1 Change of Variable

If X is continuous with distribution function F_{X} and density function f_{X}, find the density function of $Y=2 X . f_{Y}(a)=\frac{1}{2} f_{X}(a)$. Another way to determine

$$
\epsilon f_{Y}(a) \approx P(a-\epsilon / 2<Y<a+\epsilon / 2)=P(a / 2-\epsilon / 4<X<a / 2+\epsilon / 4) \approx \epsilon / 2 f_{Y}(a / 2)
$$

The density function of X is given by

$$
f(x)=\left\{\begin{array}{l}
1,0<x<1 \\
0, \text { o.w. }
\end{array}\right.
$$

Find $E\left(e^{X}\right)$. Alternatively, we can evaluate function of $Y=e^{X}$ and then calculate EY. $E\left(e^{X}\right)=\int_{0}^{1} e^{x} d x=e-1$ Try to find the density of Y. Take the cdf approach. Clearly

$$
\begin{gathered}
F_{Y}(y)=P(Y \leq y)=\left\{\begin{array}{l}
0, \text { ify } \leq 0 \\
P(X \leq \log y)=\log y, \text { ify } \in[1, e] \\
1 i f y>e
\end{array}\right. \\
f_{Y}(y)=\left\{\begin{array}{l}
0, \text { ify } \leq 0 \\
1 / y, \text { ify } \in[1, e] \\
0 i f y>e
\end{array}\right.
\end{gathered}
$$

$E(Y)=\int_{1}^{e} y 1 / y d y=(e-1)$.

1.1 A theorem for monotone transformations

In general, we have the following theorem to obtain the density function of $Y=g(X)$ given the density of X. X is a continuous r.v. with density $f_{X}(\cdot)$. Suppose $g(\cdot)$ is a strictly monotone and differentiable function. Then $Y=g(X)$ has a prob density function given by

$$
f_{Y}(y)=\left\{\begin{array}{l}
f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| \text { if } y=g(x) \text { for some } x \\
0, \text { otherwise }
\end{array}\right.
$$

Since g is strictly monotone, we can define the inverse function $g^{-1}(y)$. The distribution of Y is $F_{Y}(y)=P(g(X) \leq y)=P\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right)$ where $y=g(x)$ for some $x=g^{-1}(y)$. DIfferentiation yields $f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)$. When $y \neq g(x)$ for any x, $F_{Y}(y)$ is either 0 or 1 and thus $f_{Y}(y)=0$.
If $Y=X^{n}$ for any nonnegative random variable $X, g(x)=x^{n}, g(y)=y^{1 / n}$. From the theorem $f_{Y}(y)=\frac{1}{n} y^{1 / n-1} f\left(y^{1 / n}\right)$ for $y>0$ and $=0$ if $y \leq 0$.
However, this theorem does not apply if g is not strictly monotone. (show that for $Y=X^{2}$).
Recommendation: Always start with the distribution function.

