{R}$, then $E\left|X_{1}\right|^{p}<\infty$.
b. If $E\left|X_{1}\right|^{p}<\infty$ and X_{1}, X_{2}, \ldots are independent, then $\left(S_{n}-n c\right) / n^{1 / p}$ converges a.s. with any $c \in \mathbb{R}$ if $p \in(0,1)$ and $c=E X_{1}$ if $p \in[1,2)$.

Corollary 1. (Kolmogorov's SLLN). Suppose X_{1}, X_{2}, \ldots, are i.i.d. random variables. Then $\left(S_{n}-n c\right) / n$ converges a.s. for some $c \in \mathbb{R}$ if and only if $E\left|X_{1}\right|<\infty$, in which case, $c=E X_{1}$.

Definition 10. Consider probability measures P, P_{1}, P_{2}, \ldots on \mathcal{B}. Then P_{n} converges to P, written as $P_{n} \Rightarrow P$, if for all bounded continuous functions $f, P_{n} f \rightarrow P f$. If X, X_{1}, X_{2}, \ldots are random variables with $P^{X_{n}} \Rightarrow P^{X}$, then we say X_{n} converges to X in distribution and write $X_{n} \Rightarrow X$ or $X_{n} \xrightarrow{d} X$.

Remark 3. $X_{n} \xrightarrow{p} X \Rightarrow X_{n} \xrightarrow{d} X$. The reverse is in general not true.

3 Convergence of integrals and expectations

We begin with $(\Omega, \mathcal{A}, \mu)$ (which contains $\mu=P$ as a special case).

Theorem 8. (Beppo Levi's monotone convergence theorem). Let $0 \leq f_{1} \leq f_{2} \leq \cdots$ and $f=\lim _{n \rightarrow \infty} f_{n}$. Then, $\mu f_{n} \rightarrow \mu_{f}, i . e ., \lim _{n \rightarrow \infty} \mu f_{n}=\mu\left(\lim _{n \rightarrow \infty} f_{n}\right)$. In the special case $\mu=P$ and $f_{n}=X_{n}$, we have $\lim _{n \rightarrow \infty} E X_{n}=E\left(\lim _{n \rightarrow \infty} X_{n}\right)$.

Lemma 1. (Fatou's Lemma). Consider $f_{n} \geq 0, n \in \mathbb{N}$ are measurable. Then,
a. $\lim _{n \rightarrow \infty} \inf _{k \geq n} \mu f_{k} \geq \mu\left(\lim _{n \rightarrow \infty} \inf _{k \geq n} f_{k}\right)$.
b. $\lim _{n \rightarrow \infty} \sup _{k \geq n} \mu f_{k} \leq \mu\left(\lim _{n \rightarrow \infty} \sup _{k \geq n} f_{k}\right)$.

Theorem 9. (Lebesgue dominated convergence theorem). Consider f_{1}, f_{2}, \ldots, are measurable, $f_{n} \rightarrow f$, and $\left|f_{n}\right| \leq g$ where g is integrable. Then, f is integrable and $\mu f_{n} \rightarrow \mu f$, i.e., $\lim _{n \rightarrow \infty} \mu f_{n}=\mu\left(\lim _{n \rightarrow \infty} f_{n}\right)$.

Theorem 10. If $\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ is UI and $T_{n} \xrightarrow{d} T$, then $E T_{n} \rightarrow E T$.

4 Important Asymptotic Theorems

Theorem 11. (Scheffé Lemma). Consider probability measures P, P_{1}, P_{2}, \ldots with Lebesguedensities f, f_{1}, f_{2}, \ldots If $f_{n} \xrightarrow{n \rightarrow \infty} f$ pointwise, then

$$
\sup _{A \in \mathcal{B}}\left|P_{n} A-P A\right| \rightarrow 0
$$

Theorem 12. Suppose X, X_{1}, X_{2}, \ldots are random variables with distribution functions F, F_{1}, F_{2}, \ldots, i.e., $F_{n}(t)=P\left(X_{n} \leq t\right)$. Then the following two statements are equivalent
a. $P^{X_{n}} \Rightarrow P^{X}$
b. $F_{n}(t) \rightarrow F(t)$ if F is continuous at t.

