1 Conditional probability

1. A small business with 120 workers and 2 employee benefits, A and B. (Venn box diagram)

	A	A^{c}	
B	64	34	98
B^{c}	7	15	22
	71	49	120

Calculate the prob. that an employee chosen at random has the retirement benefit (A) given that she takes the health-care benefit (B). Restrict our attention to the rst row: 64/98
2. If the sample space S is finite, and all outcomes are equally likely, it is often convenient to compute $P(E \mid F)$ by using F as the sample space as

$$
P(E \mid F)=|E \cap F| /|F|
$$

Count $|E \cap F|$ in the reduced sample space F . (Note that $E \cap F$ is an event in F since $E \cap F \subset F$.)
3. An urn contains 10 white balls, 5 yellow balls, and 10 black balls. Choose a ball at random. Suppose we know that it is not black. What is the prob. that it is yellow? $P\left(Y \mid B^{c}\right)=P\left(Y \cap B^{c}\right) / P\left(B^{c}\right)=(5 / 25) /(15 / 25)$ Alternative: Consider the reduced sample space B^{c} or $Y \cup W$. Then $P\left(Y \mid B^{c}\right)=\mathrm{P}$ (choose a yellow out of white and yellow) $=5 / 15=1 / 3$
4. The multiplication rule for conditional probability

$$
\begin{array}{r}
P(E \cap F)=P(E \mid F) P(F) \\
P\left(E_{1} \cap E_{2} \cap E_{3} \ldots \cap E_{n}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} \cap E_{2}\right)
\end{array}
$$

5. A useful formula for calculating probabilities (Total probability formula)

$$
P(E)=P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)
$$

In general if $\cup_{i=1}^{n} F_{i}=S$, then

$$
P(E)=\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
$$

