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February 3, 2016 Debdeep Pati

1 General problem

Model: {Pθ : θ ∈ Θ}.
Observe X ∼ Pθ, θ ∈ Θ unknown.
Estimate θ. (Pick a plausible distribution from family. )
Or estimate τ = τ(θ).
Examples: θ = (µ, σ2), τ(θ) = µ− σ.
θ = (β0, β1, σ

2), τ(θ) = β0 + β1z.

2 Terminalogy

A statistic W (X) is a function of the data X.
A parameter is a function τ(θ). (“A” parameter τ(θ) is a function of “the” parameter θ.)
A point estimator of θ or τ(θ) is a statistic W (X) which is a single “value” (intended as
an estimate of θ or τ(θ)).
We usually (but not always) require that a point estimator of θ should always belong to Θ,
and an estimator of τ(θ) should always belong to τ(Θ), the set of possible values of τ(θ).
If the data X is a random sample (X1, . . . , Xn) from some population, these definitions
correspond to those in elementary statistics:
A statistic is a characteristic of the sample.
A parameter is a characteristic of the population.
Notation: Point estimators of parameters θ or τ = τ(θ) are often designated θ̂ = θ̂(X) or
τ̂ = τ̂(X).
Examples of Parameters:
Notation: X = (X1, . . . , Xn) iid from the pdf (or pmf) f(x | θ).
X is a single rv from f(x | θ).
For concreteness, think of θ = (µ, σ2) and X ∼ N(µ, σ2).
Some parameters: τ(θ) = θ
τ(θ) = µ, or τ(θ) = µ2

τ(θ) = σ2 or τ(θ) = σ4

τ(θ) = Pθ(X ∈ A) =
∫
A f(x | θ)dx

τ(θ) = EθX =
∫
xf(x | θ)dx (general case)

τ(θ) = Eθh(X) =
∫
h(x)f(x | θ)dx

τ(θ) = median of f(x | θ).
τ(θ) = interquartile range of f(x | θ).

1



τ(θ) = 95th percentile f(x | θ).
Empirical Estimators: It is often possible to estimate a population quantity by a natural
sample analog.
Examples:

Table 1: default

Parameter τ(θ) Estimate τ̂(X)

Pθ(X ∈ A)︸ ︷︷ ︸
(population proportion)

n−1
n∑
i=1

I(Xi ∈ A)︸ ︷︷ ︸
sample proportion

EθX︸ ︷︷ ︸
(population mean)

n−1
n∑
i=1

Xi︸ ︷︷ ︸
(sample mean)

Eθh(X)︸ ︷︷ ︸
(population mean)

n−1
n∑
i=1

h(Xi)︸ ︷︷ ︸
(sample mean)

population median sample median
population IQR sample IQR

population 95 th percentile sample 95 th percentile

ψ(F ) ψ(F̂n)

F is the cdf of f(x | θ) (the population cdf) and F̂n is the empirical cdf (defined later).

3 Intuitive approaches to estimation

3.1 Empirical Estimates (summary)

Estimate a population quantity by the natural sample analog. For example, estimate
population mean by sample mean, population variance by sample variance, population
quantile by sample quantile, etc.

3.2 Substitution principle (Plug-in Method)

Suppose α = α(θ) and β = β(θ) are two parameters related by α = h(β). If β̂ = β̂(X
˜

) is a

“reasonable” estimator of β, then α̂ = h(β̂) is a “reasonable” estimator of α. More gener-
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ally, if α, β1, β2, . . . , βk are parameters related by α = h(β1, β2, . . . , βk), and β̂1, β̂2, . . . , β̂k
are “reasonable” estimators of β1, . . . , βk, then α̂ = h(β̂1, β̂2, . . . , β̂k) is a “reasonable” es-
timator of α.
Example: X̃ = (X1, X2, . . . Xn) iid N(µ, σ2), θ = (µ, σ2). Estimate τ(θ) = P (−1 < X < 1),
where X ∼ N(µ, σ2).

1. An empirical estimate: τ̂ = 1
n

∑n
i=1 I(−1 < Xi < 1) = sample proportion.

