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1 Empirical Likelihood

Empirical likelihood a nonparametric method without having to assume the form of the
underlying distribution. It retains some of the advantages of likelihood based inference.
Example: (Somites of Earthworms) Earthworms have segmented bodies. The segments
are known as somites. As a worm grows, both the number and the length of the somites
increases. The dataset contains the number of somites on each of 487 worms gathered near
Ann Arbor in 1902. The histogram shows that the distribution is skewed to the left, and
has a heavier tail to the left.

Figure 1: In the second panel, the empirical likelihood confidence regions (i.e. contours)
correspond to confidence levels of 50%, 90%, 95%, 99%, 99.9% and 99.99%. Note: (γ, κ) =
(0, 0) is not contained in the confidence regions.

1.1 Why do conventional methods not apply?

Here are the existing methods:
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1. Parametric likelihood: Not normal distribution! Likelihood inference for high
moments is typically not robust wrt a misspecified distribution.

2. Bootstrap: Difficult in picking out the confidence region from a point cloud con-
sisting of a large number of bootstrap estimates for (γ, κ). For example, given 1000
bootstrap estimates for (γ, κ), ideally 95% confidence region should contain 950 cen-
tral points. In practice, we restrict to rectangle or ellipse regions in order to facilitate
the estimation.

Recall the measures of skewness (symmetry) and kurtosis (tail-heaviness):

Skewness: γ =
E{(X − EX)3}
{Var(X)}3/2

Kurtosis: κ =
E{(X − EX)4}
{Var(X)}2

− 3

Remark 1. 1. For N(µ, σ2), γ = 0 and κ = 0.

2. For symmetric distributions, γ = 0.

3. When κ > 0, heavier tails than those of N(µ, σ2).

1.2 Estimation of γ and κ

Let X̄ = n−1
∑n

i=1Xi and σ̂2 = (n− 1)−1
∑

1≤i≤n(Xi − X̄)2. Then

γ̂ =
1

nσ̂3

n∑
i=1

(Xi − X̄)3, κ̂ =
1

nσ̂4

n∑
i=1

(Xi − X̄)4.

How to find confidence sets for (γ, κ)? In this section, we will define l(γ, κ) as the log-
empirical likelihood function of (γ, κ). The confidence region for (γ, κ) is defined as

{(γ, κ) : l(γ, κ) > C},

where C > 0 is a constant determined by the confidence level, i.e., P (l(γ, κ) > C} = 1−α.

1.3 Introducing empirical likelihood

Let X = (X1, . . . , Xn)T be a random sample from an unknown distribution F (·). We know
nothing about F (·). In practice, we observe Xi = xi, i = 1, . . . , n where x1, x2, . . . , xn are
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n known numbers.
Basic idea: Assume F is a discrete distribution on {x1, · · · , xn} with

pi = F (xi), i = 1, . . . , n

where

pi ≥ 0,
n∑
i=1

pi = 1.

What is the likelihood function of {pi} and what is the MLE? Since

P{X1 = x1, · · · , Xn = xn} = p1 · · · pn,

the likelihood is

L(p1, · · · , pn) ≡ L(p1, · · · , pn;X) =

n∏
i=1

pi

which is called an empirical likelihood.
Remark: The number of parameters is the same as the number of observations. Note that( n∏

i=1

pi

)1/n

≤ 1

n

n∑
i=1

pi =
1

n

the equality holds iff p1 = . . . = pn = 1/n. Putting p̂i = 1/n, we have

L(p1, · · · , pn;X) ≤ L(p̂1, · · · , p̂n;X)

for any pi ≥ 0 and
∑n

i=1 pi = 1. Hence the MLE based on the empirical likelihood, which is
called the maximum empirical likelihood estimator (MELE), puts equal probability mass
1/n on the n observed values x1, x2, . . . , xn.
Example: Find the MELE for µ = EX1.
Corresponding to the EL, µ =

∑n
i=1 pixi = µ(p1, . . . , pn). Therefore, the MELE for µ is

µ̂ = µ(p̂1, · · · , p̂n) = X̄.

Remark 2. 1. MELEs, without further constraints, are simply the method of moment
estimators, which is not new.

2. Empirical likelihood is a powerful tool in dealing with testing hypotheses and inter-
val estimation in a nonparametric matter based on likelihood tradition, which also
involves evaluating MELEs under some further constraints.
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2 Empirical likelihood inference for means

Let X1, . . . , Xn be a random sample from an unknown distribution.
Goal: test hypothesis on µ = EX1, or find confidence intervals for µ.

2.1 Empirical likelihood ratio (ELR)

Consider the hypothesis

H0 : µ = µ0 vs.H1 : µ 6= µ0.

Let L(p1, . . . , pn) =
∏
i pi. We reject H0 for large values of the ELR

T =
maxL(p1, . . . , pn)

maxH0 L(p1, . . . , pn)
=
L(n−1, . . . , n−1)

L(p̃1, . . . , p̃n)
,

where {p̃i} are the constrained MELEs for {pi} under H0.
Two problems:

1. How do we find {p̃i}?

2. What is the distribution of T under H0?

The constrained MELEs p̃i = pi(µ0), where {pi(µ)} are the solution of the maximization
problem

max
{pi}

n∑
i=1

log pi

subject to the conditions

pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pixi = µ.

The solution for the above problem is given in the Theorem below. Note that

x(1) ≡ min
i
xi ≤

n∑
i=1

pixi ≤ max
i
xi ≡ x(n).

