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1 Ancillary statistics

Suppose X ∼ Pθ, θ ∈ Θ.

Definition 1. A statistics is ancillary if its distribution does not depend on θ. More
precisely, a statistic S(X) is ancillary for Θ it its distribution is the same for all θ ∈ Θ.
That is, Pθ(S(X) ∈ A) is constant for θ ∈ Θ for any set A.

Example: X = (X1, . . . , Xn) iid N(µ, σ2). Let

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

We know

(n− 1)S2

σ2
∼ χ2

n−1 ⇔ S2 ∼ σ2

n− 1
χ2
n−1

so that the distribution of S2 depends upon σ2 but not on µ. Thus S2 is ancillary for

Θ1 = {(µ, σ2) : σ2 = σ2
0},

but is not ancillary for

Θ2 = {(µ, σ2) : σ2 > 0}.

Let ψ(x) be a fixed density.

1. Location Family (LF) of densities: f(x | θ) = ψ(x− θ),−∞ < θ <∞.

2. Scale Family (SF) of densities: f(x | θ) = 1
θψ(xθ ), θ > 0.

3. Location-Scale Family (LSF) of densities: f(x | µ, σ) = 1
σψ(x−µσ ), (σ > 0,−∞ < µ <

∞).

If X ∼ f(· | θ) and Z ∼ ψ(·), then

1. (LF) X
d
= Z + θ (X − θ d

= Z)
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2. (SF) X
d
= θZ (X/θ

d
= Z)

3. (LSF) X
d
= σZ + µ ((X − µ)/σ

d
= Z)

If X
˜

= (X1, . . . , Xn) is iid f(· | θ) and Z
˜

= (Z1, . . . , Zn) iid ψ(·), then

1. (LF) X
˜

d
= Z

˜
+ θ1

˜
(X

˜
− θ1

˜

d
= Z

˜
)

2. (SF) X
˜

d
= θZ

˜
(X

˜
/θ

d
= Z

˜
)

3. (LSF) X
˜

d
= σZ

˜
+ µ1

˜
((X

˜
− µ1

˜
)/σ

d
= Z

˜
)

1. Examples of Location families:

(a) Unif(θ, θ + 1) distributions (θ ∈ Θ = R) with pdf f(x | θ) = I(θ ≤ x ≤ θ + 1)

(b) Cauchy location family with pdf

f(x | θ) =
1

π{1 + (x− θ)2}
.

(c) N(µ, σ2
0) distributions with µ ∈ R unknown, σ2

0 known.

2. Examples of Scale families:

(a) Unif(0, θ) distributions (θ > 0 unknown) with pdf f(x | θ) = θ−1I(0 ≤ x ≤ θ)
(b) Cauchy scale family with pdf

f(x | θ) =
1

θπ{1 + (x/θ)2}
.

(c) N(0, σ2) distributions with σ2 > 0 unknown.

(d) Exp(β) distributions (β > 0 unknown) with pdf f(x | β) = β−1e−x/βI(x ≥ 0).

3. Examples of Location-Scale families:

(a) Unif(α, β),−∞ < α < β <∞(all uniform distributions)

(b) N(µ, σ2), µ ∈ R, σ2 > 0 (all normal distributions).
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1.1 Facts

1. If X
˜

= (X1, X2, . . . , Xn) is iid from a LF and S(x
˜
) is a location invariant function,

(S(x
˜

+ c1
˜
) = S(x

˜
) for all x

˜
∈ Rn and c ∈ R), then S(X

˜
) is ancillary.

2. If X
˜

= (X1, X2, . . . , Xn) is iid from a SF and S(x
˜
) is a scale invariant function,

(S(cx
˜
) = S(x

˜
) for all x

˜
∈ Rn and c > 0), then S(X

˜
) is ancillary.

3. If X
˜

= (X1, X2, . . . , Xn) is iid from a LSF and S(x
˜
) is a location-scale invariant

function, (S(ax
˜

+ b1
˜
) = S(x

˜
) for all x

˜
∈ Rn and a > 0, b ∈ R), then S(X

˜
) is ancillary.