2. A Plug-in estimate:

τ(θ) = P (−1 < X < 1) = P

(
− 1− µ

σ
< Z <

1− µ
σ

)
= Φ

(
1− µ
σ

)
− Φ(

−1− µ
σ

)
= h(µ, σ)

where Φ is the cdf of N(0, 1).

Reasonable stimulates of µ, σ are

µ̂ = x̄, σ̂ = s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

so that a plug-in estimate is given by

τ̂ = h(µ̂, σ̂) = Φ

(
1− x̄
s

)
− Φ

(
−1− x̄
s

)
.

Which estimator is better? 1) or 2)? Intuition suggests 2) is better. Estimator 1) does
not been use the assumption of normality. However, if it turns out that the normality
assumption is false then 1) may end up giving the better estimate of P (−1 < X < 1).
Example: X1, X2, . . . , Xn iid from a Cauchy location-scale family with pdf

f(x | µ, σ2) =
1

σ
· 1

π
{

1 +
(x−µ

σ

)2} , −∞ < x <∞.

Estimate θ = (µ, σ).
Note: This distribution does not have a finite mean. Thus x̄ and s2 are not useful here.
Useful Facts:

P (X < µ) = 0.5 (whereX ∼ f(· | µ, σ))

P (X < µ− σ) = 0.25

P (X < µ+ σ) = 0.75
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Notation: For 0 < p < 1, let βp = population pth quantile, Qp = sample pth quantile.
Formal definitions: Let F = population cdf: F (t) = P (X ≤ t).
F̂= sample cdf (empirical cdf): F̂ (t) = 1

n

∑n
i=1 I(Xi ≤ t).

Then

βp = inf{x : F (x) ≥ p}
Qp = inf{x : F̂ (x) ≥ p}.

A “reasonable” estimate of βp is β̂p = Qp. The “useful facts” say that for the Cauchy L-S
family.

β0.5 = µ, β0.25 = µ− σ, β0.75 = µ+ σ

which implies

µ = β0.5, σ =
1

2
(β0.75 − β0.25).

Thus

θ = (µ, σ) = h(β0.5, β0.25, β0.75)

=

{
β0.5,

1

2
(β0.75 − β0.25)

}
so that a plug-in estimate is given by

θ̂ = h(β̂0.5, β̂0.25, β̂0.75) =

{
Q0.5,

1

2
(Q0.75 −Q0.25)

}

4 Estimation by the Method of Moments (MOM)

MOM is basically fitting distribution by machining moments. MOM is a special case of
the plug-in method.
Notation: µr = EXr = rth population moment (µr = µr(θ) is a parameter.)
mr = 1

n

∑n
i=1X

r
i = rth sample moment.

A “reasonable” estimate of µr is µ̂r = mr. Thus,
MOM: If parameter τ = τ(θ) can be written as a function of population moments τ =
h(µ1, µ2, . . . , µk), then a “reasonable” estimate of τ is τ̂ = h(m1,m2, . . . ,mk).

4.1 Parameter estimation by the Method of Moments

Situation: Suppose we have a model X1, X2, . . . , Xn iid f(x | θ), where f(x | θ) is the pdf
(or pmf) of a family of distributions depending on a single parameter θ. The value of θ is
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unknown. We observe data x1, x2, . . . , xn. How do we estimate θ?
Notation: Let X denote a single observation from f(x | θ). Define

µ = population mean = EX

µ̂ = x̄ = sample mean = n

Note that µ is a function of θ, say µ = h(θ).
Method of Moments (MOM): Estimate θ by that value θ̂ which makes the population
mean µ equal to the sample mean x̄.

Formal Procedure:

1. Step 1: Find µ as a function of θ:

µ = EX = h(θ).

This is done either by looking up the family of distributions in the appendix or by
doing the calculation

EX =

∫ ∞
−∞

xf(x | θ), or
∑

xf(x | θ)

2. Step 2: Solve for θ as a function of µ:

θ = g(µ) (1)

3. Step 3: Now plug in µ̂ = x̄ to obtain the MOM estimate:

θ̂ = g(x̄)

Note: If µ does not depend on θ (for instance, if µ = 0 for all θ), then MOM is carried
out using the second moment.
Rationale: MOM works because the LLN guarantees that the sample mean x̄ will be
close to the population mean µ (with high probability) when the sample size n is
large. Since g (in (5)) is a continuous function, x̄ ≈ µ implies g(x̄) ≈ g(µ) which says
that θ̂ ≈ θ.

