STA 5327 Exam 3

April 29, 2016

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature:

INSTRUCTIONS:

- This is a closed-book, closed-notes exam. However, a formula page is provided at the back.
- Total time is 2 hrs (12:30 P.M to 2:30 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 4 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.
- Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	20	
3	20	
4	20	

\qquad

Question 1. (20 points) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the density function

$$
f(x \mid \theta)=\frac{2 x}{\theta^{2}}, \quad 0<x<\theta
$$

a) (10 points) Find the Crámer-Rao lower bound for any unbiased estimator of $\tau(\theta)=\theta$ using the formula

$$
\frac{1}{n \mathbb{E}\left[\frac{\partial}{\partial \theta} \log f\left(X_{1} \mid \theta\right)\right]^{2}}
$$

b) (5 points) Find the variance of the unbiased estimator $\frac{3}{2 n} \sum_{i=1}^{n} X_{i}$.
c) (5 points) Explain the contradictory results in a) and b).

Question 2. (20 points) Let X_{1}, \ldots, X_{n} be i.i.d random variables from a regular probability density function $f(x \mid \theta)$ with $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \mathbb{R}^{p}$. Let $I(\theta)$ denote the $p \times p$ information matrix. Show that for any $j \in\{1, \ldots, p\}$, the (j, j) th entry of $I(\theta)^{-1}$ is larger than or equal to the inverse of the (j, j) th entry of $I(\theta)$. Explain the significance of this result in statistical inference of multiple parameters.

Question 3. (20 points) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed from a $\operatorname{Beta}(1, \theta)$ distribution for an unknown parameter $\theta>0$.
a) (5 points) Find the distribution of $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$ using Central Limit Theorem given by

$$
\sqrt{n}\left[\bar{X}-\mathbb{E}\left(X_{1}\right)\right] \xrightarrow{d} \mathrm{~N}\left(0, \operatorname{Var}\left(X_{1}\right)\right) .
$$

b) (15 points) A method of moments estimator of θ (you do not need to prove this part) is given by

$$
T(X)=\frac{1}{\bar{X}}-1
$$

Using Delta method, show that $T(X)$ is not an asymptotically efficient estimator.

Question 4. (20 points)
a) (5 points) Consider a test of simple hypotheses

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta=\theta_{1}
$$

based on one observation X from a discrete distribution with probability mass function $f(x \mid \theta)$ for $x=1,2, \ldots, 7$. The values of the likelihood function at θ_{0} and θ_{1} are given in the table below.

x	1	2	3	4	5	6	7
$f\left(x \mid \theta_{0}\right)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$f\left(x \mid \theta_{1}\right)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Find the most powerful test for $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta=\theta_{1}$ with level $\alpha=0.04$. Compute the power for this test.
b) (15 points) Suppose X is a single observation from a population with probability density function given by:

$$
f(x \mid \theta)=\theta x^{\theta-1}, \quad 0<x<1
$$

where $\theta>0$ is the parameter of interest. Find the rejection region for the most powerful test of level 0.05 , for testing the simple null hypothesis $H_{0}: \theta=3$ against the simple alternative hypothesis $H_{1}: \theta=2$.

