1 Expectation and variance

$E(X)=\int_{-\infty}^{\infty} x f(x) d x V(X)=E(X-E(X))^{2}, E(a X+b)=a E(X)+b, V(a X+b)=$ $a^{2} V(X)$

1. The density function of X is given by

$$
f(x)=\left\{\begin{array}{l}
2 x, 0 \leq x \leq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

Find $E(X) .\left(E(X)=\int_{\infty}^{\infty} x f(x) d x=2 / 3\right)$
2. For a non-negative continuous random variable Y (which means $P(Y<0)=0$ or $f_{Y}(t)=0$ for $\left.t \leq 0\right)$

$$
\begin{equation*}
E(Y)=\int_{0}^{\infty} P(Y>y) d y \tag{1}
\end{equation*}
$$

3. Example: A stick of length 1 is split at a point U that is uniformly distributed over (0 , 1). Determine the expected length of the piece that contains the point a, $0 \leq a \leq 1$? Claim: greater than $1 / 2$. Given U, let $L(U)$ denote the length of the substick that contains the point a. So

$$
L(U)=\left\{\begin{array}{l}
1-U, U<a \\
U, U \geq a
\end{array}\right.
$$

Hence

$$
\begin{aligned}
E(L(U)) & =\int_{0}^{a}(1-u) d u+\int_{a}^{1} u d u \\
& =1 / 2+a(1-a)
\end{aligned}
$$

2 Important rule

Leibnitz rule:

$$
\frac{d}{d x} \int_{f_{1}(x)}^{f_{2}(x)} g(t) d t=g\left(f_{1}(x)\right) f_{1}^{\prime}(x)-g\left(f_{2}(x)\right) f_{2}^{\prime}(x)
$$

2.1 Problem

Suppose that if you are s minutes early for an appointment, then you incur the cost $c s$, and if you are s minutes late, then you incur the cost $k s$. Suppose that the travel time from where you presently are to the location of your appointment is a continuous random variable having probability density function f. Determine the time at which you should depart if you want to minimize your expected cost.
Observe that

$$
C_{t}(X)=\left\{\begin{array}{l}
c(t-X), \text { if } X \leq t \\
s(X-t), \text { if } X>t
\end{array}\right.
$$

Differentiate $E\left(C_{t}(X)\right)$ with respect to t and equate to 0 to get the solution.