Example: MOM for Poisson(λ) distribution

1. µ = EX =
∑

x=0 x
λxe−λ

x! = λ Hence µ = λ (µ as a function of λ).

2. λ = µ (Solve for λ).

3. λ̂ = µ̂ = x̄ (Plug-in µ̂ = x̄ for µ).
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Conclusion: The MOM estimate of λ is x̄ (λ̂ = x̄).

Example: Suppose you observe X1, X2, . . . , Xn ∼ Geometric(p). Find the MOM estimate
of p.

1. Find µ as a function of p.

µ = EX =
∞∑
x=1

x · p(1− p)x−1 =
1

p

µ = 1/p.

2. Solve for p as a function of µ. p = 1
µ .

3. Plug in µ̂ = x̄ for µ.

p̂ =
1

µ̂
=

1

x̄
.

Conclusion: The MOM estimate of p is 1
x̄ or p̂ = 1

x̄ .

4.2 Parameter estimation by the Method of Moments in multi-parameter
case

Suppose we have a model X1, X2, . . . , Xn iid f(x | θ), where f(x | θ) is the pdf (or pmf)
of a family of distributions depending on a vector of parameters θ = (θ1, θ2, . . . , θp). The
vector of values θ is unknown. We observe data x1, x2, . . . , xn. How do we estimate θ?
Notation: Let X denote a single observation from f(x | θ). Define

µk = (population k-th moment) = EXk

µ̂k = (sample k-th moment) =
1

n

n∑
i=1

xki

Note that µk is a function of θ, say µk = hk(θ1, . . . , θp).

Method of Moments (MOM): Estimate θ = (θ1, θ2, . . . , θp) by those values θ̂ =

(θ̂1, θ̂2, . . . , θ̂p) which make the population moments (µ1, µ2, . . . , µp) equal to the sample
moments (µ̂1, µ̂2, . . . , µ̂p) = (m1,m2, . . . ,mp).
MOM for θ = (θ1, θ2, . . . , θp)

1. Find expressions for µ1, µ2, . . . , µp:

µ1 = h1(θ1, . . . , θp)

µ2 = h2(θ1, . . . , θp)

...

µp = hp(θ1, . . . , θp)
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Look them up in appendix or evaluate using

µk = EXk =

∫ ∞
−∞

xkf(x | θ)dx (continuous)

=
∑

xkf(x | θ) (discrete)

2. Solve this system of p equations for θ1, θ2, . . . , θp:

θ1 = g1(µ1, . . . , µp)

θ2 = g2(µ1, . . . , µp)

. . .

θp = gp(µ1, . . . , µp)

3. Plug in µ̂1, µ̂2, . . . , µ̂p as estimates of µ1, . . . , µp:

θ̂1 = g1(µ̂1, . . . , µ̂p)

θ̂2 = g2(µ̂1, . . . , µ̂p)

. . .

θ̂p = gp(µ̂1, . . . , µ̂p)

Special Case: p = 2

1. Find µ1, µ2:

µ1 = h1(θ1, θ2)

µ2 = h2(θ1, θ2).

2. Solve for θ1, θ2:

θ1 = g1(µ1, µ2)

θ2 = g2(µ1, µ2).

3. Plug in µ̂1, µ̂2 for µ1, µ2:

θ̂1 = g1(µ̂1, µ̂2)

θ̂2 = g2(µ̂1, µ̂2).
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5 Consistent Estimators

A sequence of estimators Wn = Wn(X1, X2, . . . , Xn) is a consistent sequence of estimators
for the parameter τ = τ(θ) if, for every ε > 0, and every θ ∈ Θ,

lim
n→∞

Pθ(|Wn − τ | < ε) = 1 (2)

The sequence is strongly consistent if we may replace (2) by

Wn → τ with probability 1 asn→∞. (3)

The sequence is consistent in 2nd mean (or in L2) if we may replace (2) by

lim
n→∞

Eθ(Wn − τ)2 = 0. (4)

Let X1, X2, X3, . . . , be iid.
Strong Law of Large Numbers: If E|h(X1)| <∞, then

1

n

n∑
i=1

h(Xi)
wp1→ Eh(X1) asn→∞.