Remark 4. a. A sequence of random vectors $X_{1}, X_{2}, \ldots,\left(\right.$ taking values in $\left.\mathbb{R}^{d}\right)$ is said to converge in distribution to a random vector X, " $X_{n} \stackrel{d}{=} X^{\prime \prime}$ or " $P^{X_{n}} \Rightarrow P^{X}$ ", if

$$
P\left(X_{n} \leq x\right) \rightarrow P(X \leq x), \quad \text { for all } \quad x \in C(n \rightarrow \infty)
$$

where" \leq " refers to the components and where $C=\left\{x \in \mathbb{R}^{d}: P\left(X_{i}=x_{i}\right)=0\right.$ for $\left.1, \ldots, d\right\}$.
b. Cramer-Wold device:

$$
X_{n} \stackrel{d}{=} X \Leftrightarrow a^{\mathrm{T}} X_{n} \stackrel{d}{=} a^{\mathrm{T}} X, \text { for all } a \in \mathbb{R}^{d}
$$

Theorem 13. (Portmanteau theorem). Consider probability measures P, P_{1}, P_{2}, \ldots, on \mathcal{B}. Then the following statements are equivalent.
a. $P_{n} \Rightarrow P$.
b. $\liminf P_{n} A \geq P A$, for all open sets $A \subset \mathbb{R}$.
c. $\limsup P_{n} A \leq P A$, for all closed sets $A \subset \mathbb{R}$.
d. $P_{n} A \rightarrow P A$, for all A with $P(\delta A)=0$, where δA denotes the boundary of A.

Remark 5. a. Portmanteau's theorem can also be phrased for random variables: replace P_{n} and P by the induced measures $P^{X_{n}}$ and P^{X}.
b. Another statement refers to te characteristic function: if $X_{n} \stackrel{d}{=} X$ as $n \rightarrow \infty$, then $E\left(e^{i t X_{n}}\right) \rightarrow E\left(e^{i t X}\right)$. The reverse holds if $E\left(e^{i t X}\right)$ is continuous at 0 .
c. Further, if $E\left|X_{n}\right|^{k}<\infty$ for all $k \in \mathbb{N}$ and $E e^{t X}<\infty$ for all $|t|<\epsilon$, and

$$
E X_{n}^{k} \rightarrow E X^{k} \text { asn } \rightarrow \infty, \text { for all } k \in \mathbb{N},
$$

then $X_{n} \stackrel{d}{=} X$ as $n \rightarrow \infty$.
Theorem 14. (Polya's theorem). If $T_{n} \xrightarrow{d} T$ and if, additionally, the distribution function of T is continuous on \mathbb{R}, then $P\left(T_{n} \leq x\right)$ converges uniformly,

$$
\sup _{t \in \mathbb{R}}\left|P\left(T_{n} \leq t\right)-P(T \leq t)\right| \rightarrow 0 \quad(n \rightarrow \infty)
$$

Theorem 15. (Continuous mapping theorem). Let h be a measurable function and $X, X_{1}, X_{2}, \ldots, X_{n}$ are random variables. Then,
a. If $X_{n} \xrightarrow{d} X$ and h is continuous, then $h\left(X_{n}\right) \xrightarrow{d} h(X)$.
b. If $X_{n} \xrightarrow{p} c$ and h is continuous, then $h\left(X_{n}\right) \xrightarrow{p} h(c)$.

Theorem 16. (Classical Slutsky's theorem). Consider random variables $\left(X_{n}, Y_{n}\right)_{n \in \mathbb{N}}$ defined on $\left(\Omega_{n} \mathcal{A}_{n}, P_{n}\right)$. Suppose $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{p} c$ for some $c \in \mathbb{R}$. Then
a. $X_{n}+Y_{n} \xrightarrow{d} X+c$.
b. $X_{n} Y_{n} \xrightarrow{d} c X$.
c. $X_{n} / Y_{n} \xrightarrow{d} X / c, \quad \operatorname{provided} c \neq 0$.

Theorem 17. (Generalized Slutsky's theorem). Consider $\left(X_{n}, Y_{n}\right)$ with $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{p} c$. Suppose h is continuous, then $h\left(X_{n}, Y_{n}\right) \xrightarrow{d} h(X, c)$.