Hence it is natural we require x(1) ≤ µ ≤ x(n).
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Theorem 1. For µ ∈ (x(1), x(n)),

pi(µ) =
1

n− λ(xi − µ)
> 0, 1 ≤ i ≤ n, (1)

where λ is the unique solution of the equation

n∑
j=1

xj − µ
n− λ(xj − µ)

= 0 (2)

in the interval
(
n/(x(1) − µ), n/(x(n) − µ)

)
.

Proof. We use the Lagrange multiplier technique to solve this optimization problem. Put

Q =
∑
i

log pi + ψ(
∑
i

pi − 1) + λ(
∑
i

pixi − µ).

Letting the partial derivatives of Q w.r.t. pi, ψ and λ equal to 0, we have

p−1
i + ψ + λxi = 1 (3)∑

i

pi = 1 (4)∑
i

pixi = µ. (5)

By (3),

pi = −1/(ψ + λxi). (6)

Hence, 1 + ψpi + λxipi = 0, which implies ψ = −(n+ λµ). This together with (6) implies
(1). By (1) and (5), ∑

i

xi
n− λ(xi − µ)

= µ. (7)

It follows from (4) that

µ = µ
∑
i

pi =
∑
i

µ

n− λ(xi − µ)
.

This together with (7) imply (2). Now, let g(λ) be the function on the LHS of (2). Then

d

dλ
g(λ) =

∑
i

(xi − µ)2

{n− λ(xi − µ)}2
> 0.
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Hence g(λ) is a strictly increasing function. Note

lim
λ↑n/(x(1)−µ)

g(λ) =∞, lim
λ↓n/(x(n)−µ)

g(λ) = −∞.

Hence g(λ) = 0 has a unique solution in the interval(
n

x(n) − µ
,

n

x(1) − µ

)
.

Note that for any λ in this interval,

1

n− λ(x(1) − µ)
> 0,

1

n− λ(x(n) − µ)
> 0

and 1/{n− λ(x− µ)} is a monotonic function of x. It holds that pi(µ) > 0 for all 1 ≤ i ≤
n.

Remark 3. a. When µ = x̄, λ = 0, and

pi(µ) = 1/n, i = 1, . . . , n.

It may be shown for µ close E(Xi), and n large

pi(µ) ≈ 1

n

1

1 + x̄−µ
S(µ)(xi − µ)

,

where S(µ) = (1/n)
∑n

i=1(xi − µ)2.

b. We may view

L(µ) = L{p1(µ), . . . , pn(µ)}

as a profile empirical likelihood for µ. Hypothetically consider an 1 − 1 parameter
transformation from {p1, . . . , pn} to {µ, θ1, . . . , θn}. Then

L(µ) = max
{θi}

L(µ, θ1, . . . , θn−1) = L{µ, θ̂1(µ), . . . , θ̂n−1(µ)}

c. The likelihood function L(µ) may be calculated using R-code and Splus-code, down-
loaded at http://www-stat.stanford.edu/∼owen/empirical.

The asymptotic theorem for the classic likelihood ratio tests (i.e., Wilk’s Theorem) still
holds for the ELR tests. Let X1, . . . , Xn be i.i.d and µ = E(X1). To test

H0 : µ = µ0 vs. H1 : µ 6= µ0
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the ELR statistic is

T =
maxL(p1, . . . , pn)

maxH0 L(p1, . . . , pn)
=

(1/n)n

L(µ0)

=

n∏
i=1

1

npi(µ0)
=

n∏
i=1

{
1− λ

n
(Xi − µ0)

}
where λ is the unique solution of

n∑
j=1

Xj − µ0

n− λ(Xj − µ0)
= 0.

Theorem 2. Let E(X2
1 ) <∞. THen under H0,

2 log T = 2
n∑
i=1

log

{
1− λ

n
(Xi − µ0)

}
→ χ2

1.

Proof. (Sketch) Under H0, E(Xi) = µ0. Therefore µ0 is close to X̄ for large n. Hence the
λ, or more precisely, λn ≡ λ/n is small, which is the solution of f(λn) = 0, where

f(λn) =
1

n

n∑
j=1

Xj − µ0

1− λn(Xj − µ0)
.

By a simple Taylor expansion 0 = f(λn) ≈ f(0) + ḟ(0)λn, implying

λn ≈ −f(0)/ḟ(0) = −(X̄ − µ0)/

{
(1/n)

∑
j

(Xj − µ0)2

}
.

Now,

2 log T ≈ 2
∑
i

{
− λn(Xi − µ0)− λ2

n

2
(Xi − µ0)2

}
= −2λnn(X̄ − µ0)− λ2

n

∑
i

(Xi − µ0)2

≈ n(X̄ − µ0)2

n−1
∑

i(Xi − µ0)2
.

By the LLN, n−1
∑

i(Xi−µ0)2 → Var(X1). By the CLT,
√
n(X̄ −µ0)→ N(0,Var(X1)) in

distribution. Hence 2 log T → χ2
1 in distribution.
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2.2 Confidence intervals for µ

For a given α ∈ (0, 1), since we will not reject the null hypothesis H0 : µ = µ0 iff 2 log T <
ξ2

1,1−α, where P{χ2
1 ≤ χ2

1,1−α} = 1− α. For α = 0.05, χ2
1,1−α = 3.84. Hence a 100(1− α)%

confidence interval for µ is

{µ : −2 log{L(µ)nn} < χ2
1,1−α} = {µ :

n∑
i=1

log pi(µ) > −0.5χ2
1,1−α − n log n}

= {µ :
n∑
i=1

log{npi(µ)} > −0.5χ2
1,1−α}.

