STA 6448 - Take home (due May 2 (5 pm ET) by email at debdeep@stat.fsu.edu)

1. Let $\left\{X_{n}\right\}$ be an i.i.d sequence with common continuous distribution function. Call $\left\{X_{k}\right\}$ a record value for the sequence if $X_{k}>X_{r}$ for all $1 \leq r<k$. Let I_{k} be the indicator function for the event that X_{k} is a record value.
(a) Show that I_{k} and I_{l} are independent for $k<l$.
(b) Show that $\mathbb{E}\left[I_{k}\right]=1 / k$.
(c) Let $S_{n}=\sum_{k=1}^{n}\left[I_{k}-1 / k\right]$. Show that $\left\{S_{n}\right\}$ defines a martingale sequence.
2. A hypothesis may be strongly rejected by a frequentist test of significance and yet be awarded high odds by a Bayesian analysis. This is known as Lindley's paradox. To explain this, we conduct the following experiment. Suppose $X_{i}, i=1, \ldots, n$ are drawn independently and identically distributed as $\mathrm{N}\left(\mu, \sigma^{2}\right)$ and μ is believed to be μ_{0} with probability $1 / 2$ and $\mu \sim \mathrm{N}\left(\mu_{0}, \sigma^{2}\right)$ with probability $1 / 2$. Suppose the observed data $\left(x_{1}, \ldots, x_{n}\right)$ satisfy $(1 / n) \sum_{i=1}^{n} x_{i}=\mu_{0}+1.96 \sigma / \sqrt{n}$. Compare the posterior probabilities of the event $\mu=\mu_{0}$ for $n=5$ and $n=50$. Comment on the findings.
3. Assume $X_{i}, i=1, \ldots, n$ are drawn from a Weibull distribution with probability density function

$$
g(x ; \alpha, \phi)=\left(\frac{\alpha}{\phi}\right)\left(\frac{x}{\phi}\right)^{\alpha-1} \exp \left\{-(x / \phi)^{\alpha}\right\}, \quad \alpha, \phi>0, \quad x>0 .
$$

A hapless researcher tries the exponential distribution instead

$$
f(x ; \theta)=\theta^{-1} \exp \{-(x / \theta)\}, \quad \theta>0, \quad x>0 .
$$

Find the asymptotic distribution of the maximum likelihood estimate $\hat{\theta}_{n}$. You may use that for $Y \sim g$, $\mathbb{E}(Y)=\phi \Gamma\left(1+\alpha^{-1}\right)$ and $\mathbb{E}\left(Y^{2}\right)=\phi^{2} \Gamma\left(1+2 \alpha^{-1}\right)$, where $\Gamma(\cdot)$ is the gamma function.
4. Consider testing equality of two continuous cumulative distribution functions F and G based on independent and identically distributed samples $X_{i}, i=1, \ldots, n$ and $Y_{i}, i=1, \ldots, m$ from F and G respectively. Show that

$$
\begin{equation*}
P\left(X_{1}<Y_{1}, X_{2}<Y_{1}\right)+P\left(Y_{1}<X_{1}, Y_{2}<X_{1}\right)=\frac{2}{3}+\frac{1}{2} \int[F(x)-G(x)]^{2} d[F(x)+G(x)] \tag{1}
\end{equation*}
$$

and construct an appropriate U-statistic based on (1). (No need to derive asymptotic variance of the statistic.)
5. Let X_{1}, \ldots, X_{n} be independent $0-1$ random variables with $\mathbb{E}\left[X_{i}\right]=p_{i}$ (not necessarily equal). Let $X=\sum_{i=1}^{n} X_{i}, \mu=\mathbb{E}[X]=\sum_{i=1}^{n} p_{i}$ and $p=\mu / n$. Prove that
(a) $\mathbb{P}[X>\mu+\lambda] \leq \exp \left\{-n H_{p}(p+\lambda / n)\right\}$ for $0<\lambda<n-\mu$;
(b) $\mathbb{P}[X \leq \mu-\lambda] \leq \exp \left\{-n H_{1-p}(1-p+\lambda / n)\right\}$ for $0<\lambda<\mu$,
where $H_{p}(x)=x \log (x / p)+(1-x) \log \{(1-x) /(1-p)\}$ popularly called the Bernoulli entropy function of x with respect to p.

Hint: Exponentiate through e^{t}, apply Markov, use independence, plug in the m.g.f of each X_{i}, use concavity as a function of p and minimize the final bound as a function of t, using basic calculus.