Theorem 18. (Central limit theorem (i.i.d. version)). If X_{1}, X_{2}, \ldots are i.i.d random variables with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$, then

$$
n^{-1 / 2} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \Rightarrow \mathrm{N}\left(0, \sigma^{2}\right)
$$

or

$$
\frac{\sum X_{i}-E\left(\sum X_{i}\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right)}} \Rightarrow X \sim \mathrm{~N}(0,1)
$$

Remark 6. There are many generalizations.
a. Example: the Lindeberg- Feller central limit theorem for independent but not identically distributed random variables $X_{n 1}, \ldots, X_{n n}$ with $E\left(X_{n i}\right)=\mu_{n i}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{n i}^{2}$ (which contains the i.i.d version as a special case). Then

$$
n^{-1 / 2} \sum\left(X_{i}-\mu_{n i}\right) \Rightarrow \mathrm{N}\left(0, \sigma^{2}\right)
$$

follows from the Feller condition $n^{-1} \sum_{i=1}^{n} \sigma_{n i}^{2} \rightarrow \sigma^{2}<\infty$ and the Lindeberg condition

$$
\frac{1}{n} \sum_{i=1}^{n} E\left(1_{\left\{\left|X_{n i}-\mu_{n i}\right|>\sqrt{n} \epsilon\right\}}\left|X_{n i}-\mu_{n i}\right|^{2}\right) \xrightarrow{n \rightarrow \infty} X .
$$

b. A multivariate version of the Lindeberg central limit theorem: For each $n \geq 1$, let $\left\{X_{i n}, i=1, \ldots, r_{n}\right\}$ be a collection of independent mean zero variables satisfying $\sum_{i=1}^{r_{n}} E\left(X_{\text {in }} X_{i n}^{\mathrm{T}}\right)=$ II. Suppose that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{r_{n}} E\left[\left\|X_{i n}\right\|^{2} 1\left(\left\|X_{i n}\right\|>\epsilon\right)\right]=0 \quad \text { for all } \epsilon>0
$$

Then $\sum_{i=1}^{r_{n}} X_{i n} \xrightarrow{d} \mathrm{~N}(0, \mathbb{I})$.

5 Conditional expectation

Definition 11. (Conditional Expectation). Let $B \in \mathcal{A}$ and $P B>0$. Suppose X is \mathcal{A}-measurable and integrable. The conditional expectation X given B is

$$
E(X \mid B)=\frac{1}{P B} E 1_{B} X=\int X(\omega) P(d \omega \mid B)
$$

Theorem 19. (Alternative definition). \mathcal{G} is a sub- σ-algebra of \mathcal{A}. Suppose X is \mathcal{A} measurable and integrable. The conditional expectation $E(X \mid \mathcal{G})$ of X given \mathcal{G} is defined as
a. $E(X \mid \mathcal{G})$ is \mathcal{G} measurable
b. $E 1_{C} X=E 1_{C} E(X \mid \mathcal{G})$ for all $C \in \mathcal{G}$.
$E(X \mid \mathcal{G})$ exists and is almost unique.
Theorem 20. The conditional expectation $E(X \mid \mathcal{A}(Y))$ can be written as $E(X \mid Y) \circ Y$. It is characterized by

$$
E 1_{Y \in B} X=\int_{B} E(X \mid Y=y) P^{Y}(d y)
$$

Theorem 21. (Monotone convergence theorem for conditional expectations). Suppose $0 \leq X_{n} \uparrow X$. Then $E\left(X_{n} \mid \mathcal{G}\right) \uparrow E(X \mid \mathcal{G})$.

Theorem 22. (Dominated convergence theorem for conditional expectations). Suppose $X_{n} \rightarrow X$ Then $E\left(X_{n} \mid \mathcal{G}\right) \uparrow E(X \mid \mathcal{G})$.

Theorem 23. Assume Y is \mathcal{G}-measurable, X and $X Y$ are integrable. Then $E(X Y \mid \mathcal{G}=$ $Y E(X \mid \mathcal{G})$. Hence $E(X Y \mid Y)=Y E(X \mid Y))$.

Theorem 24. (Jensen's inequality). Let I be an open interval and $f: I \mapsto \mathbb{R}$ be convex. $X: \Omega \mapsto I$ is \mathcal{A}-measurable and integrable. Then

$$
E(f \circ X \mid \mathcal{G}) \geq f \circ E(X \mid \mathcal{G})
$$