Example: Darwin’s data: gains in height of plants from cross-fertilization. X = height
(Cross-F) - height(Self-F). There are 15 observations.

6.1,−8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3, 7.5,−6.0.

The sample mean X̄ = 2.61 and the standard error s = 4.71.
Is the gain significant?
Intuitively: YES, if the negative observations −8.4 and −6.0 do not exist.
Let µ = EXi and set up the hypotheses as

H0 : µ = 0, vs. H1 : µ > 0.

1. Standard approach: Assume {X1, . . . , X15} is a random sample from N(µ, σ2). The
MLE is µ̂ = X̄ = 2.61. The t-test statistic is

T =
√
nX̄/s = 2.14.

Since T = t(14) under H0, the p-value is 0.06 - significant but not overwhelming.
Is N(µ, σ2) an appropriate assumption? as the data do not appear to be normal (with
a heavy left tail); see Figure 2.

2. Consider a generalized normal family

fk(x | µ, σ) =
2−1−1/k

Γ(1 + 1/k)σ
exp

{
− 1

2

∣∣∣∣x− µσ
∣∣∣∣k },

which has the mean µ. When k = 2, it is N(µ, σ2). To find the profile likelihood of
µ, the ‘MLE’ for σ is

σ̂k ≡ σ̂(µ)k =
k

2n

n∑
i=1

|Xi − µ|k .
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Figure 2: Quantile of N(0, 1) vs Quantile of the empirical distribution

Hence

lk(µ) = lk(µ, σ̂) = −n log Γ(1 + 1/k)− n(1 + 1/k) log 2− n log σ̂ − n/k.

Figure 3 shows that the MLE µ̂ = µ̂(k) varies with respect to k. In fact µ̂(k) increases
as k decreases.
If we use the density with k = 1 to fit the data, then the p-value for the test is 0.03
which is much more significant than that under the assumption of normal distribution.

Figure 3: Profile likelihood

3. The empirical likelihood ratio test statistic 2 log T = 3.56, which rejects H0 with the
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p-value 0.04. The 95% credible interval is

{µ :

15∑
i=1

log pi(µ) > −1.92− 15 log(15)} = [0.17, 4.27].

4. The double exponential density is of the form 1/(2σ)e−|x−µ|/σ. With µ fixed, the MLE
for σ is n−1

∑
i |Xi − µ|. Hence the parametric log (profile) likelihood is−n log

∑
i |Xi − µ|.

See Figure 4.

Figure 4: Profile likelihood

3 Empirical likelihood for random vectors

Let X1, . . . ,Xn be i.i.d random vectors from distribution F . Similar to the univariate case,
we assume

pi = F (Xi), i = 1, . . . , n,

where pi ≥ 0 and
∑

i pi = 1. The empirical likelihood is

L(p1, . . . , pn) =

n∏
i=1

pi.
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Without any further constraints, the MELEs are

p̂i = 1/n, i = 1, . . . , n

3.1 EL for multivariate means

The profile empirical likelihood for µ = EX1 is

L(µ) = max

{ n∏
i=1

pi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piXi = µ

}
where pi(µ) is the MELE of pi with the additional constraint EXi = µ. Define the ELR

T ≡ T (µ) =
L(1/n, . . . , 1/n)

L(µ)
= 1/

n∏
i=1

{npi(µ)}.

Theorem 3. Let X1, . . . ,Xn be d × 1 i.i.d with mean µ and finite covariance matrix Σ
with |Σ| 6= 0. Then as n→∞,

2 log{T (µ)} = −2
n∑
i=1

log{npi(µ)} → χ2
d

in distribution.

Remark 4. 1. In the case that |Σ| = 0, there exists an integer q < d for which, Xi =
AYi where Yi is a q × 1 random variable such that |Var(Yi)| 6= 0, and A is a d × q
constant matrix. The above theorem still holds with the limit distribution replaced
by χ2

q .

2. The null hypothesis H0 : µ = µ0 will be rejected at the significance level α iff

n∑
i=1

log{npi(µ0)} ≤ −0.5χ2
d,1−α}

where P{χ2
d ≤ χ2

d,1−α} = 1− α.

3. A 100(1− α)% confidence region for µ is

{µ :

n∑
i=1

log{npi(µ)} ≥ −0.5χ2
d,1−α}

4. Bootstrap calibration: Since (i) and (ii) are based on an asymptotic result, when n is
small and d large, χ2

d,1−α may be replaced by the dBαe-th value among 2 log T ∗1 , . . . , 2 log T ∗B
which are computed as follows:
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a. Draw i.i.d sample X∗1, . . . ,X
∗
n from the uniform distribution on {X1, . . . ,Xn}. Let

T ∗ = 1/
n∏
i=1

{np∗i (X̄)},

where X̄ = (1/n)
∑n

i=1 Xi, and p∗i (µ) is obtained in the same manner as pi(µ)
with {X1, . . . ,Xn} replaced by {X∗1, . . . ,X∗n}

b. Repeat (a) B times, denote the B values of T ∗ as T ∗1 , . . . , T
∗
B.

c. Computing pi(µ):
Assumptions: |Var(Xi)| 6= 0 and µ is an inner point of the convex hull spanned
by the observations, i.e.,

µ ∈
{ n∑
i=1

piXi : pi > 0,

n∑
i=1

pi = 1

}
.

