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1 Measure and Integral

Definition 1. (Measurable space and measurable sets). Let 2 be the universal set (sample
space) with o-field A. Then (£2,.A) is called measurable space and the subsets of A are
called measurable sets.

Definition 2. (Measure or probability measure). A non-negative o-additive set function
p on a o-algebra is called measure. It is called probability measure if u(Q2)(= P(2)) = 1.

Definition 3. A Lebesgue-Stieljes measure on R is a measure y on B(R) such that u(I) <
oo for each bounded interval I. A distribution function on R is a map F' : R — R that is
increasing (a < b implies F'(a) < F'(b)) and right continuous limy o F(z + h) = F(x)).

Theorem 1. Let p be a Lebesgue-Stieljes (LS) measure on R. Let F': R — R be defined,
up to an additive constant, F'(b) — F'(a) = p(a,b]. Then F is a distribution function.

Theorem 2. Let F be a distribution function on R, and let p(a,b] = F(b) — F(a),a < b.
There is a unique extension of p to a LS measure on R.

Definition 4. (Measurable function). The function f : 7 — €9 is measurable relative to
the o-algebras A;,i = 1,2 iff f71(A) € A; for all A € Ay, ie., f71(As) = A;.

Definition 5. A measurable function f : (Q, A) — (R, B) is called Borel measurable.

Theorem 3. Let fi, fo,..., be Borel measurable and f,, — f. Then f(= lim f,,) is Borel
measurable. (The same applies to lim sup and lim inf.)

Theorem 4. Any Borel-measurable function f > 0 is the limit of an increasing sequence
of simple functions.

Definition 6. (Integral). Let 1 be a measure on a o-algebra A.

a. For f=14,pf = [ fdu= [1adp = pA.

b. For f =3} agla,,set uf = [y apladp=>3_; agpdy provided +oco and —oo
do not occur in the sum together.

c. f >0 is Borel-measurable, set pf = sup{us : sis simple,0 < s < f}.

d. For Borel-measurable f, set uf = puf*t — pf~ provided oo — co can be excluded. f is
called integrable if pf is finite.



Theorem 5. (Radon-Nikodym theorem). Let p be a o-finite measure and v be a (o-
finite) signed measure on A with v < u. Then there is a measurable function f: Q — R
with

vA=plaf = /Afdu

for all A € A. If g is another function with vA = plag, then, f = g everywhere. f is
called p-density or Radon-Nikodym density.

Definition 7. (Measurable rectangles and product-o-algebra). Let Q = Q3 x- - -x,, be the
cartesian product of Qp,k = 1,2,...,n, and A, the associated o-algebras. A measurable
rectangle in € is a set

XA = A1 X - X Ap, A € Ay,

The o-algebra generated by the measurable rectangles is called product o-algebra, A =
®Ag, and (€2, .A) is called product measurable space.

Theorem 6. (Fubini’s theorem). Let (Q, Ak, ux),k = 1,2 be o-finite measure spaces
and let f € Li1(Q x Q9, A1 ® Ao, ), where p = 3 ® pg denotes the product mea-
sure (with p(A; x Az) = u1(A1)pe(Az)). Then there are sets By and By such that
,uk(Qk\Bk) =0, for k = 1,2, and (a) for w; € By, f(wi,-) € L1(2, A2, pu2) and g1(w1) =
fQ2 wl,wg ug(dwg)lgl(wl) is A; measurable; (b) for we € Ba, f(-,w2) € Li(Q1,A1, 1)

and go(ws) le (w1, w2) 1 (dwi)1p, (w2) is Ay measurable.

In particular,
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2 Convergence of random variables and strong laws of large
numbers
In the following, we consider the probability space (2,.4, P).

Definition 8. A Borel measurable function X : Q@ — R" is caled a random vector (or
random variable if n = 1). The probability measure PX on B" induced by X is defined by

PXB=P(X€B)=P{w: X(w)€B}=PX 'B,BecB"

Definition 9. Consider random variables X, X1, Xo,... € L,,p > 0.



a. X, convergence to X in L, (in p-th norm or “in pth mean”), X,, — X in L,, if
1% = X1, = E(1Xn = X[)/P =0

b. X, converges to X in probability, X,, & X, if Ye > 0, P(|X,, — X| > €) = 0 as n — oc.

c. X, converges to X almost surely if there is a N C Q with PN = 0 such that for all
w¢ N, Xn(w) = X(w) (or P{(limpe0 Xy = X)} = 1).