Special case: If µr exists ( E|X|r <∞), then

mr
wp1→ µr.

Another Fact: Suppose the population pth quantile βp is unique (that is, there exists a

unique value x ( = βp) such that F (X) = p, where F is the population cdf), then Qp
wp1→ βp.

(Sections 5.5 and 10.1 discuss modes of convergence and consistency of estimates in greater
detail.) The three types of consistency are (special cases of) ‘convergence in probability’,
‘convergence almost surely, and ‘convergence in L2’ (or in mean square), respectively.

Preservation of convergence by continuous functions:
If Wn → τ in probability, and g is a continuous function, then g(Wn)→ g(τ) in probability.
Also true for functions of many variables:

If Un → ξ and Wn → τ in probability, and g : R2 → R is a continuous function, then
g(Un,Wn)→ g(ξ, τ) in probability.
The previous facts remain true if “in probability” is everywhere replaced by “almost surely”.
Thus continuous functions of consistent estimates are consistent. As a consequence, it is
typically true that estimators obtained by plug-in (substitution) are consistent. Method
of Moments (MOM) estimators are consistent. Method of moments (MOM) estimators
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are (typically) continuous functions of sample moments, which are consistent estimates of
populations moments.
Example: If X1, X2, X3, . . . are iid Geometric(p), the MOM estimator of p based on
X1, . . . , Xn is 1/x̄n where x̄n = n−1

∑n
i=1Xi.

WLLN implies 1/x̄n → EX1 = 1/p in probability (as n→∞). Thus 1/x̄n → 1/(1/p) = p
in probability. This holds for all p ∈ (0, 1]. Thus 1/x̄n is a consistent estimator of p.
Using the SLLN, the earlier statements remain true with in probability replaced by almost
surely so that 1/x̄n is also a strongly consistent estimator of p.
What about consistency in 2nd mean (or in L2)?
Example: Let X1, X2, X3, . . . are iid N(µ, σ2). The most commonly used estimate of σ2

based on X1, . . . , Xn is

s2
n = (n− 1)−1

n∑
i=1

(Xi − x̄n)2

s2
n → σ2 in probability (for all µ and σ2) → (*)

Thus, applying the continuous function g(x) =
√
x to both sides: sn → σ in probability

(for all µ and σ2). (These results don’t require normality, but hold for any population with
a finite second moment.)
Proof of (*): Show that E(s2

n − σ2)2 = Var(s2
n) → 0. Alternatively, apply LLN to the

identity:

s2
n = (n− 1)−1

( n∑
i=1

X2
i − nx̄2

n

)
=

n

n− 1

(
1

n

n∑
i=1

X2
i − x̄2

n

)
Example: MOM for Beta(α, β) distributions with pdf

f(x) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1

α, β > 0, where B(α, β) = Γ(α)Γ(β)/Γ(α + β). 2 parameters α, β implies to use two
moments.

EX = µ1 =
α

α+ β
(5)

EX2 = µ2 =
α(α+ 1)

(α+ β)(α+ β + 1)
. (6)

Solve for α and β in terms of µ1 and µ2.

R ≡ µ2

µ1
=

α+ 1

α+ β + 1
=

α
α+β + 1

α+β

1 + 1
α+β

=
µ1 + δ

1 + δ
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where δ ≡ 1
α+β .

R =
µ1 + δ

1 + δ
=⇒ R+Rδ = µ1 + δ =⇒

R− µ1 = δ(1−R) =⇒ δ =
R− µ1

1−R
.

Note that

µ1 =
α

α+ β
= αδ =⇒ α = µ1/δ.

β = (α+ β)− α =
1

δ
− µ1

δ
=⇒ (1− µ1)

δ
= β.

Hence

1

δ
=

1−R
R− µ1

=
1− µ2/µ1

µ2/µ1 − µ1
=
µ1 − µ2

µ2 − µ2
1

.