This ensures the solutions pi(µ) exist. We solve the problem in 3 steps.

i. Transform the constrained n-dimensional problem to a constrained d-dimensional
problem.

ii. Transform the constrained problem to an unconstrained problem.

iii. Apply a Newton-Raphson algorithm.

Let

l(µ) = logL(µ) =

n∑
i=1

log pi(µ)

= max

{ n∑
i=1

log pi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

piXi = µ

}
.

Step 1: Similar to previous Theorem 1, the Lagrangian multiplier method entails:

pi(µ) =
1

n− λT(Xi − µ)
, i = 1, 2, . . . , n

where λ is the solution of

n∑
j=1

Xj − µ

n− λT(Xj − µ)
= 0. (8)

Hence

l(µ) = −
n∑
i=1

log{n− λT(Xi − µ)} ≡M(λ).
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Note ∂
∂λM(λ) = 0 leads to (8), and

∂2M(λ)

∂λλT
=

n∑
i=1

(Xi − µ)Xi − µ)T

n− λT(Xi − µ)
> 0.

Thus M(·) is a convex function on any connected sets satisfying

n− λT(Xi − µ) > 0 i = 1, . . . , n. (9)

Note that (9) and (8) together imply
∑n

i=1 pi(µ) = 1. The original n-dimensional
optimization problem is equivalent to a d-dimensional problem of minimixing M(·)
subject to the constraints (9). Let Hλ be the set consisting all the values of λ
satisfying

n− λT(Xi − µ) > 1, i = 1, . . . , n.

ThenHλ is a convex set in Rd, which contains the minimizer of the convex function
M(λ). Unfortunately M(λ) is not defined on the sets:

{λ : n− λT(Xi − µ) = 0}, i = 1, 2, . . . , n.

Step 2: We extend M(λ) outside Hλ such that it is still a convex function on the

whole Rd. Define

log∗(z) =

{
log z, z ≥ 1,

−1.5 + 2z − 0.5z2, z < 1.

It is easy to see that log∗(z) has two continuous derivatives on R. Set M∗(λ) =
−
∑n

i=1 log∗{n−λT(Xi−µ)}. Then M∗(λ) = M(λ) on Hλ and M∗(λ) is a convex
function on whole of Rd. Hence M∗(λ) and M(λ) share the same minimizer which
is the solution of (8).
Step 3: We apply a Newton-Raphson algorithm to compute λ iteratively:

λk+1 = λk − {M̈∗(λk)}−1Ṁ∗(λk).

A convenient initial value would be λ0 = 0, corresponding to pi = 1/n.

Remark 5. S-code “el.S”, available from www-stat.stanford.edu/∼owen/empirical calcu-
lates the empirical likelihood ratio

n∑
i=1

log{npi(µ)}

and other related quantities.
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3.2 EL for smooth functions of means

Basic idea: Let Y1, . . . , Yn be i.i.d random variables with variance σ2. Note that

σ2 = EY 2
i − E2(Yi) = h(µ)

where µ = EXi, and Xi = (Yi, Y
2
i ). We may deduce a confidence interval for σ2 from that

of µ.

Theorem 4. Let X1, . . . ,Xn be d×1 i.i.d random variables with mean µ0 and |Var(X1)| 6=
0. Let θ = h(µ) be a smooth function from Rd → Rq where q ≤ d, and θ0 = h(µ0). We
assume that

|GGT| 6= 0, G =
∂θ

∂µT
.

For any r > 0, let

C1,r =

{
µ :

n∑
i=1

log{npi(µ} ≥ −0.5r}
}

and

C3,r =

{
θ0 +G(µ− µ0) : µ ∈ C1,r

}
.

Then as n→∞,

P (θ ∈ C3,r)→ P (χ2
q ≤ r).

Remark 6. 1. The idea of bootstrap calibration may be appropriate here too.

2. Under more conditions, P (θ ∈ C2,r)→ P (χ2
q ≤ r), where C2,r = {h(µ) : µ ∈ C1,r}.

3. C2,r is a practical feasible confidence set, while C3,r is not since µ0 and θ0 are unknown
in practice. Note that µ close to µ0,

θ0 +G(µ− µ0) ≈ h(µ).

4. In general, P (µ ∈ C1,r ≤ P (θ ∈ C2,r).

5. By Theorem 4, P (θ ∈ C1,r)→ P (χ2
d ≤ r).

6. The profile empirical likelihood function of θ is

L(θ) = max

{ n∏
i=1

pi(µ) : h(µ) = θ

}
= max

{ n∏
i=1

pi : h

( n∑
i=1

piXi

)
= θ, pi ≥ 0,

n∑
i=1

pi = 1

}
which may be calculated directly using the Lagrange multiplier method. The compu-
tation is more involved for nonlinear h(·).
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(a) S&P Stocks (b) QQ plot for S&P Stocks

Figure 5: S&P Stocks

Example 4: S&P500 stock index in 17.8.1999 - 17.8.2000 (256 trading days). Let Yi be the
price on the i-th day

Xi = log(Yi/Yi−1) ≈ (Yi − Yi−1)/Yi−1,

which is the return, i.e. the percentage of the change on the ith day. By trating Xi i.i.d,
we construct confidence intervals for the annual volatility

σ = {255Var(Xi)}1/2.

The simple point-estimator is

σ̂ =

{
255

255

255∑
i=1

(Xi − X̄)2

}1/2

= 0.2116.