L
Remark 1. X,, 5 X = X, EaN X, X, X=X, Py X. The reverse is not always true.

Theorem 7. (SLLN). Suppose that Xi, Xa,... € Lo are independent and (b, )nen is a
sequence with 0 < b, 7 0o. If Y°°° | Var(X,,)/b2 < oo, then, for S, = > ", X;,
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almost surely. A special case is X1, Xo, ... areii.d and b, = n. Then S, /b, = (1/n) 31| X; “%
EX;.

Remark 2. Marcinkiewics-Zygmund SLLNs. Suppose Xi, Xa,... are identically dis-
tributed random variables and p € (0,2). Then

a. If Xy, Xo,..., are pairwise independent and (S, — nc)/nl/p converges a.s. for some
c € R, then E|X;]” < .

b. If E| X1’ < oo and X1, Xo,... are independent, then (S, —nc)/n'/P converges a.s. with
any c€ Rif pe€ (0,1) and c = EX; if p € [1,2).

Corollary 1. (Kolmogorov’s SLLN). Suppose Xi, Xo,..., are i.i.d. random variables.
Then (S, — nc)/n converges a.s. for some ¢ € R if and only if F|X;| < oo, in which case,
Cc = EX1

Definition 10. Consider probability measures P, Py, P, ... on B. Then P, converges to P,
written as P, = P, if for all bounded continuous functions f, Pof — Pf. If X, X1, Xo, ...
are random variables with PXn = PX | then we say X,, converges to X in distribution and

write X, = X oangX.

Remark 3. X, 5 x= Xn i X. The reverse is in general not true.

3 Convergence of integrals and expectations

We begin with (£2, A, i) (which contains p = P as a special case).



Theorem 8. (Beppo Levi’s monotone convergence theorem). Let 0 < f; < fo < --- and

[ =limy o0 fn. Then, pfy, — py,i.e,limy o0 pfn = p(limy oo fn). In the special case
w= P and f, = X, we have lim,_,oc EX,, = E(lim; 00 Xp).

Lemma 1. (Fatou’s Lemma). Consider f,, > 0,n € N are measurable. Then,

a. limp o0 inszn pfie > p(imy, e inszn fk)
b. limy, oo SUPg>n pfr < M(hmn—mo SUPg>n fk)

Theorem 9. (Lebesgue dominated convergence theorem). Consider fi, fa,..., are mea-
surable, f, — f, and |f,| < g where g is integrable. Then, f is integrable and uf, — pf,

e, limy oo pufr, = p(limy, oo fr)-

Theorem 10. If {T) : A € A} is U and T}, - T, then ET, — ET.

4 Important Asymptotic Theorems

Theorem 11. (Scheffé Lemma). Consider probability measures P, Py, Pa, ... with Lebesgue-
densities f, f1, fa,.... If fn "= f pointwise, then

sup |P,A — PA| — 0.
AeB

Theorem 12. Suppose X, X1, Xo,... are random variables with distribution functions
F Fy, Fs, ..., 1e., Fy(t) = P(X, <t). Then the following two statements are equivalent

a. PXn = pX
b. F,(t) — F(t) if F is continuous at ¢.

Remark 4. a. A sequence of random vectors X1, Xa, ..., (taking values in ]Rd) 1s said to

converge in distribution to a random vector X, “X, L X" op “pXn = pX 7 af
P(X,<z)—=> P(X<z), foral xe€C(n— o),
where “<” refers to the components and where C = {x € RY: P(X; = ;) = 0forl,...,d}.
b. Cramer-Wold device:
d T d T d
X,=X<sa X,=0a X, forall a€R%

Theorem 13. (Portmanteau theorem). Consider probability measures P, P, Py, ..., on
B. Then the following statements are equivalent.



a. P, = P.

b. liminf P, A > PA, for all open sets A C R.

c. limsupP, A < PA, for all closed sets A C R.

d. P,A — PA, for all A with P(60A) =0, where A denotes the boundary of A.