Proof. Let X
˜

= (X1, X2, . . . , Xn) be iid f(· | θ) and Z
˜

= (Z1, . . . , Zn) be iid ψ(· | θ).

1. Since X
˜

d
= Z

˜
+ θ1

˜
, we have

P (S(X
˜

) ∈ A) = P (S(Z
˜

+ θ1
˜
) ∈ A)

= P (S(Z
˜

) ∈ A)

which does not involve θ by the location invariance of S.

2. Since X
˜

d
= θZ

˜
, we have

P (S(X
˜

) ∈ A) = P (S(θZ
˜
∈ A)

= P (S(Z
˜

) ∈ A)

which does not involve θ by the scale invariance of S.

3. Since X
˜

d
= σZ

˜
+ µ1

˜
, we have

P (S(X
˜

) ∈ A) = P (S(σZ
˜

+ µ1
˜
) ∈ A)

= P (S(Z
˜

) ∈ A)

which does not involve µ, σ by the location-scale invariance of S.
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1.2 Location Invariant Statistics

1. S(X) = 1
n−1

∑
i=1(Xi − X̄)2 is location invariant:

S(X + c) =
1

n− 1

n∑
i=1

(Xi + c−X + c)2 =
1

n− 1

n∑
i=1

(Xi + c− X̄ − c)2 = S(X).

Here X + c = (1/n)
∑n

i=1(Xi + c) = X̄ + c.

2. S(X) =
∑

i=1 |Xi −median(X)| is location invariant:

S(X + c) =

n∑
i=1

|Xi + c−median(X + c)| =
n∑
i=1

|Xi + c−median(X)− c| = S(X).

3. S(X) = maxXi −minXi = X(n) −X(1) is location invariant:

S(X + c) = max(Xi + c)−min(Xi + c) = max(Xi) + c−min(Xi)− c = X(n) −X(1).

4. The vector S(X) = (X2−X1, X3−X2, . . . , Xn−X1) is location invariant by a similar
argument.

1.3 Scale Invariant Statistics

1. t = x̄−0
S/
√
n

is scale invariant as:

t(cx) =
cx̄

cs/
√
n

= t(x)

since the c’s cancel. Here we have used

cx =
1

n

n∑
i=1

cxi = c
1

n

n∑
i=1

xi = cx̄,

S(cx) =

√√√√ 1

n− 1

n∑
i=1

(cxi − cx̄)2 = c

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 = cS(x).

2. S(X) = X̄
X(n)

is scale invariant:

S(cX) =
cX̄

cX(n)
= S(X)

for all c > 0.
Note: S(cX) 6= S(X) for c ≤ 0.
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3.

S(X) =

(
X1∑
Xi
,
X2∑
Xi
, . . . ,

Xn∑
Xi

)
is scale invariant.

1.4 Scale Invariant Statistics

1. Sample skewness is proportional to

S(X) =

∑
(Xi − X̄)3

[
∑

(Xi − X̄)2]3/2
.

2. Sample kurtosis is proportional to

S(X) =

∑
(Xi − X̄)4

[
∑

(Xi − X̄)2]2
.

They are location-scale invariant.

Proof. It suffices to show:

(a) S(aX) = S(X) for a > 0, and

(b) S(X + b) = S(X) for all b.

Part (b) follows from

(Xi + b)− (X̄ + b) = Xi − X̄

Part (a) follows from ∑
(cxi − cx̄)m = cm

∑
(xi − x̄)m

3. The standardized residuals

z = (z1, z2, . . . , zn), zi =
xi − x̄
S

are location-scale invariant.

General comment: An ancillary statistic by itself can tell us nothing about θ, but when
combined with other statistics, it may give information about θ.
Example: X = (X1, X2, . . . , Xn) iid Unif(θ, θ + 1). We know (X(1), X(n)) is MSS. Any
1-1 function of a MSS is also MSS. Therefore (X(1), X(n) −X(1)) is MSS. We cannot drop
X(n)−X(1) without losing information about θ. But X(n)−X(1) is ancillary ! It is ancillary
because Unif(θ, θ+ 1) is a location family, and X(n)−X(1) is a location invariant statistic.
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