The 95% confidence intervals for σ the Normal approximation approach is [0.1950, 0.2322]
and for the EL method is [0.1895, 0.2422]. The EL confidence interval is 41.67% wider
than the interval based on normal distribution, which reflects the fact that the returns
have heavier tails.
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4 Estimating Equations

4.1 Estimation via estimating equations

Let X1, . . . ,Xn be i.i.d from a distribution F . We are interested in some characteristic
θ ≡ θ(F ), which is determined by equation

E{m(X1,θ)} = 0,

where θ is a q × 1 vector, m is a s× 1 vector-valued function. For example:

1. θ = EX1 if m(x, θ) = x− θ.

2. θ = EXk
1 if m(x, θ) = xk − θ.

3. θ = P (X1 ∈ A) if m(x, θ) = I(x ∈ A)− θ

4. θ is the α-quantile if m(x, θ) = I(x ≤ θ)− α.

A natural estimator for θ is determined by the estimating equation

1

n

n∑
i=1

m(X1, θ̂) = 0. (10)

Obviously, in case F is in a parametric family and m is the score function, θ̂ is the ordinary
MLE.
Determined case q = s: θ̂ may be uniquely determined by (10).
Determined case q > s: The solutions of (10) may form a (q − s)-dimensional set.
Overdetermined case q < s: (10) may not have an exact solution, approximating solutions
are sought. One such an example is so-called the generalised method of moments estima-
tion which is very popular in Econometrics.
Example: Let {(Xi, Yi), i = 1, . . . , n} be a random sample. Find a set of estimating equa-
tions for estimating γ ≡ Var(X1)/Var(Y1).
In order to estimate γ, we need to estimate µx = E(X1), µy = E(Y1) and σ2

y = Var(Y1).
Putting θT = (µx, µy, σ

2
y , γ), and

m1(X,Y,θ) = X − µx, m2(X,Y,θ) = Y − µy,
m3(X,Y,θ) = (Y − µy)2 − σ2

y ,

m4(X,Y,θ) = (X − µx)2 − σ2
yγ,

and m = (m1,m2,m3,m4)T. Then E{m(Xi, Yi,θ)} = 0, leading to the estimating equation

1

n

n∑
i=1

m(Xi, Yi,θ) = 0.
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Remark 7. Estimating equation method does not facilitate hypothesis tests and interval
estimation for θ.

4.2 EL for estimating equations

Aim: Construct statistical tests and confidence intervals for θ.
The profile empirical likelihood function of θ:

L(θ) = max

{ n∏
i=1

pi :
n∑
i=1

pim(Xi,θ) = 0, pi ≥ 0,
n∑
i=1

pi = 1

}
The following Theorem follows from Theorem 2 immidiately.

Theorem 5. Let X1, . . . ,Xn be i.i.d, m(x, θ) be an s× 1 vector valued function. Suppose

E{m(X1,θ0)} = 0, |Var{m(X1,θ0)}| 6= 0.

Then as n→∞,

−2 log{L(θ0)} − 2n log n→ χ2
s

in distribution.

The theorem above applies in all determined, underdetermined and overdetermined cases.

Remark 8. 1. In general L(θ) can be calculated using the method for EL for multivari-
ate means, treating m(Xi,θ) as a random vector.

2. For θ = θ̂ which is the solution of

1

n

n∑
i=1

m(Xi, θ̂) = 0.

L(θ̂) = (1/n)n.

3. For θ determined by E{m(X1,θ)} = 0, we will reject the null hypothesis H0 : θ = θ0

iff

log{L(θ0)}+ n log n ≤ −0.5χ2
s,1−α.

4. Any (1− α) confidence set for θ determined by E{m(X1,θ)} = 0 is{
θ : log{L(θ)}+ n log n > −0.5χ2

s,1−α

}

17



Example: (Confidence intervals for quantiles) Let X1, . . . , Xn be i.i.d. For a given α ∈ (0, 1),
let

m(x, θα) = I(x ≤ θα)− α.

Then E{m(Xi, θα} = 0 implies θα is the α-quantile of the distribution of Xi. We assume
the true value of θα is between X(1) and X(n). The estimating equation

n∑
i=1

m(Xi, θ̂α) =
n∑
i=1

I(Xi ≤ θα)− nα = 0

entails θ̂α = X(nα), where X(i) denotes the i-th smallest value among X1, . . . , Xn. Let

L(θα) = max

{ n∏
i=1

pi :
n∑
i=1

piI(Xi ≤ θα) = α, pi ≥ 0,
n∑
i=1

pi = 1

}
.

An (1− β) confidence interval for the α-quantile is

Θα = {θα : log{L(θα)} > −n log n− 0.5χ2
1,1−β}.

Note L(θ̂α) = (1/n)n ≥ L(θα) for any θα. It is always true that θ̂α ∈ Θα. In fact L(θα)
can be computed explicitly as follows. Let r = r(θα) be the integer for which

X(i) ≤ θα, for i = 1, . . . , r,

X(i) > θα, for i = r + 1, . . . , n.

Thus,

L(θα) = max

{ n∏
i=1

pi : pi ≥ 0,

r∑
i=1

pi = α,

n∑
i=r+1

pi = 1− α
}

= (α/r)r{(1− α)/(n− r)}n−r.