Table of Distributions

Distribution	PMF/PDF and Support	Expected Value	Variance	MGF
$\begin{gathered} \text { Bernoulli } \\ \operatorname{Bern}(p) \end{gathered}$	$\begin{gathered} P(X=1)=p \\ P(X=0)=q=1-p \end{gathered}$	p	$p q$	$q+p e^{t}$
Binomial $\operatorname{Bin}(n, p)$	$\begin{gathered} P(X=k)=\binom{n}{k} p^{k} q^{n-k} \\ k \end{gathered}=\{0,1,2, \ldots n\}$	$n p$	$n p q$	$\left(q+p e^{t}\right)^{n}$
Geometric Geom (p)	$\begin{aligned} & P(X=k)=q^{k} p \\ & k \in\{0,1,2, \ldots\} \end{aligned}$	q / p	q / p^{2}	$\frac{p}{1-q e^{t}}, q e^{t}<1$
Negative Binomial $\operatorname{NBin}(r, p)$	$\begin{gathered} P(X=n)=\binom{r+n-1}{r-1} p^{r} q^{n} \\ n \in\{0,1,2, \ldots\} \end{gathered}$	$r q / p$	$r q / p^{2}$	$\left(\frac{p}{1-q e^{t}}\right)^{r}, q e^{t}<1$
Hypergeometric $\operatorname{HGeom}(w, b, n)$	$\begin{gathered} P(X=k)=\binom{w}{k}\binom{b}{n-k} /\binom{w+b}{n} \\ k \in\{0,1,2, \ldots, n\} \end{gathered}$	$\mu=\frac{n w}{b+w}$	$\left(\frac{w+b-n}{w+b-1}\right) n \frac{\mu}{n}\left(1-\frac{\mu}{n}\right)$	messy
Poisson $\operatorname{Pois}(\lambda)$	$\begin{gathered} P(X=k)=\frac{e^{-\lambda_{\lambda}}{ }^{k}}{k!} \\ k \in\{0,1,2, \ldots\} \end{gathered}$	λ	λ	$e^{\lambda\left(e^{t}-1\right)}$
Uniform $\operatorname{Unif}(a, b)$	$\begin{gathered} f(x)=\frac{1}{b-a} \\ x \in(a, b) \end{gathered}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	$\frac{e^{t b}-e^{t a}}{t(b-a)}$
$\begin{gathered} \text { Normal } \\ \mathcal{N}\left(\mu, \sigma^{2}\right) \end{gathered}$	$\begin{gathered} f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \\ x \in(-\infty, \infty) \end{gathered}$	μ	σ^{2}	$e^{t \mu+\frac{\sigma^{2} t^{2}}{2}}$
Exponential $\operatorname{Expo}(\lambda)$	$\begin{gathered} f(x)=\lambda e^{-\lambda x} \\ x \in(0, \infty) \end{gathered}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$\frac{\lambda}{\lambda-t}, t<\lambda$
Gamma $\operatorname{Gamma}(a, \lambda)$	$\begin{gathered} f(x)=\frac{1}{\Gamma(a)}(\lambda x)^{a} e^{-\lambda x} \frac{1}{x} \\ x \in(0, \infty) \end{gathered}$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^{2}}$	$\left(\frac{\lambda}{\lambda-t}\right)^{a}, t<\lambda$
Beta $\operatorname{Beta}(a, b)$	$\begin{gathered} f(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1} \\ x \in(0,1) \end{gathered}$	$\mu=\frac{a}{a+b}$	$\frac{\mu(1-\mu)}{(a+b+1)}$	messy
Log-Normal $\mathcal{L N}\left(\mu, \sigma^{2}\right)$	$\begin{gathered} \frac{1}{x \sigma \sqrt{2 \pi}} e^{-(\log x-\mu)^{2} /\left(2 \sigma^{2}\right)} \\ x \in(0, \infty) \end{gathered}$	$\theta=e^{\mu+\sigma^{2} / 2}$	$\theta^{2}\left(e^{\sigma^{2}}-1\right)$	doesn't exist
Chi-Square χ_{n}^{2}	$\begin{gathered} \frac{1}{2^{n / 2} \Gamma(n / 2)} x^{n / 2-1} e^{-x / 2} \\ x \in(0, \infty) \end{gathered}$	n	$2 n$	$(1-2 t)^{-n / 2}, t<1 / 2$
$\begin{aligned} & \text { Student- } t \\ & t_{n} \end{aligned}$	$\begin{gathered} \frac{\Gamma((n+1) / 2)}{\sqrt{n \pi} \Gamma(n / 2)}\left(1+x^{2} / n\right)^{-(n+1) / 2} \\ x \in(-\infty, \infty) \end{gathered}$	0 if $n>1$	$\frac{n}{n-2}$ if $n>2$	doesn't exist