In summary, α = µ1ξ, β = (1− µ1)ξ where

ξ ≡ 1

δ
=
µ1 − µ2

µ2 − µ2
1

so the MOM estimates are

α̂ = m1ξ̂, β̂ = (1−m1)ξ̂, ξ̂ ≡ m1 −m2

m2 −m2
1

.

6 Maximum Likelihood Estimation

Assume X ∼ Pθ, θ ∈ Θ, with joint pdf (or pmf) f(x | θ). Suppose we observe X = x. The
Likelihood function is

L(θ | x) = f(x | θ)

as a function of θ (with the data x held fixed). The likelihood function L(θ | x) and joint
pdf f(x | θ) are the same except that f(x | θ) is generally viewed as a function of x with
θ held fixed, and L(θ | x) as a function of θ with x held fixed. f(x | θ) is a density in x
for each fixed θ. But L(θ | x) is not a density (or mass function) in θ for fixed x (except
by coincidence).
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6.1 The Maximum Likelihood Estimator (MLE)

A point estimator θ̂ = θ̂(x) is a MLE for θ if

L(θ̂ | x) = sup
θ
L(θ | x),

that is, θ̂ maximizes the likelihood. In most cases, the maximum is achieved at a unique
value, and we can refer to “the” MLE, and write

θ̂(x) = argmaxθL(θ|x).

(But there are cases where the likelihood has flat spots and the MLE is not unique.)

6.2 Motivation for MLE’s

Note: We often write L(θ | x) = L(θ), suppressing x, which is kept fixed at the observed
data. Suppose x ∈ Rn.
Discrete Case: If f(· | θ) is a mass function (X is discrete), then

L(θ) = f(x | θ) = Pθ(X = x).

L(θ) is the probability of getting the observed data x when the parameter value is θ.
Continuous Case: When f(· | θ) is a continuous density Pθ(X = x) = 0, but if B ⊂ Rn is
a very, very small ball (or cube) centered at the observed data x, then

Pθ(X ∈ B) ≈ f(x | θ)×Volume(B) ∝ L(θ).

L(θ) is proportional to the probability the random data X will be close to the observed
data x when the parameter value is θ. Thus, the MLE θ̂ is the value of θ which makes the
observed data x “most probable”.

To find θ̂, we maximize L(θ). This is usually done by calculus (finding a stationary point),
but not always. If the parameter space Θ contains endpoints or boundary points, the
maximum can be achieved at a boundary point without being a stationary point. If L(θ)
is not “smooth” (continuous and everywhere differentiable), the maximum does not have
to be achieved at a stationary point.
Cautionary Example: Suppose X1, . . . , Xn are iid Uniform(0, θ) and Θ = (0,∞). Given
data x = (x1, . . . , xn), find the MLE for θ.

L(θ) =
n∏
i=1

θ−1I(0 < xi < θ) = θ−nI(0 ≤ x(1))I(x(n) ≤ θ)

=

{
θ−n for θ ≥ x(n)

0 for 0 < θ < x(n)
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which is maximized at θ = x(n), which is a point of discontinuity and certainly not a

stationary point. Thus, the MLE is θ̂ = x(n).
Notes: L(θ) = 0 for θ < x(n) is just saying that these values of θ are absolutely ruled out by
the data (which is obvious). A strange property of the MLE in this example (not typical):

Pθ(θ̂ < θ) = 1

The MLE is biased; it is always less than the true value.
A Similar Example: Let X1, . . . , Xn be iid Uniform(α, β) and Θ = {(α, β) : α < β}.
Given data x = (x1, . . . , xn), find the MLE for θ = (α, β).

L(α, β) =

n∏
i=1

(β − α)−1I(α < xi < β) = (β − α)−nI(α ≤ x(1))I(x(n) ≤ β)

=

{
(β − α)−n for α ≤ x(1), x(n) ≤ β
0 otherwise

which is maximized by making β − α as small as possible without entering “0 otherwise”
region. Clearly, the maximum is achieved at (α, β) = (x(1), x(n)). Thus the MLE is

θ = (α̂, β̂) = (x(1), x(n)). Again, Pα,β(α < α̂, β̂ < β) = 1.
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