Hence

Θα = {θα : log{L(θα)} ≥ −n log n− 0.5χ2
1,1−α}

=

{
θα : r log

nα

r
+ (n− r) log

n(1− α)

n− r
> −0.5χ2

1,1−α

}
which can also be derived directly based on a likelihood ratio test for a binomial distribu-
tion.
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5 Empirical likelihood for estimating conditional distribu-
tion

References on kernel regression:

• Simonoff, J. S. (1996). Smoothing Methods in Statistics. Springer, New York.

• Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing. Chapman and Hall, London.

• Hall, P., Wolff, R.C.L. and Yao, Q. (1999). Methods for estimating a conditional
distribution function. Journal of the American Statistical Association, 94, 154-163.

• Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric
Methods. Springer, New York. Sections 10.3 (also Section 6.5).

5.1 From global fitting to local fitting

Consider linear regression model

Y = X1β1 + · · ·+Xdβd + ε, (11)

where ε has mean 0 and variance σ2. This model is linear with respect to unknown
coefficients β1, . . . , βd as the variable X1, . . . , Xd may be

1. quantitative inputs

2. transformations of quantitative inputs, such as log, square- root etc

3. interactions between variables, e.g. X3 = X1X2

4. basis expansions, such as X2 = X2
1 , X3 = X3

1 ,

5. numeric or “dummy” coding of the levels if qualitative inputs

Put β = (β1, . . . , βd)
T. With observation {Yi,Xi, 1 ≤ i ≤ n}, where Xi = (Xi1, . . . , Xid)

T,
the LSE minimises

β̂ = (XTX)−1XTY,

where Y = (Y1, . . . , Yn)T, and Xi = (Xi1, . . . , Xid)
T, the LSE minimises

n∑
i=1

(Yi −XT
i β)2, (12)
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where Y = (Y1, . . . , Yn)T, and X = (X1, . . . ,Xn)T is an n× d matrix. The fitted model is
Ŷ = Xβ̂. This is a global fitting, since the model is assumed to be true everywhere in the
sample space and the estimator β̂ is obtained all the available data. Such a global fitting is
efficient if the assumed form of the regression function (11) is correct. In general (11) may
be incorrect globally. But it may provide a reasonable approximation at any small area
in the sample space. We fit for each given small area a different linear model. This is the
basic idea of local fitting. Technically, a local fitting may be achieved by adding a weight
function in (12) as follows. Suppose we fit a local linear model in a small neighborhood of
the observation Xk, with the coefficient β = βk, the LSE minimizes

n∑
i=1

(Yi −XT
i βk)

2w(Xi,Xk) (13)

where the weight function may be taken as

w(Xi,Xk) =

{
1, ifXi is among the p nearest neighbors ofXk,

0, otherwise

where p ≥ 1 is a prescribed small integer. Although the sum in (13) only has p non-zero
terms, the LSE can be expressed formally as

β̂k = (XTWX)−1XTWY,

where W = diag{w(X1,Xk), . . . , w(Xn,Xk)}.

Remark 9. 1. The local estimator β̂k only makes use of the p (out of n) observations
around Xk, may depend on the choice of p sensitively.

2. Intuitively, the local estimator β̂k may catch some local structure better that the global
estimator β̂. But the variance of β̂k is larger than that of β̂.

5.2 Kernel methods

5.2.1 Introduction

We observe {(Yi, Xi), i = 1, . . . , n} from

Yi = f(Xi) + εi, ε ∼ (0, σ2)

where f(·) is an unknown and smooth function. We may use the idea of local smoothing
to estimate f . Let f̂(x) is the average of all those Yi for which Xi is among the k nearest
neighbors of x. Hence

1

k

k∑
i=1

Yiw(x,Xi) =

∑n
i=1 yiw(x,Xi)∑n
i=1w(x,Xi)
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where w(x,Xi) = 1 if Xi is among the k nearest neighbors of x and 0 otherwise. We may
also give more weights to Xi closer to x, i.e., let w(x,Xi) = w(|x−Xi|) be a monotonically
decreasing function.

5.2.2 Nadaraya-Watson estimator

Yi = f(Xi) + εi.

Instead of specifying k-the number of neighbors used in estimation, we may determine the
number by choosing

w(x,Xi) = K

(
Xi − x
h

)
,

where K(·) ≥ 0, is a kernel function, and h > 0 is a bandwidth. Conventionally, we use K
such that

∫
K(u)du = 1. When, for example k(x) = 0.5I(|x| ≤ 1), only those Xi within h

distance from x are used in estimating f(x). The number of points may vary with respect
to x. The resulting estimator

f̂(x) =
n∑
i=1

YiK

(
Xi − x
h

)
/

n∑
i=1

K

(
Xi − x
h

)
is called the Nadaraya-Watson estimator. In fact f̂(·) is a local LSE, since

f̂(x) = argmina

n∑
i=1

{Yi − a}2K
(
Xi − x
h

)
.

Therefore, f̂(·) is also called local constant regression estimator.

Remark 10. 1. Commonly used kernel functions:

• Gaussian kernel K(x) = (2π)−1/2 exp(−x2/2)

• Epanechnikov kernel K(x) = (3/4)(1− x2)I(|x| ≤ 1)

• Tri-cube kernel K(x) = (1− |x|3)3I(|x| ≤ 1)

Both Epanechnikov and tri-cube kernels have compact support [−1, 1] while Gaussian
kernel has infinite support.

2. The bandwidth h controls the amount of data used in local estimation, determines
the smoothness of the estimated curve f̂(·) For example, with K(x) = 0.5I(|x| ≤ 1),
f̂(x) → Ȳ as h → ∞ global constant fitting; f̂(Xi) → Yi as h → 0 interpolating the
observations. h is also called a smooth parameter.