Remark 5. a. Portmanteau’s theorem can also be phrased for random wvariables: replace
P, and P by the induced measures PX* and PX.

b. Another statement refers to te characteristic function: if X, 2 X asn — oo, then
E(eiXn) — E(eX). The reverse holds if E(e'*X) is continuous at 0.

c. Further, if E|X,|* < 0o for all k € N and Ee'X < oo for all |t| < e, and

EXﬁ — EX* asn — oo, for allk € N,

theaniX as n — 00.

Theorem 14. (Polya’s theorem). If T}, 4 7 and if, additionally, the distribution function
of T is continuous on R, then P(7,, < x) converges uniformly,

sup |P(T,, <t)—P(T <t)] -0 (n— o).
teR

Theorem 15. (Continuous mapping theorem). Let h be a measurable function and
X, X1,Xo,...,X, are random variables. Then,

a. If X, % X and h is continuous, then h(X,) KN h(X).

b. If X,, & ¢ and h is continuous, then h(X,) = h(c).

Theorem 16. (Classical Slutsky’s theorem). Consider random variables (X, Y, )nen de-
fined on (2,4, P,). Suppose X, % X and Y,, & ¢ for some ¢ € R. Then

a X, +Y, 3 X +e
b. X,Y, 5 cX.
c. Xn/Yn LN X/c, providedc # 0.

Theorem 17. (Generalized Slutsky’s theorem). Consider (X,,Y;) with X, 4 X and
Y,, & ¢. Suppose h is continuous, then h(X,,Y,) A h(X,c).



Theorem 18. (Central limit theorem (i.i.d. version)). If X1, Xs,... are ii.d random
variables with E(X;) = p and Var(X;) = 02 < oo, then

—1/22 ) = N(0,0?)

or

2 Xi = B Xi) = X ~ N(0,1)
Var(X;) .

Remark 6. There are many generalizations.

a. Example: the Lindeberg- Feller central limit theorem for independent but not identi-

cally distributed random variables X1, ..., Xy, with E(X,;) = un; and Var(X;) = afn-

(which contains the i.i.d version as a special case). Then

2 (X — ) = N(0,02).
follows from the Feller condition n=' "% | 62, — 02 < 0o and the Lindeberg condition

TLHOO

7ZE {‘an ,Ufnz‘>\/>€} ’X’/’L’l ,Ufnz| ) X.

b. A multivariate version of the Lindeberg central limit theorem: For each n > 1, let
{Xin,i=1,...,7,} be a collection of independent mean zero variables satisfying > ;" | E(X;n X)) =
I. Suppose that

Tn
7lli_>ngOZE[||Xin||2 1(|| Xinl| > €)] =0 for alle > 0,
1=1

Then 37", Xy -5 N(0,1).

5 Conditional expectation

Definition 11. (Conditional Expectation). Let B € A and PB > 0. Suppose X is
A-measurable and integrable. The conditional expectation X given B is

E(X | B) = %EIBX _ /X(w)P(dw | B).



Theorem 19. (Alternative definition). G is a sub-c-algebra of A. Suppose X is A-
measurable and integrable. The conditional expectation E(X | G) of X given G is defined
as

a. E(X | G) is G measurable

b. EleX = E1¢E(X | G) for all C €G.

E(X | G) exists and is almost unique.
Theorem 20. The conditional expectation E(X | A(Y)) can be written as E(X |Y)oY.
It is characterized by
ElyepX = / E(X|Y =y)PY(dy).
B
Theorem 21. (Monotone convergence theorem for conditional expectations). Suppose
0<X,1X. Then E(X,, |G) T E(X | Q).

Theorem 22. (Dominated convergence theorem for conditional expectations). Suppose
X, — X Then E(X,, | G) T E(X | G).

Theorem 23. Assume Y is G-measurable, X and XY are integrable. Then E(XY | G =
YE(X |G). Hence E(XY |Y)=YE(X |Y)).

Theorem 24. (Jensen’s inequality). Let I be an open interval and f : I — R be convex.
X : Q1 is A-measurable and integrable. Then

E(feX[G)=foE(X|G).