3. The goodness of the estimator f̂(·) depends on the bandwidth h sensitively, while the
difference from using different kernel functions may be absorbed to a large extent by
adjusting the value of h accordingly.
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Figure 6: In each panel, 100 pairs xi, yi are generated at random from the blue curve with
Gaussian errors: Y = sin(4X) + ε,X ∼ Unif(0, 1), ε ∼ N(0, 1/3). In the left panel, the
green curve is the result of 30-nearest-neighbor running-mean smoother. The red point
is the fitted constant f̂(x0), and the orange shaded circles indicate those observations
contributing to the fit at x0. The solid orange region indicates the weights assigned to the
observations. In the right panel, the green curve is the kernel-weighted average, using an
Epanechnikov kernel with (half) window width λ = 0.2

Figure 7: A comparison of three popular kernels for local smoothing. Each has been cali-
brated to integrate to 1. the tri-cube kernel is compact and has two continuous derivatives
at the boundary of its support, while the Epanechnikoc kernel has none. The Gaussian
kernel is continuously differentiable, but has infinite support.
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5.3 Bias and variance calculations

Regularity conditions:

1. {Yi, Xi} are i.i.d and

f(x) = E(Yi | Xi = x), εi = Yi − f(Xi).

Further both f(·) and p(·) have two continuous derivatives, where p(·) denotes the
pdf of Xi.

2. K(·) is a symmetric density function with a bounded support, and n → ∞, h → 0
and nh→∞.

Let σ2
0 =

∫
u2K(u)du, X = (X1, . . . , Xn)T and

σ2(x) = Var(Yi | Xi = x) = E(Y 2
i | Xi = x)− f2(x).

Theorem 6. Under conditions (i) and (ii) above, it holds that for x with p(x) > 0,

E{f̂(x)− f(x) | X} � h2σ2
0

2

{
f̈(x) +

2ḟ(x)ṗ(x)

p(x)

}
,

Var{f̂(x) | X} � 1

nh

σ(x)2

p(x)

∫
K2(u)du.

Proof. We only provide a sketch of the proof for the bias. Let

Ki = h−1K

(
Xi − x
h

)
.

Then

f̂(x) =
∑
i

YiKi/
∑
i

Ki.

Note that (i) implies E{εi | X} = E{εi | Xi} = 0.

E{f̂(x)− f(x) | X} =
∑
i

E{Yi − f(x) | X}Ki/
∑
i

Ki

=
∑
i

{f(Xi)− f(x)}Ki/
∑
i

Ki.

It follows from the Law of Large numbers that

1

n

n∑
i=1

Ki � E(K1) =

∫
1

h
K

(
X − x
h

)
p(X)dX =

∫
K(u)p(x+ hu)du→ p(x), (14)

23



and

1

n

n∑
i=1

{f(Xi)− f(x)}Ki �
∫
{f(X)− f(x)}1

h
K

(
X − x
h

)
p(X)dX

=

∫
{f(x+ hu)− f(x)}K(u)p(x+ hu)du (15)

=

∫
{huḟ(x) +

h2u2

2
f̈(x)}{p(x) + huṗ(x)}K(u)du+O(h3)

= h2σ2
0{ḟ(x)ṗ(x) + 0.5f̈(x)p(x)}+O(h3). (16)

Combining (14) and (16), we obtain the required asymptotic formula for the bias.

Remark 11. 1. An approximate MSE:

E[{f̂(x)− f(x)}2 | X] = Bias2 + Variance

≈ h4σ4
0

4

{
f̈(x) +

2ḟ(x)ṗ(x)

p(x)

}2

+
1

nh

σ(x)2

p(x)

∫
K2(u)du.

Increasing h, variance decreases and bias increases. A good choice of h is a trade-
off between the variance and the bias. Minimizing the RHS of the above over h, we
obtain hop = n−1/5C(x), where C(x) is a function of x, depending on p, f and K.
Note that C(x) is unknown in practice.

2. It can be shown that

√
nh

[
f̂(x)− f(x)− h2σ2

0

2

{
f̈(x) +

2ḟ(x)ṗ(x)

p(x)

}]
converges in distribution to

N

(
0,
σ(x)2

p(x)

∫
K2(u)du

)
.

Note that the convergence rate is
√
nh (instead of the standard

√
n). This reflects

the nature of local estimation; effectively only the date lying within h-distance from
given x are used in estimation, and the number of those data is of the size nh.

5.3.1 Kernel density estimation

From (15), a natural estimator for the density function of Xi is

p̂(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
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which is called a kernel density estimator. (15) also implies that p̂(x) is a consistent
estimator. Further,

E{p̂(x)} = p(x) +O(h2).

5.3.2 Local linear regression estimation

The Nadaraya-Watson estimation is a local constant estimation, i.e., for y is a small neigh-
borhood of x, we approximate f(y) ≈ f(x), and minimize

n∑
i=1

{Yi − a}2K
(
Xi − x
h

)
.

Intuitively, the estimation can be improved by using a local-linear approximation:

f(y) ≈ f(x) + f̂(x)(y − x).

This leads to the local-linear regression estimator: f̂(x) ≡ â, where (â, b̂) minimizes

n∑
i=1

{Yi − a− b(Xi − x)}2K
(
Xi − x
h

)
. (17)

Obviously, a natural estimator for ḟ is
ˆ̇
f(x) ≡ b̂. Let Y = (Y1, . . . , Yn)T, θ = (a, b)T, X be

a n × 2 matrix with (1, (Xi − x)) as its ith row, and K is a n × n diagonal matrix with
K{(Xi − x)/h} as its (i, i)-th element. Then (17) can be written as

(Y − Xθ)TK(Y − Xθ).

Therefore the LSE method leads to(
f̂(x)
ˆ̇
f(x)

)
= θ̂ = (X TKX )−1X TKY

Hence like the Nadaraya-Watson estimator, the local linear estimator for f(x) is a linear
combination of Y1, . . . , Yn (given X = (X1, . . . , Xn)T). Such an estimator is called a linear
estimator.
Note: Both Nadaraya-Watson estimator and local linear estimator with prescribed band-
width h can be computed using S-function ‘ls.s’. Splus and R function ‘loess’ offers more
flexibilities for local regression fitting.
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5.3.3 Why is a local linear estimator better

1. Simpler (and often smaller) bias formula

2. Automatic boundary carpentry

The table below lists the (first order) biases and variances of the Nadaraya-Watson esti-
mator (N-W) and the local linear estimator (LL).

Table 1: default

Bias Variance

N-W
h2σ2

0
2

{
f̈(x) + 2ḟ(x)ṗ(x)

p(x)

}
1
nh

σ(x)2

p(x)

∫
K2(u)du

LL
h2σ2

0
2 f̈(x) 1

nh
σ(x)2

p(x)

∫
K2(u)du

5.4 Estimation for conditional distributions

Observations: {(X1, Y1), · · · , (Xn, Yn)} i.i.d. Let F (·|x) denote the conditional distribu-
tion of Yi given Xi = x.
Goal: Estimate F (· | x) nonparametrically.
Motivation: quantile regression, prediction and etc.

5.4.1 Nadaraya-Watson and local linear estimators

Note: E{I(Yi ≤ y) | Xi = x} = F (y | x). Hence G(y | x) is a regression of Zi ≡ I(Yi ≤ y)
on Xi as E(Zi | Xi) = F (y | Xi).
Nadaraya-Watson estimator:

F̂nw(y | x) =
n∑
i=1

I(Yi ≤ y)K

(
Xi − x
h

)
/

n∑
i=1

K

(
Xi − x
h

)
=

n∑
i=1

Ziwi(x),

where Zi = I(Yi ≤ y), and

wi(x) = K

(
Xi − x
h

)
/

n∑
i=1

K

(
Xi − x
h

)
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In the above expression, K(·) is a pdf and h > 0 is a bandwidth. F̂nw(y | x) itself is a
proper distribution function ! In fact, F̂nw(y | x) is a local constant estimator in the sense
that it minimizes

L(a) =

n∑
i=1

wi(x)(Zi − a)2.

If we replace wi(x) by 1/n, we obtain the glocal estimator Z̄.
Local-linear estimator: F̂ll(y | x) ≡ â, where (â, b̂) minimizes

n∑
i=1

wi(x){Zi − a− b(Xi − x)}2.

Note: If we replace wi(x) by 1/n, this is the standard linear regression estimation: Ẑi =
â + b̂(Xi − x). F̂ll(y | x) has superior bias properties (and other types of efficiency). But
F̂ll(y | x) is not necessarily a distribution function, as it may take value outside the interval
[0, 1], and is not necesarily monotonically increases in y.
An ideal estimator: Combine the advantages of both F̂nw(y | x) and F̂ll(y | x) together.
Write Zi = I(Yi ≤ y) = F (y | Xi) + εi and Kh(x) = h−1K(x/h). Let g(·) be the pdf of Xi.
Then as n→∞, (1/n)

∑n
i=1Kh(Xi − x)→ g(x). Hence

F̂nw(y | x) ≈ 1

ng(x)

n∑
i=1

εiKh(Xi − x) +
1

g(x)

n∑
i=1

F (y | Xi)Kh(Xi − x), and

≈ 1

n

n∑
i=1

F (y | Xi)Kh(Xi − x)

≈ 1

n

n∑
i=1

F (y | x)Kh(Xi − x) + Ḟ (y | x)
1

n

n∑
i=1

(Xi − x)Kh(Xi − x) + · · ·

The extra bias term is due to the fact that Ḟ (y | x) 1
n

∑n
i=1(Xi − x)Kh(Xi − x) 6= 0. Idea:

Change the weights (1/n) to force the sum equal to 0.

5.4.2 Empirical Likelihood estimator

F̂el(y | x) =
n∑
i=1

pi(x)ZiKh(Xi − x)/
n∑
j=1

pj(x)Kh(Xj − x)

where pi(x), i = 1, . . . , n are the maximum empirical likelihood estimators defined as max-
imize

n∏
i=1

pi(x)
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subject to

pi(x) ≥ 0,
n∑
i=1

pi(x) = 1,
n∑
i=1

pi(x)Ui(x) = 0,

where Ui(x) = (Xi − x)Kh(Xi − x). By Lagrangian techniques

pi(x) =
1

n− λUi(x)
, λ ≡ λ(x)

where λ(x) is the unique solution of

n∑
i=1

Ui(x)

n− λUi(x)
= 0

The empirical likelihood estimator F̂el(| x)

a. is a distribution function, and

b. shares the same (the first order) asymptotic bias and variance as the local linear esti-
mator F̂ll(· | x).
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